

Institut für Theoretische Chemie Prof. Dr. Gerhard Taubmann, Florian Gossenberger

Chemie für Chemieingenieure und Physiker

Mi. 12:00-14:00 Uhr, O25/648 (Physiker)
Do. 16:00-18:00 Uhr, O29/1003 (Chemieingenieure)

Übungsblatt 11

Aufgabe 1: Vorlesung

Fassen Sie die Vorlesung der letzten Woche kurz (höchstens 5 min) zusammen.

Aufgabe 2: Vorlesung

Beantworten Sie die Frage aus der Vorlesung.

Aufgabe 3: Synproportionierung und Disproportionierung

Begründen Sie durch Angabe der Oxidationszahlen, bei welchen der folgenden Reaktionen es sich um ein Syn- bzw. Disproportionierung handelt.

a) NH_4NO_3 \longrightarrow 2 $H_2O + N_2O$ b) $CuCl_2 + Cu$ \longrightarrow 2 CuClc) $IO_3 + 5 I + 6 H_3O^+$ \longrightarrow 3 $I_2 + 9 H_2O$ d) 2 $H_2SO_4 + 6 H_2S$ \longrightarrow $S_8 + 8 H_2O$ e) 2 H_2O_2 \longrightarrow 2 $H_2O + O_2$ f) 4 $KCIO_3$ \longrightarrow $KCI + 3 KCIO_4$ g) $Cl_2 + 2 NaOH$ \longrightarrow $NaCI + NaOCI + H_2O$ h) NH_4NO_3 \longrightarrow 4 $H_2O + 2 N_2 + O_2$

Aufgabe 4: Labortechnik

In der synthetischen, organischen Chemie wird häufig bei sehr niedrigen Temperaturen gearbeitet. Warum ist es hierbei gefährlich, mit flüssiger Luft anstatt mit flüssigem Stickstoff zu kühlen? (Siedepunkte: $O_2 T_b = -183 \,^{\circ}C$, $N_2 T_b = -196 \,^{\circ}C$)

Aufgabe 5: Experimentelle Bestimmung der Neutralisationsenthalpie von H^{+} – und OH^{-} – lonen.

Aus folgender Tabelle geht hervor, dass die Lage des Gleichgewichts der Reaktion

$$H^+ + OH^- \longrightarrow H_2O \mid \Delta H = N$$

stark temperaturabhängig ist.

$\mathcal{T}[^{\circ}\mathcal{C}]$	0	10	20	24	40	60	100
pK_W	14.9435	14.5346	14.1669	14.000	13.5348	13.0171	12.13
$K_{w} \cdot 10^{14}$	0.114	0.292	0.681	1.000	2.919	9.614	74.1

Die Van't Hoff'sche Reaktionsisobare

$$\left(\frac{\partial \ln K}{\partial T}\right)_p = \frac{\Delta H}{RT^2}$$

gibt den Zusammenhang zwischen der Änderung der Gleichgewichtskonstanten K in Abhängigkeit von der Temperatur und der Reaktionsenthalpie wieder.

- a) Bestimmen Sie einen Term, der Zusammenhang zwischen der **Größe** der Gleichgewichts-konstanten und der Reaktionsenthalpie wiedergibt.
- b) Tragen Sie die (**wichtig!** vernünftig skalierten) Werte aus obiger Tabelle in ein Koordinatensystem ein und bestimmen Sie die Gleichung der Ausgleichsgeraden (technische Hilfsmittel erlaubt, z.B. GTR, Gnuplot, Maple, Excel, Millimeterpapier usw.)
- c) Ermitteln Sie daraus die Neutralisationsenthalpie N und vergleichen Sie den Wert mit dem Literaturwert.