High Room-Temperature Magnesium Ion Conductivity in Spinel-Type MgYb₂Se₄ Solid Electrolyte

Clarissa Glaser,[†] Mohsen Sotoudeh,[‡] Manuel Dillenz,[‡] Kanchan Sarkar,[‡] Jasmin S. Bark,[†] Shashwat Singh,[§] Zhixuan Wei,[†] Sylvio Indris,[¶] Riccarda Müller,[⊥] Kerstin Leopold,[⊥] Linda F. Nazar,[§] Axel Groß[‡] and Jürgen Janek[†]*

[†]Institute of Physical Chemistry and Center for Materials Research (ZfM), Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany

[‡]Institute of Theoretical Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm,

Germany

[§]Department of Chemistry and the Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada

Institute for Applied Materials-Energy Storage Systems (IAM-ESS), Karlsruhe Institute of

Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen,

Germany

[⊥]Institute of Analytical and Bioanalytical Chemistry, Ulm University, 89081 Ulm, Germany

*Corresponding author: Juergen.Janek@phys.chemie.uni-giessen.de

Figure S1. Rietveld refinements based on the XRD data (**Figure 1a**) of a) MgSe and b) Yb₂Se₃. Observed and calculated patterns are shown in red and black, and the difference curves are shown in blue. The refinement with respect to the MgSe sample indicates a phase-pure material without any impurities of possible phases such as Se, Mg or MgO. In the Yb₂Se₃ sample, instead, small fractions of Se (2.3 wt% in total) and YbSe (2.7 wt%) were identified, resulting from an incomplete/non-stoichiometric reaction of Yb and Se, which is expected to continue during the next reaction step (MgYb₂Se₄ formation).

Figure S2. a) Overview SEM image showing sintered fragments of MgYb₂Se₄ powder with a typical size of 1–100 μ m. b) Light optical image of the dark red MgYb₂Se₄ powder and SEM image of a MgYb₂Se₄ fragment (consisting of sintered 1–3 μ m sized particles) with EDS mapping of the corresponding elements Mg, Yb and Se.

Figure S3. XRD patterns of synthesized MgSe, Sc₂Se₃, Tm₂Se₃, Er₂Se₃ and Y₂Se₃. Reproduced with permission from reference [1]. Copyright 2024, C. Glaser et al.¹

Figure S4. a) XRD patterns of spinels MgSc₂Se₄, MgYb₂Se₄, MgTm₂Se₄, MgEr₂Se₄, MgY₂Se₄ and MgSc_{0.4}Y_{0.4}Er_{0.4}Tm_{0.4}Yb_{0.4}Se₄ synthesized from corresponding binary selenides. All data for MgSc₂Se₄, MgTm₂Se₄, MgEr₂Se₄ and MgY₂Se₄ reused with permission from references [1,2]. Copyright 2023 and 2024, C. Glaser et al.^{1,2} b) Zoomed view of a) showing reflections of impurities in the range of 30° to 33° marked with an asterisk. Among the spinels, MgYb₂Se₄ and MgSc_{0.4}Y_{0.4}Er_{0.4}Tm_{0.4}Yb_{0.4}Se₄ have the lowest intensities of impurity phases. The XRD pattern of MgSc_{0.4}Y_{0.4}Er_{0.4}Tm_{0.4}Yb_{0.4}Se₄ is quite similar to that of MgY₂Se₄ but shifted to larger angles 2 θ , which is probably due to the partial substitution of the Y-position by the smaller Sc-, Yb-, Tmand Er-ions.

Figure S5. a) Overview SEM image of $MgSc_{0.4}Y_{0.4}Er_{0.4}Tm_{0.4}Yb_{0.4}Se_4$ powder showing sintered fragments with a typically size of 1–80 µm; and b) SEM image of a fragment with EDS mapping of the corresponding elements Mg, Sc, Y, Er, Tm, Yb and Se.

Figure S6. a) Nyquist plot of the C|MgSc_{0.4}Y_{0.4}Er_{0.4}Tm_{0.4}Yb_{0.4}Se₄|C press cell in the frequency range of 3 MHz to 100 mHz at 25 °C. b) DC polarization data at 25 °C obtained for the same cell configuration. During the measurement, different voltages (0.1, 0.2, 0.3, 0.4, 0.5 and 0.6 V) were held for 1 h each. The steady-state current at the end of each holding step (shown in the inset) was plotted against the corresponding voltage to calculate the electronic resistance R_{el} of the

multicationic spinel using a linear fit. As a result, MgSc_{0.4}Y_{0.4}Er_{0.4}Tm_{0.4}Yb_{0.4}Se₄ shows a similarly low electronic conductivity as the MgYb₂Se₄ spinel.

