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Abstract

Based on the results of periodic density functional theory calculations we have recently proposed

that the height of self-diffusion barriers can serve as a descriptor for dendrite growth in batteries

[Energy Environ. Sci 11, 3400 (2018)]. However, in the determination of the self-diffusion barriers,

the electrochemical environment has not been taken into account. Still, due to the presence of

electrical double layers at electrode/electrolyte interfaces, strong electric fields can be present close

to the interfacial region. In a first step towards including the electrochemical environment, we have

calculated barriers for terrace- and across-step self-diffusion processes on lithium and magnesium

surfaces in the presence of electric fields. Our results yield a negligible influence of electric fields

on self-diffusion barriers which we explain by the good screening properties of metals.
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I. INTRODUCTION

Our current energy supply is still dominated by fossile resources.1,2 Because of the harmful

environmental impact and the associated economical costs, a change towards renewable

energy generation is needed3–6. However, due to the volatility of renewable sources such as

wind and sunlight, efficient storage schemes such as battery storage systems are needed7–9.

Furthermore, batteries also provide efficient energy storage in portable electronic devices,

power tools and electromobility.

In spite of the significant improvement in battery technology in the last decades, there

are still severe issues as far as battery performance is concerned, but also with respect to

sustainability and safety aspects. As one of the most severe hazards the growth of dendrites

has been identified 10–13. Their formation can lead to short-circuits and in combination with

a flammable electrolyte to highly exothermic reactions of the electrolyte called ’thermal

runaways’, which eventually can cause battery fires 14,15. In addition, upon fracture dendrites

cause a loss of anode material, the so called ’dead lithium’.10,12,13

Recently, we have shown that self-diffusion barriers can serve as a descriptor for the

occurrence of dendrites 16–18. This concept is based on the notion that diffusion generally

tends to make inhomogeneities smooth 19 and means that the height of diffusion barriers

is correlated to the tendency of a material to exhibit dendrite growth. These self-diffusion

barriers have been derived from periodic density functional theory (DFT) calculations, in

which, however, the electrochemical environment has not been taken into account.

At electrochemical interfaces, typically electric double layers (EDL) form, mainly result-

ing from ions that are attracted to charged electrodes and accumulate at the interface20–28.

One of the consequences of the presence of the EDL is the creation of strong electric fields.28,29

It has been shown that generated electric fields may influence the adsorption- and activation

energies on metal surfaces,30–32, the line tension of steps on surfaces 33, and the orientation

of molecules on surfaces34. Furthermore, the roles of electric fields in catalysis has just re-

cently been reviewed 35. On the other hand, for the dissociation of oxygen on Pt(111) only a

rather small increase in the dissociation barrier has been calculated for positive fields,31 and

the activation energy of desorption of cesium on tungsten has been observed to marginally

decrease upon applying a negative electric field.30

As far as batteries are concerned, it has been shown that high current densities speed
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up lithium dendrite growth,14,15,36 and can even lead to magnesium dendrite growth 37,38.

Typically it has been assumed that heterogeneous deposition caused by large polarizations

and strong electric fields tends to induce dendrite nucleation 36, however, most models of

dendrite growth are not element-specific 19,39 and are thus not able to explain why, e.g.,

lithium tends to exhibit dendrite growth and magnesium not. The effect of electric fields

with respect to dendrite growth has been linked to the direction of lithium fibre growth,15,40,

and to directed lithium deposition towards tips 13,15,41. However, for bush-like lithium growth

in LiPF6 solutions no prefered growth direction was found,42 also growth modes based on

insertion at defects have been observed. Consequently the effect of electric fields on the

growth direction ist still being debated43.

Hence the effect of electric fields on the growth of dendrites at the electrode-electrolyte

interfaces is still unclear. In this study, we first address the influence of externally applied

electric fields on the self-diffusion behavior of lithium, magnesium, and also silver based on

periodic DFT calculations, and then discuss the consequence of our findings on the growth

of dendrites in batteries.

II. THEORETICAL BACKGROUND

Periodic density functional theory (DFT) calculations have been performed using the

Vienna Ab initio Simulation Package (VASP).44,45 Exchange-correlation effects have been

accounted for within the generalized gradient approximation (GGA) employing the func-

tional of Perdew, Burke, and Ernzerhof (PBE).46 The core electrons are represented by

projector augmented wave (PAW) pseudopotentials47 as supplied in VASP48 with a cutoff

energy of 500 eV for lithium, and magnesium based systems, and 300 eV for the silver based

system. We have chosen these values which are larger than the VASP default values in order

to avoid any artifacts in the calculations including an explicit electric field. Up to a 7×7×1

gamma-centered k-point grid was used ensuring convergence for the integration over the first

Brillouin zone. In the calculations, the two uppermost layers were relaxed. The relaxation

in the calculations has been performed until the forces were smaller than 10−3 eV and both

the total free energy change and the band structure energy change were smaller than 10−6

eV.

