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The adsorption of water on bimetallic PtRu/Pt(111)
surface alloys has been studied based on periodic
density functional theory calculations including
dispersion corrections. The Ru atoms of the PtRu
surface alloy interact more strongly with water than
Pt atoms, both as far as single water molecules as
well as ice-like hexagonal structures are concerned.
Within the surface alloy layer, the lateral ligand effect
reducing the local reactivity of the surface atoms with
increasing Ru content is more dominant than the
opposing geometric effect due to the tensile strain. The
structural preference for the Ru atoms also prevails
at room temperature, as ab initio molecular dynamics
simulations show.
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1. Introduction
There is an ongoing search for better catalysts in heterogeneous and electro-catalysis with
improved activity and selectivity [1–3]. Nanostructured bimetallic catalysts offer the possibility
to modify their composition, structure and arrangement in order to prepare a catalyst material
with the desired properties [4–7]. To do this in a rational way requires an understanding of the
underlying principles governing the activity of a bimetallic catalyst.

In electrocatalysis, the desired reactions typically occur at the interface between the electrode
and the aqueous electrolyte. The particular structure of water at the metal electrode surface can be
crucial as the water molecules interact with the reacting species [8–11]. The presence of water on
metal surfaces is also interesting with respect to corrosion [12]. In addition, metal-water interfaces
are of fundamental interest as they represent the boundary between an ordered and an disordered
phase. This importance has motivated a multitude of experimental [13,14] and theoretical [15–22]
studies addressing the structure of metal-water interfaces. As far as closed-packed hexagonal
metal electrodes are concerned, ab initio molecular dynamics simulations indicate that at room
temperature water does not remain in ice-like hexagonal structure but rather becomes disordered,
in particular with respect to the orientation of the water molecules [18].

However, these studies have typically concentrated on water layers on pure elemental metal
surfaces, only few studies have been concerned with the adsorption of water on metal alloys [23–
25]. In particular, we are not aware of any theoretical study that addresses the geometry of water
layers on ordered surface alloys. Hence it is not clear yet whether the structure of an underlying
surface alloy is also imposed on adsorbed water layers.

Using periodic density functional theory (DFT) calculations, we have systematically studied
the structure of a water layer on a PtRu/Pt(111) surface for varying compositions of the PtRu
surface alloy. The PtRu system is of strong interest in electrocatalysis because of its superior
properties as a fuel cell catalyst material [26–29]. We have analyzed both the adsorption of
water monomers as well as the preferential arrangement of ice-like hexagonal water layers
on PtRu/Pt(111) surface alloys as a function of the composition of the surface alloy. At room
temperature, water layers on flat metal surfaces are typically no longer crystalline, but rather
disordered [15,18,21,30]. Therefore we have also performed ab initio molecular dynamics (AIMD)
simulations at a temperature of 300 K in order to assess the thermal stability of the water layers
on PtRu/Pt(111) surface alloys.

2. Computational Details
Periodic DFT calculations have been performed using the Vienna ab initio software package
(VASP) [31]. The electronic cores are described by the projector augmented wave (PAW)
method [32] and the electronic one-particle states in the water-metal calculations have been
expanded up to 400 eV using a plane wave basis set. In order to describe the water-water and
also the water-metal interaction appropriately, it has turned out to be crucial to take dispersion
interactions into account [33,34]. Hybrid functionals are not appropriate for metals [35], hence
typically the generalized gradient approximation (GGA) using the Perdew-Burke-Ernzerhof
(PBE) functional [36] or its revised RPBE version [37] are used. However, PBE leads to a
overstructuring of water [38], even if dispersion corrections are taken into account [39]. Yet, in
a series of papers it has been shown that the RPBE functional together with the D3 dispersion
correction [40] and so-called zero (D3/zero) damping functions [41] yields a rather satisfactory
description of the properties of water-metal interfaces [10,34], bulk liquid water [34,42] and
even water clusters and ice crystals [42]. Therefore we have employed in this study the RPBE-
D3 scheme. However, as the D3 dispersion correction scheme does not correctly describe the
screening of the dispersion interaction within the bulk metal [34,43], in the pairwise summation
only the uppermost metal layer is included.



3

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..........................................................

Figure 1. Energy minimum structure of water molecules adsorbed at a coverage of 1/3 on a Pt2Ru1/Pt(111) surface alloy.