Figure S7. a) XRD patterns of Mg_{1-0.5x}Sc₂Se_{4-x}Br_x compounds (x = 0, 0.25, 0.5, 0.75, 1) synthesized from binary compounds MgSe, Sc₂Se₃ and ScBr₃. All data for MgSc₂Se₄ reused with permission from reference [2]. Copyright 2023, C. Glaser et al.² b) Zoomed view of a) showing reflections of impurities in the range of 28° to 33° marked with an asterisk. Among the spinels, only the Mg_{0.75}Sc₂Se_{3.5}Br_{0.5} spinel shows no impurity phases. The shift of the XRD patterns to larger angles 2 θ with increasing *x* is probably due to the partial substitution of the Se-position by the slightly smaller Br-ions. At $x \ge 0.75$ decomposition to binary compounds is observed.

Figure S8. Light optical images of synthesized $Mg_{1-0.5x}Sc_2Se_{4-x}Br_x$ compounds (x = 0, 0.25, 0.5, 0.75, 1) and Sc_2Se_3 . The color of the powder changes as x increases from gray-brown to orange, orange-red and dark red to violet. The violet color at x = 1 suggests that decomposition to the dark violet Sc_2Se_3 , MgSe (white-grey) and ScBr₃ (white) has occurred.

Figure S9. Theoretical mass ratio (grey) and experimentally determined mass ratio of Mg (orange) in $Mg_{1-0.5x}Sc_2Se_{4-x}Br_x$ compounds (x = 0, 0.25, 0.5, 0.75) using FAAS. Error bars represent ±1 SD with n = 3.

Figure S10. Theoretical mass ratio (grey) and experimentally determined mass ratio of a) Sc (blue) and b) Se (yellow) in Mg_{1-0.5x}Sc₂Se_{4-x}Br_x compounds (x = 0, 0.25, 0.5, 0.75) using TXRF. Error bars represent ±1 SD with n = 3.

Figure S11. SEM images of Mg_{1-0.5x}Sc₂Se_{4-x}Br_x (x = 0, 0.25, 0.5, 0.75, 1) showing an increase of the size of the sintered particles in the fragments from x = 0 to x = 0.75.

Figure S12. DC polarization data of C|Mg_{1-0.5x}Sc₂Se_{4-x}Br_x|C press cells obtained at 25 °C. During the measurement, different voltages (0.1, 0.2, 0.3, 0.4, 0.5 and 0.6 V) were held for 1 h each. The steady-state current at the end of each holding step (shown in the inset) was plotted against the corresponding voltage to calculate the electronic resistance R_{el} of the Mg_{1-0.5x}Sc₂Se_{4-x}Br_x compounds using a linear fit. Among the spinels, Mg_{0.75}Sc₂Se_{3.5}Br_{0.5} shows a five order of magnitude lower electronic conductivity.

Figure S13. a) Fitted Nyquist plots of a SS|UiO66-MgIL|SS cell at different temperatures ranging from 0 °C to 60 °C and b) corresponding Arrhenius plot showing a Mg²⁺ migration barrier of 341 meV for UiO66-MgIL.

Figure S14. Fitted Nyquist plots of SS|UiO66-MgIL|MgYb₂Se₄|UiO66-MgIL|SS cells at different temperatures ranging from 0 °C to 60 °C using a spinel pellet mass/thickness of a) 160 mg/0.46 mm, b) 220 mg/0.54 mm, and c) 280 mg/0.76 mm; and d) Arrhenius plots of the ionic conductivity of MgYb₂Se₄ for each cell.

Figure S15. a) Fitted Nyquist plots of a SS|MgIL|SS cell at different temperatures ranging from 0 °C to 60 °C; and b) corresponding Arrhenius plot showing a Mg^{2+} migration barrier of 391 meV for MgIL.

Figure S16. a) Fitted Nyquist plots of the SS|MgIL|MgSc_{0.4}Y_{0.4}Er_{0.4}Tm_{0.4}Yb_{0.4}Se₄|MgIL|SS cell at different temperatures ranging from 0 °C to 60 °C using a spinel pellet mass/thickness of 160 mg/0.54 mm; and d) corresponding Arrhenius plot of the ionic conductivity of MgSc_{0.4}Y_{0.4}Er_{0.4}Tm_{0.4}Yb_{0.4}Se₄.

Figure S17. Fitted Nyquist plots of SS|MgIL|Mg_{1-0.5x}Sc₂Se_{4-x}Br_x|MgIL|SS cells at different temperatures ranging from 0 °C to 60 °C using a 160 mg spinel pellet with a thickness of a) 0.41 mm, b) 0.38 mm, c) 0.38 mm, d) 46 mm, e) 51 mm; and f) Arrhenius plots of the ionic conductivity of Mg_{1-0.5x}Sc₂Se_{4-x}Br_x for each cell.