In order to explicitly include electric fields in the calculations, we used the implementation
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of electric fields in VASP as first introduced by Neugebauer and Scheffler,49 and improved by

Feibelman50. In this method, an artificial planar dipole layer is introduced and placed in the

vacuum region exactly between the slab and its periodic image. In the calculations where

asymmetric slabs have been used, a surface dipole-moment correction had been included,49

in order to avoid the extra electric field due to the different dipole layers in this case.

Thus the dependence of the diffusion barriers on the electric field could be directly derived

from the DFT calculations via

Eact,DFT ( ~E) = ETS( ~E)− EIS( ~E) , (1)

where TS and IS denote the transition state (TS) and initial state (IS) of the diffusion

path, respectively. It should be noted, however, that the SCF convergence of the Kohn-

Sham calculations including an explicit electric field is severely slowed down compared to

the field-free case, which makes these calculations numerically rather demanding.

In addition, we also used a first-order pertubation theory expression derived by Giesen

et al. 51 for the diffusion barrier of a particle on a surface in the presence of an electric field,

Eact(φ) = E0
act − (µTS − µIS) · σ0(φ)

ε0
, (2)

where Eact(φ) is the diffusion barrier in dependence of the electrode potential φ, E0
act is

the diffusion barrier in a field-free environment, (µTS − µIS) is the difference of the dipole

moments perpendicular to the surface in the TS and in the IS in a field-free environment,

and σ0(φ)
ε0

is the macroscopic charge density σ divided by the electric constant ε0.

As already stated by Giesen et al.,51 the correction term can be interpreted as the elec-

trostatic energy of a dipole in an electric field | ~E| = σ0(φ)/ε0, perpendicular to the surface.

Inserting this into Eq. 2 yields

Eact(| ~E|) = E0
act − (µTS − µIS) · | ~E| , (3)

which can be regarded as being equivalent to a first-order Stark effect.31

However, the explicit determination of surface dipole moments can be quite cumber-

some 52. Still, in periodic calculations the dipole moment change per unit area can be

4



directly related to the corresponding change in the work function Φ according to 53

∆µ0

As
= ∆Φ (− ε0

e0
) (4)

where As is the size of the surface unit cell. By inserting Eq. 4 into Eq. 3 one arrives at

Eact(| ~E|) = E0
act + (ΦTS − ΦIS)

ε0
e0

As · | ~E| , (5)

where ΦTS and ΦIS are the work functions associated with the transition and the initial

state, respectively, of the diffusion event. This formula has been used to predict the change

in the diffusion barrier as a function of the applied electric field.

III. RESULTS AND DISCUSSION

Selecting Li(100) as a test case, in Fig. 1 we first check the convergence of our results with

respect to the size of the surface unit cell and the slab thickness using mainly the first-order

expression (5) to derive the field-dependence of the diffusion barriers. Interestingly enough,

the sign of the field-dependence changes when going from a 2× 2 surface unit cell to a 4× 4

cell. Obviously, in the 2×2 unit cell the diffusing atoms are so close to each other that there

are significant depolarization effects that lead to an erroneous reverse field dependence. For

a 5 × 5 unit cell (not shown in Fig. 1a), the work function change is hardly changed any

more so that the 4 × 4 cell is apparently sufficiently large to avoid any substantial lateral

interaction between the diffusing atoms.

The DFT calculations with the explicit electric field yield a field dependence that is

somewhat smaller than the first-order expression. Still it should already be noted here that

the field dependence of the diffusion barriers is rather small, upon a change of the electric

field by 0.1 V/Å the diffusion barriers change by less than 1.5 meV. Upon increasing the

slab thickness to nine layers (see Fig. 1b), first of all the Li self-diffusion barrier on Li(100) is

decreased from 142 meV to 125 meV showing that the slab thickness still has some influence

on the barrier heights54. However, now the agreement in the electric field dependence of

the diffusion barriers between the explicit calculations and the first-order expression is even

better. This indicates that when quantum size effects due to the small thickness of the slab

leading to charge oscillations are reduced 53,55–57, obviously the first-order expression of the
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FIG. 1. Convergence of the calculations of Lithium self-diffusion in an electric field as a function

of the size of the surface unit cell (panel a) and the slab thickness, i.e., the number L of layers

(panel b). DFT: Diffusion barriers calculated for explicit electric fields, ∆Φ: field dependence of

the diffusion barriers derived from the first-order expression Eq. 5. Note that the absolute values

of the 5L and 7L results in panel b are shifted to yield the same zero-field value as the 9L results

so that the slopes can be better compared.

field effects based on the work function changes becomes more appropriate. As a result of

these convergence tests, in the following we only consider nine-layer slabs with a 4×4 surface

unit cell to describe self-diffusion events on flat metal surfaces.