The Ru atoms are colored in green, the Pt atoms in dark grey.

The metal electrodes were modeled by five-layer slabs. The top three layers of the slabs have
been fully relaxed, while the bottom two layers have been fixed at their bulk positions. Ordered
surface alloys have been considered with a Ru content of 0, 1/3, 2/3 and 1 in a

√
3×
√
3R30◦

geometry using a k-point sampling of 9× 9× 1 to replace the integration over the first Brillouin
zone. The ab initio molecular dynamics (AIMD) simulations have been performed in a 2

√
3×

2
√
3R30◦ surface unit cell employing 5× 5× 1 k-points. A vacuum region of at least 15 Å was

chosen, depending on the number of water layers. The AIMD simulations were performed with
the Verlet algorithm using a time step of 1 fs within the microcanonical ensemble considering two
water layers. This corresponds to a rather thin film. Recent AIMD simulations of a water film on
Pt(111) have revealed that at this particular electrode the water layers assume a bulk liquid-like
structure from the third layer on [42]. On the other hand, previously it was shown that two water
layers at close-packed metal electrodes are sufficient to reproduce basic properties of adsorbed
water layers [18]. In order to limit the still high computational cost of AIMD simulations, we have
therefore chosen to take into account only two layers of water.

3. Results and Discussion
Single water molecules adsorb on close-packed metal surfaces typically through their oxygen
atom at a top position in a flat configuration with the hydrogen atoms almost at the same height
as the oxygen atom [17,44]. This is also the case for isolated water molecules at a coverage of
1/3 adsorbed on PtRu/Pt(111) surface alloys, as illustrated for a Pt2Ru1/Pt(111) surface alloy in
Fig. 1. As shown in this figure, the water monomer preferentially adsorbs on the Ru atom of the
PtRu surface alloy. This can be understood by the higher reactivity of Ru compared to Pt because
the d-band is closer to being half-filled.

However, in a surface alloy, the different size and interaction strength of the metallic species
influence the reactivity of the components. When a more reactive and smaller metal atom such as
Ru is added to a Pt system that is less reactive and has a larger lattice constant, there are typically
two competing effects [6,45] that can be understood in a simple bond-order like concept, but also
within the d-band model [46] which states that adsorption on a particular metal atoms becomes
the weaker, the lower the local d- band center is.

Replacing Pt by the smaller Ru can be regarded as introducing tensile strain. This geometric
effect reduces the overlap between the electronic states of adjacent atoms which makes them more
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strongly interacting with adsorbates. On the other hand, Ru is more reactive than Pt due to the
fact that its d-band is less filled, but still more than half-filled. This lateral ligand effect causes
a stronger interaction between adjacent atoms which makes them less strongly interacting with
adsorbates. In fact, there are surface alloys such as PtAu/Pt(111) where these two opposing effects
for the local reactivity cancel, leading to ontop adsorption energies that are independent of the
alloy composition [47].

The adsorption energies and geometries of water monomers at a coverage of 1/3 on the
considered PtRu surface alloys are listed in Tab. 1 together with the local d-band centers without
adsorbates. The table confirms that the Ru sites are energetically much more favorable. For
example, on the Pt2Ru1/Pt(111) surface alloy, the water monomers binds 368 meV stronger on
the Ru sites (Eads =−0.730 eV) than on the Pt sites (Eads =−0.362 eV). The stronger binding to
the Ru site is also associated with a shorter distance of the oxygen atom of the water molecule
to the underlying metal atom. In addition, the O-H bond of the water molecules on the Ru sites
is slightly elongated indicating a somewhat weaker O-H bond. As far as the trend in the water
adsorption energies as a function of alloy composition is concerned, both on the Pt sites as well
as on the Ru sites the water binding becomes weaker with increasing Ru content. According to
the discussion given above, this indicates that the lateral ligand effect within the surface alloy is
stronger than the tensile strain effect. With respect to the Pt and Ru sites, this trend is also reflected
in the corresponding down-shift of the local d-band center that are given in Tab. 1. Note that for
CO and O2 adsorption on pseudomorphic Pt/Ru overlayer systems, the ligand effect has also
been found to be slightly stronger than the geometric strain effect [27,48], however, for the Pt/Ru
overlayer systems both effects lead to a reduction in the binding energies of adsorbates.

