

Institut für Theoretische Chemie Prof. Dr. Gerhard Taubmann, Florian Gossenberger

Chemie für Chemieingenieure und Physiker

Mi. 16-18 Uhr, O25/H2 (Physiker)
Do. 10-12 Uhr, O25/H7 (Chemieingenieure)

Übungsblatt 15

Aufgabe 1: Vorlesung

Fassen Sie die Vorlesung der letzten Woche kurz (höchstens 5 min) zusammen.

Aufgabe 2: Vorlesung

Beantworten Sie die Frage aus der Vorlesung.

Aufgabe 3: Löslichkeitsprodukt

Berechnen Sie die Konzentration von Hg²⁺ in

a) reinem Wasser

b) 0.0010 M Kaliumiodid

Das Löslichkeitsprodukt von Hgl₂ ist 3*10⁻²⁶ mol³/L³.

Aufgabe 4: Wiederholung

Lernen Sie auf die Prüfung und melden Sie sich an (falls nicht schon geschehen).

Aufgabe 5: *Nomenklatur (wird nicht besprochen)*

Benennen Sie alle Verbindungen die in der Vorlesung bisher vorkamen. Ausgenommen sind große, organische Moleküle.

Bestimmen Sie die Oxidationszahlen der Moleküle.

Aufgabe 6: Labortechnik

In der synthetischen, organischen Chemie wird häufig bei sehr niedrigen Temperaturen gearbeitet. Warum ist es hierbei gefährlich, mit flüssiger Luft anstatt mit flüssigem Stickstoff zu kühlen? (Siedepunkte: O_2 T_b = -183 °C, N_2 T_b =- 196 °C)

Aufgabe 7: Experimentelle Bestimmung der Neutralisationsenthalpie von H^{+} – und OH^{-} – lonen.

Aus folgender Tabelle geht hervor, dass die Lage des Gleichgewichts der Reaktion

$$H^+ + OH^- \longrightarrow H_2O \mid \Delta H = N$$

stark temperaturabhängig ist.

$$T[^{\circ}C]$$
 0 10 20 24 40 60 100 pK_W 14.9435 14.5346 14.1669 14.000 13.5348 13.0171 12.13 $K_W \cdot 10^{14}$ 0.114 0.292 0.681 1.000 2.919 9.614 74.1

Die Van't Hoff'sche Reaktionsisobare

$$\left(\frac{\partial \ln K}{\partial T}\right)_{p} = \frac{\Delta H}{RT^{2}}$$

gibt den Zusammenhang zwischen der Änderung der Gleichgewichtskonstanten K in Abhängigkeit von der Temperatur und der Reaktionsenthalpie wieder.

- a) Bestimmen Sie einen Term, der Zusammenhang zwischen der **Größe** der Gleichgewichts-konstanten und der Reaktionsenthalpie wiedergibt.
- b) Tragen Sie die (**wichtig!** vernünftig skalierten) Werte aus obiger Tabelle in ein Koordinatensystem ein und bestimmen Sie die Gleichung der Ausgleichsgeraden (technische Hilfsmittel erlaubt, z.B. GTR, Gnuplot, Maple, Excel, Millimeterpapier, Java, Python, usw.)
- c) Ermitteln Sie daraus die Neutralisationsenthalpie N und vergleichen Sie den Wert mit dem Literaturwert.