Figure 2 illustrates the calculated electric-field dependence of terrace self-diffusion barriers

for the three cases, Li(100), Mg(0001) and Ag(111). In the field-free cases we obtain a barrier

of 125 meV for Li(100), whereas the barrier on Mg(0001) is only about 16 meV. Hence the

diffusion of Mg adatoms on Mg(0001) is much more facile than the diffusion of Li on Li(100).
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FIG. 2. Self-diffusion barriers of a) Mg/Mg(0001), b) Ag/Ag(111) and c) Li/Li(100) as a function

of the electric field. DFT: Diffusion barriers calculated for different electric fields, ∆Φ: diffusion

barrier function calculated via an implementation of the IST, see Eq. 5.
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As mentioned above, this should lead to a much smoother growth of Mg surfaces than of Li

surfaces and might explain why Mg surfaces do not tend to exhibit dendrite growth, whereas

Li surfaces do. Together with the corresponding results for Na, Al, and Zn, this observation

suggests that self-diffusion barriers can serve as a descriptor for dendrite growth.16,17

We also considered the Ag self-diffusion on Ag(111), as this is a system in which the self-

diffusion has been studied before. We find a self-diffusion barrier of 64 meV which agrees

well with previous calculated58,59 and measured60 results within the error margins.

As far as the dependence of the barriers on the electric field is concerned, in all cases

the results obtained with the first-order expression (5) are in very good agreement with the

calculations explicitly including the electric field. This might be surprising because electric

fields of 0.1 V/Å are considered to be strong fields on a technical level61. However, one has

to take into account that on an atomistic level the laterally averaged effective one-electron

potential at metal/electrolyte interfaces varies by up to more than 10 eV/Å,62 corresponding

to local field strengths that are 100 times larger than those applied in our simulations. Hence

the applied electric field indeed represents a small perturbation to the electronic structure

at the surface justifying the application of first-order perturbation theory.

For all considered surfaces, we find a rather small dependence of the self-diffusion barriers

on the electric field, the diffusion barriers change by only up to 0.6 meV for terrace self-

diffusion on Li(100), Mg(0001) and Ag(111), as listed in Table I. In order to understand

why this dependence is so weak, we have plotted in Fig. 3 the laterally averaged one-electron

potential along the surface normal as determined by DFT calculations for a 5-layer Li(100)

slab with explicitly applied electric fields ranging from -0.2 and 0.2 V/Å. The field strength

is directly reflected by the slopes of the curves in the linear regime in the vacuum region.

Figure 3 clearly demonstrates that independent of the considered field strength already 2 Å

TABLE I. Change in the self-diffusion barriers ∆Eact(| ~E|) when an external field of | ~E| = 0.1

V/Å is applied. T: terrace diffusion; AS: across step diffusion.

System ∆Eact (meV)

Li(100) T 0.5

Mg(0001) T 0.6

Ag(111) T 0.3

Li(100) {111}-AS 3.7
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FIG. 3. Laterally averaged one-electron potential of a Li(100) slab in the presence of electric field

with field strengths between -0.2 and 0.2 V/Å. Note that for larger electric fields only field strengths

of ±0.1, ±0.15 and ±0.2 V/Å have been included.

above the center of the uppermost Li atoms all one-electron potential curves lie above each

other. This shows that also in an atomistically resolved analysis metals very effectively

screen electric fields so that they can hardly penetrate, even into the surface region. These

findings are also in line with the observation that atomic adsorption energies on metal

surfaces depend only very weakly on an applied electric field63.

Finally we also considered diffusion across steps. It should be noted that for three-

dimensional growth in particular the diffusion barriers across steps from an upper terrace

to a lower terrace are critical. If the terrace self-diffusion barrier is subtracted from these

barriers, we get the so-called Schwoebel-Ehrlich barrier.64,65 If this barrier is large, then

particles deposited on some island will not propagate to the lower terrace. This then leads

to a three-dimensional growth instead of a layer-by-layer growth. Interestingly enough, these

barriers can be quite low17,66 when this diffusion process occurs in the so-called exchange

mechanism which is illustrated in Fig. 4. In this mechanism, which is in fact operative on

Li(100) across {111} steps17, but also on step-sites of other metal surfaces17,66, an atom from

the upper terrace replaces a step-edge atom which is pushed out onto the lower terrace. The

driving force for this mechanism is the relatively high coordination of all the propagating

atoms throughout the whole diffusion process. However, as the exchange mechanism involves

the cooperative motion of several surface atoms, we have used the nudged elastic band (NEB)
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FIG. 4. Minimum energy path of an exchange diffusion process across a {111}-facetted step on a

Li(100) surface in a field-free environment; White and blue: exchange diffusion paths for the two

involved lithium atoms; Orange: transition state configurations.

method67 that corresponds to an automatic search routine for finding the minimum energy

path between specified initial and final states.