Next we focus on the most favorable hexagonal ice-like structures on the PtRu/Pt(111) surface
alloys. The corresponding adsorption energies and geometries are given in Table 2. For the
Pt2Ru1/Pt(111) and Pt1Ru2/Pt(111) there several arrangements of the ice-like layer possible. In
the hexagonal ice-like layers, every second water molecule is bound to the metal substrate via its
oxygen atom in a adsorption configuration similar to the one of the water monomer. However, in
order to complete the hydrogen-bonded network, the other water molecule is typically arranged
in either an H-up or H-down configuration with the hydrogen pointed away or towards the metal
substrate, respectively [17,18].

The water binding preference for the Ru sites is reflected in the most favorable ice-like structure
on the Pt2Ru1/Pt(111) surface alloy that is illustrated in Fig. 2a. The water molecule bound
through its oxygen atom to the metal substrate is located above the Ru site whereas the second
water molecule is in the H-down configuration. This is the most stable geometry among all
considered ice-like structures because of the favorable Ru-O interaction. The ice-like structure
with all the water molecules above the Pt sites is 138 meV per water molecule less stable.

On the Pt1Ru2/Pt(111) surface alloy, all water molecules can be situated above Ru sites.
Interestingly enough, it is 37 meV per water molecule more stable to have the oxygen-bounded
water molecules above the Ru site, but the H-down water molecules above the Pt sites (see

Table 1. Adsorption energies Eads and geometries of water monomers adsorbed with at a coverage of 1/3 on

PtRu/Pt(111) surface alloys. In addition, the local metal d-band centers εd of the adsorption sites without adsorbates

are given with respect to the Fermi energy.

PtRu/Pt(111) site εd (eV) Eads (eV) dM−O (Å) dO−H (Å)
Pt(111) Pt -2.36 -0.395 2.615 0.980
Pt2Ru1/Pt Pt -2.38 -0.362 2.744 0.979
Pt1Ru2/Pt Pt -2.60 -0.199 2.935 0.976
Pt2Ru1/Pt Ru -1.49 -0.730 2.295 0.985
Pt1Ru2/Pt Ru -1.58 -0.663 2.314 0.986
Ru/Pt Ru -1.90 -0.554 2.328 0.985



5

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..........................................................

(a) 33% Ru (b) 66% Ru

Figure 2. Energy minimum structure of a ice-like hexagonal layer at a water coverage of 2/3 on Pt2Ru1/Pt(111) (panel a)

and on Pt1Ru2/Pt(111) (panel b). The Ru atoms are colored in green, the Pt atoms in dark grey.

Fig. 2b). Apparently, the water-water binding is stronger when the other water molecules
are above the less strongly interacting Pt sites [21]. Still, the adsorption is weaker than on
Pt2Ru1/Pt(111) although the same local adsorption geometries are realized. Obviously it is again
the ligand effect that reduces the water binding energy. The distance of the oxygen atoms of the
water molecules directly bound to the metal substrate again reflects the stability of the water
layers.

In order to assess the thermal stability of the water layer structures at room temperature on
the PtRu surface alloys, AIMD simulations at a temperature of 300 K were performed for two
water layers within a 2

√
3× 2

√
3R30◦ geometry. The AIMD simulations were initially started

using the energy minimum configuration and a thermalization period of 1 ps. For the two-layer
water systems, now the H-up structure is the more stable one in the first layer, as illustrated in
Figs. 3a-c. Note that in the pictures the second water layer has been omitted for the sake of clarity.
After the thermalization time, a production run of 3 ps was performed. This is admittedly a rather
short run time, but it turns out to be sufficient to derive trends in the stability of the water layers.
In fact, the distributions derived from the 3 ps run on pure Pt(111) compare favorably with the
corresponding distributions derived from a 10 ps run [30].

Table 2. Adsorption energies Eads per water molecule of ice-like structures adsorbed with at a coverage of 2/3 on

PtRu/Pt(111) surface alloys. dM−O denotes the distance of the oxygen atoms of the water molecule directly bound to the

surface alloys.

