

Mathematik II für Chemie und Wirtschaftschemie (Bachelor) Fr 10-11(12): O27/123, O25/151, O25/648, N24/131

Übungsblatt 7, verteilt: 06.06.2008, Übung 13.06.2008

Die Übungsblätter können von http://www.uni-ulm.de/theochem/lehre heruntergeladen werden

Aufgabe 1: Parameterdarstellungen

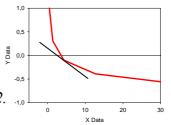
Ein Teilchen bewege sich auf der in Abbildung dargestellten Schraubenkurve z=f(x,y), die durch die folgende Zeit Parametrisierung darstellen lässt:

$$x(t)=2\cos(t)$$
$$y(t)=2\sin(t)$$

$$z=t$$
 $(t \in [0,\infty[)$

Berechnen Sie die (x,y,z)Komponenten des Geschwindigkeitsvektor des Teilchens zum Zeitpunkt t=13.

Aufgabe 2: Implizite Differentiation


Berechnen Sie die *Tangentensteigung* im Punkt $P=(x_0<0;3)$ der *Ellipse*: $\frac{x^2}{36} + \frac{y^2}{16} = 1$

Aufgabe 3: Implizite Differentiation

Wir betrachten die Kurve:

$$x(t) = \frac{1}{4}(-t + e^t)$$

$$y(t) = \cos(t) - \ln(t)$$

auf dem Zeitbereich [1,3]. Berechnen Sie die Ableitung y' bei t=2.

Aufgabe 4: Parameterabhängige Integrale

Gegeben ist die Funktion: $f(x,y) = (x-y)^3$.

a) Berechnen Sie das Integral:

$$I(y) = \int_{1}^{2} f(x, y) dx$$

b) Überprüfen Sie daß:
$$\frac{dI}{dy} = \int_{1}^{2} \frac{\partial f}{\partial y}(x, y) dx$$

c) Berechnen Sie jetzt
$$dI/dy$$
 wenn: $I = \int_{u=3y}^{v=2\cos(y)} f(x,y)dx$