Figure S18. Overview of the fitted Nyquist plots of the SS|MgIL|Mg_{1-0.5x}Sc₂Se_{4-x}Br_x|MgIL|SS cells and the SS|MgIL|MgSc_{0.4}Y_{0.4}Er_{0.4}Tm_{0.4}Yb_{0.4}Se₄|MgIL|SS cell at 25 °C. The multicationic and multianionic (x < 0.75) spinels show comparable ionic resistances to the pristine MgSc₂Se₄ samples, while the ionic resistance increases with $x \ge 0.75$ in Mg_{1-0.5x}Sc₂Se_{4-x}Br_x due to the decomposition of the spinel into binary compounds.

Figure S19. a) The kinetically resolved activation energy (E_{KRA}) and b) the site preference energy (ΔE), both expressed in electron volts (eV), for Mg-ion migration in the MgB₂Se₄ selenide spinel lattice as a function of the k_{64} distance ratio.

Figure S20. LSV curves of Mg|UiO66-MgIL|SS cell and Mg|UiO66-MgIL|MgB₂Se₄|UiO66-MgIL|SS cells (B = Sc, Tm, Er, Y, Yb) recorded at a scan rate of $-0.1 \text{ mV s}^{-1}/0.1 \text{ mV s}^{-1}$ at a) room temperature and b) 60 °C. The current profiles of the sandwich-type cells and the reference cell without spinel layer are quite identical, as the UiO66-MgIL appears to limit the stability window. Data for MgSc₂Se₄, MgTm₂Se₄, MgEr₂Se₄ and MgY₂Se₄ reused with permission from reference [1]. Copyright 2024, C. Glaser et al.¹

Table S1. Crystallographic data for MgYb₂Se₄ obtained from Rietveld refinement, based on thecorresponding XRD pattern measured using Cu K_{α} radiation.

Result

Crystallographic information

Crystal system	cubic
Space group	Fd-3m
Lattice parameters	<i>a</i> = <i>b</i> = <i>c</i> = 11.45178 Å
Cell volume	1501.824 Å ³
Density	6.447 g cm ⁻³
Atomic positions of Mg	X = Y = Z = 0.37500
Atomic positions of Yb	X = Y = Z = 0
Atomic positions of Se	X = Y = Z = 0.24456
X ²	6.27
Rwp	7.54
R _{exp}	3.01
Bragg <i>R</i> -factor	1.20
RF-factor	1.44
GoF-index	2.5

Table S2. Mass *m* and thickness *d* of MgYb₂Se₄ pellets and UiO66-MgIL layers (sum of both layers) in the SS|UiO66-MgIL|SS reference cell and the SS|UiO66-MgIL|MgYb₂Se₄|UiO66-MgIL|SS cells.

Name of cell	<i>m</i> (MgYb₂Se₄)	d(MgYb₂Se₄)	<i>m</i> (UiO66-MgIL)	<i>d</i> (UiO66-MgIL)	
	[mg]	[mm]	[mg]	[mm]	
MOF3	0	0	80	0.70	
Yb160	160	0.46	80	0.58	
Yb220	220	0.54	80	0.64	
Yb280	280	0.76	80	0.69	

Table S3. Overview of the resistances $R1_{ion}$ (for UiO66-MgIL) and $R2_{ion}$ (for MgYb₂Se₄) obtained from data fitting of the SS|UiO66-MgIL|SS reference cell using the equivalent circuit in **Figure 3c** and the SS|UiO66-MgIL|MgYb₂Se₄|UiO66-MgIL|SS cells using the equivalent circuit in **Figure 3d**, exemplarily shown for the room temperature (25 °C) impedance measurements.

Nan	ne of cell	<i>R</i> 1 _{ion}	σ_{ion} (UiO66-MgIL)	R2 ion	$\sigma_{ion}(MgB_2Se_4)$	
		[Ω]	[10 ^{-₄} S cm ⁻¹]	[Ω]	[10 ⁻⁴ S cm ⁻¹]	
I	MOF3	117	7.61	-	-	
Ň	Yb160	97ª	7.61	348	1.68	
ì	Yb220	107ª	7.61	506	1.36	
Ň	Yb280	115ª	7.61	911	1.06	

For all spinel-containing cells, $R1_{ion}$ (^a) of the UiO66-MgIL was calculated by **eq S1**. Note: The electronic resistance $R2_{el}$ of the MgYb₂Se₄ is not listed as it is impossible to determine reliable results by the applied equivalent circuit, described in our earlier work.²