PtRu/Pt(111) site Eads (eV) dM−O (Å)
Pt(111) Pt -0.606 2.636
Pt2Ru1/Pt Pt -0.596 2.811
Pt2Ru1/Pt Ru, Pt -0.732 2.303
Pt1Ru2/Pt Ru, Pt -0.680 2.327
Pt1Ru2/Pt Ru -0.643 2.365
Ru/Pt Ru -0.599 2.353
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(g) (h) (i)

(d) (e) (f)

(a) (b) (c)

Configurations at t=3 ps

Trajectories of the oxygen atoms

Initial configurations at t=0 ps

1/3 ML Ru 2/3 ML Ru 1 ML Ru

Figure 3. Top view of the structure of the lower water layer of a two-layer water system on PtRu/Pt(111) surface alloys for

different Ru contents. Panels a-c: energy minimum structures; panels d-f: snapshots of AIMD simulations at 300 K after a

run time of 3 ps: panels g-h: trajectories of the oxygen atoms of the water molecules along the AIMD run.

Snapshots of the water structure after 3 ps are illustrated in a top view in Figs. 3d-f. In addition,
the trajectories of the oxygen atoms of the water molecules along the AIMD runs are plotted
in Figs. 3g-i illustrating their displacement due to the thermal motion. On the Pt2Ru1/Pt(111)
surface alloy, the hexagonal water structure is no longer intact (Fig. 3d). One of the hexagonal
rings is broken at two positions. The water molecules above the Ru sites still stay at these sites,
however, their orientation becomes disordered. On the Pt1Ru2 surface alloy, the water molecules
still remain at the Ru sites, i.e. there is still a hexagonal structure persisting (Fig. 3e). Apparently,
the less favorable Pt sites keep the water molecules in the ring-like geometry that is preset
by the arrangement of the Ru atoms in the surface alloy. On the pure Ru layer on top of the
Pt(111) crystal, there is no restoring force that keeps the water molecules in an ice-like structure.
Consequently, the hexagonal arrangement is dissolved, in agreement with previous similar AIMD
simulations with a 10 ps run time [18]. Instead, pentagons are formed which have been identified
as stable structural water motifs on other metal surfaces [49].
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Figure 4. Distribution of the distance of the oxygen atoms of the water molecules in the first layer from the PtRu surface

alloys along the AIMD simulations.

The distribution of the distance of the oxygen atoms of the water molecules in the first layer
from the PtRu surface alloys is plotted in Fig. 4. At the pure Pt surface, there is basically one peak
at about 3.2 Å, as already found for the same system in 10 ps AIMD simulations [30]. Interestingly
enough, for the Ru-containing surface alloys, additional peaks evolve at about 1.8-2.0 Å. Recall
that this distance is smaller than the distance between the oxygen atom of an adsorbed water
monomer and the metal surfaces, as listed in Tab. 1. The largest additional peak appears for the
Pt2Ru1/Pt(111) surface alloy which exhibits the strongest Ru-water interaction (see Table 1)

In order to identify the water species causing this additional peak, we show in Fig. 5 side
views of the water structures that were shown in a top view in Fig. 3. A comparison of Figs. 3
and 5 reveals that the peaks at short oxygen distances are due to water molecules that are to a
certain extent detached from the hydrogen-bonded water network structure and bind through
their oxygen atom to the metal surface but with their hydrogen atoms pointing away from the
surface.

4. Conclusions
Periodic electronic structure calculations based on density functional theory calculations have
been performed in order to identify the structure of water layers on PtRu/Pt(111) surface alloys.
Upon increasing the Ru content in the surface alloy, the local reactivity of the metal atoms
decreases due to the ligand effect. Still the Ru sites are more attractive towards water adsorption
than the Pt sites. This is also reflected in the energetically favorable structure of adsorbed ice-
like layers. At room temperature, the ice-like hexagonal structure does not persist, as ab initio
molecular dynamics simulations indicate. As an exception, the Pt1Ru2/Pt(111) surface alloy that
exhibits a hexagonal pattern seems to stabilize the hexagonal water structure as it provides a
hexagonal template of more strongly interacting Ru atoms in the surface alloy. These results
indicate that a patterning of a surface alloy can impose a preference for a particular structure
on adsorbed water layers.
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(b) (c)(a)

(e) (f)(d)

Initial configurations at t=0 ps

Configurations at t=3 ps

1/3 ML Ru 2/3 ML Ru 1 ML Ru

Figure 5. Side view of the lower water layer of the water structures shown in Fig. 3. Panels a-c: energy minimum

structures; panels d-f: snapshots of AIMD simulations at 300 K after a run time of 3 ps.
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