The dependence of this barrier on Li(100) for downward diffusion across a {111} step as a

function of an electric field is shown in Fig. 5. First of all it needs to be mentioned that the

barrier of 0.16 eV for the field-free case is somewhat lower than the barrier originally reported

in our previous paper17, but now in good agreement with another theoretical work54. This

deviation is due to the fact that in our original determination of this particular barrier height

employing the nudged elastic band (NEB) method67 we used different cutoff parameters in

the total-enery calculations for the initial and the final state on the one hand and the so-

called NEB images along the minimum energy path on the other hand. Still, in spite of this

quantitative adjustment all the qualitative conclusions of the previous work17 remain valid.

The explicitly calculated change of the diffusion barriers for field strenghts of | ~E| = +

0.10 V/Å or | ~E| = − 0.10 V/Å is -3.4 meV and +3.7 meV, respectively. This is almost

a factor of 10 larger than the corresponding dependence on the terraces (see Table I). It is

probably due to the more open structure of the steps which enhances field effects. The over-

all field dependence is still linear and rather weak. Now the first-order expression (5) yields
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FIG. 5. Downward across-step diffusion barrier of a 111-facetted step on a Li(100) surface with

the exchange mechanism, in dependence of an electric field. DFT: Diffusion barriers calculated for

different electric fields, ∆Φ: diffusion barrier function calculated via an implementation of the IST,

see eq. 5.

a slightly larger dependence of the barrier heights than the explicit DFT calculations. We

obtain a change of the barrier height of ± 5.2 meV for field strengths of | ~E| = ± 0.10 V/Å.

This might again be due to the more open structure of the steps, but still the first-order

expression gives an acceptable estimate of the electric-field dependence of the diffusion bar-

rier.

Thus we find only a small influence of the electric fields on the barriers for metal for

self-diffusion. Relying on the assumption that these barriers determine the intial steps of

dendrite formation and thus can serve as a descriptor for dendrite growth, these initial steps

on the atomistic level should not be significantly modified by the presence of electric fields.

This does not mean that the process of further dendrite growth, once they reach mesoscopic

or macroscopic sizes, is not significantly incluenced by the electric field strength. However,

these processes basically correspond to macroscopic phenomena that depend on general

metallic properties. Thus they do not discriminate between the different metals and thus

can not be used to explain why some metals exhibit a strong tendency towwards dendrite

growth and some not.
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IV. CONCLUSIONS AND OUTLOOK

In this work, we have studied the barriers in terrace self-diffusion on Li(100), Mg(0001)

and Ag(111) and downward a {111} step on Li(100) as a function of an applied extermal elec-

tric field. This study was motivated by our recent work showing that self-diffusion barriers

could serve as a descriptor for dendrite growth in batteries. However, in the determination of

the diffusion barriers, so far we had not taken into account the electrochemical environment.

As a first step towards a more realistic modeling of the conditions in the electric double

layer at electrode/electrolyte interfaces, we have therefore considered electric field effects

by explicitly taking them into account in periodic DFT calculations, and in a first-order

approximation based on the work function difference between the transition and the initial

state. Both approaches yield rather similar results.

In general we find a rather weak dependence of the height of the diffusion barriers on the

applied electric field which we explain by the good screening properties of metal electrodes

that do not allow electric fields to effectively penetrate into the electrodes. Hence electric

field effects are not likely to modify the correlation between the height of self-diffusion bar-

riers and the likelihood for dendrite growth. Our results related to the good screening prop-

erties are not only relevant for dendrite growth, but in general for structures and processes

such as adsorption at electrochemical interfaces between metal electrodes and electrolytes.

Still it should be stressed again that in this work no theory of dendrite growth has

been presented. We have only confirmed that the correlation between the height of self-

diffusion barriers and the occurence of dendrite-growth in batteries is still valid if electric

field effects are taken into account. As the growth of dendrites occurs on mesoscopic and

even macroscopic length scales, an appropriate modeling requires approaches that combine

processes on macroscopic length scales with input parameters derived on the microscopic

level in order to yield element-specific simulation results. This is the subject of ongoing

work in our group.
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