Since the total UiO66-MgIL layer thickness in the SS|UiO66-MgIL|MgYb₂Se₄|UiO66-MgIL|SS cells can vary to those used in the SS|UiO66-MgIL|SS reference cells (see **Table S2**), the impedances of the UiO66-MgIL ($R1_{ion}$ in **Table S3**) were adjusted to the layer thickness used by eq S1:

$$R1_{ion} = \frac{d(\text{UiO66-MgIL-}i)}{d(\text{UiO66-MgIL-Ref.})} R1_{ion}(\text{Ref.})$$

$$i = \text{Yb160, Yb220 and Yb280}$$

$$\text{Ref.} = \text{MOF3}$$
(S1)

Table S4. Mass m(spinel) and thickness d(spinel) of spinel pellets (MgSc₂Se₄, multicationic/multianionic spinels) and thickness d(MgIL) of the glass fiber-MgIL layers (sum of both layers) in the SS|MgIL|SS reference cell and the SS|MgIL|spinel|MgIL|SS cells.

spinel	<i>m</i> (spinel)	<i>d</i> (spinel)	d(MgIL)	
	[mg]	[mm]	[mm]	
-	0	0	0.53	
MgSc ₂ Se ₄ (1 step)	160	0.41	0.54	
MgSc ₂ Se ₄ (2 step)	160	0.38	0.53	
$Mg_{0.875}Sc_2Se_{3.75}Br_{0.25}$	160	0.38	0.56	
$Mg_{0.75}Sc_2Se_{3.5}Br_{0.5}$	160	0.46	0.51	
$Mg_{0.625}Sc_2Se_{3.25}Br_{0.75}$	160	0.51	0.58	
Mg _{0.5} Sc ₂ Se ₃ Br ₁	160	0.45	0.66	
$MgSc_{0.4}Y_{0.4}Er_{0.4}Tm_{0.4}Yb_{0.4}Se_{4}$	160	0.54	0.53	

Table S5. Overview of resistances $R1_{ion}$ (here: total ionic resistance) obtained from data fitting of the SS|MgIL|SS reference cell and the SS|MgIL|spinel|MgIL|SS cells using the equivalent circuit in **Figure 3c**, and the calculated resistances R_{ion} (MgIL) and R_{ion} (spinel), exemplarily shown for the room temperature (25 °C) impedance measurements.

spinel	R1 _{ion}	R _{ion} (MgIL)	$\sigma_{\scriptscriptstyle m ion}({\sf MgIL})$	R _{ion} (spinel)	$\sigma_{\scriptscriptstyle ext{ion}}(ext{spinel})$
	[Ω]	[Ω]	[10 ^{-₄} S cm ⁻¹]	[Ω]	[10 ^{-₄} S cm ⁻¹]
-	32	32	21	-	-
MgSc ₂ Se ₄ (1 step)	563	32ª	21	531	0.98
MgSc ₂ Se ₄ (2 step)	628	32ª	21	596	0.81
$Mg_{0.875}Sc_2Se_{3.75}Br_{0.25}$	698	33 ª	21	665	0.73
$Mg_{0.75}Sc_2Se_{3.5}Br_{0.5}$	489	30ª	21	459	1.3
Mg _{0.625} Sc ₂ Se _{3.25} Br _{0.75}	1464	35ª	21	1429	0.45
Mg _{0.5} Sc ₂ Se ₃ Br ₁	43458	39ª	21	43419	0.013
$MgSc_{0.4}Y_{0.4}Er_{0.4}Tm_{0.4}Yb_{0.4}Se_{4}$	501	31 ª	21	470	1.5

For all spinel-containing cells, $R_{ion}(MgIL)$ of the glass fiber-MgIL interlayer (^a) was calculated from $R1_{ion}$ of the SS|MgIL|SS cell analogously to that shown for the UiO66-MgIL interlayer by eq S1. $R_{ion}(spinel)$ is determined by the difference of $R1_{ion}$ and $R_{ion}(MgIL)$. Note that $\sigma_{ion}(spinel)$ may be overestimated as described in context with Figure 4.

REFERENCES

(1) Glaser, C.; Dillenz, M.; Sarkar, K.; Sotoudeh, M.; Wei, Z.; Indris, S.; Maile, R.; Rohnke, M.; Müller - Buschbaum, K.; Groß, A.; Janek, J. MgB2Se4 Spinels (B = Sc, Y, Er, Tm) as Potential Mg - Ion Solid Electrolytes - Partial Ionic Conductivity and the Ion Migration Barrier. *Adv. Energy Mater.* **2024**, No. 2402269.

(2) Glaser, C.; Wei, Z.; Indris, S.; Klement, P.; Chatterjee, S.; Ehrenberg, H.; Zhao - Karger, Z.; Rohnke, M.; Janek, J. To Be or Not to Be - Is MgSc2Se4 a Mg - Ion Solid Electrolyte? *Adv. Energy Mater.* **2023**, *13*, No. 2301980.