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The reliable high-dimensional theoretical description of reactions at surfaces with electronic tran-
sitions still represents a considerable challenge since the electrons have to be treated quantum
mechanically. A full quantum treatment of both electrons and nuclei is computationally not feasible
at the moment. Therefore we propose a mixed quantum-classical approach for the simulation of
reactions at surfaces with electronic transitions. In this method, the nuclear motion is described
classically while the electrons are treated quantum mechanically. Still the feedback between nuclei
and electrons is taken into account self-consistently. The computational efficiency of this method
allows a more realistic multi-dimensional treatment of electronically non-adiabatic processes at sur-
faces. We will discuss two recent applications of this approach. First we will address the charge
transfer in the scattering of I2 from a diamond surface. As a second example we present dynamical
simulations of the laser induced desorption of NO from NiO(100).

Keywords: Ab initio quantum chemical methods and calculations, semi-empirical models and model cal-
culations, atomistic dynamics, molecule-solid scattering, charge transfer, desorption induced by electronic
transitions (DIET)

I. INTRODUCTION

There is a wide variety of processes at surfaces that in-
volve electronic transitions. Electronically non-adiabatic
reactions such as, e.g., charge transfer processes [1], ex-
oelectron emission [2] or electron-hole pair excitations
in the substrate [3] might be caused by the interac-
tion of atoms and molecules with surfaces. Or alter-
natively, surface processes might be triggered either by
photons or electrons incident of a surface, a prominent
example being desorption induced by electronic transi-
tions (DIET) [4–6]. Experimentally, such processes have
been studied extensively in recent years. Technological
progress has made it possible to perform time-resolved
laser pump-probe experiments in which the time evolu-
tion of electronically non-adiabatic reactions can be mon-
itored in the femtosecond regime [7, 8]. These experi-
ments provide a wealth of information on the real-time
dynamics of chemical processes at surfaces [9, 10].

Unfortunately, the development of theoretical tools for
the realistic description of electronically non-adiabatic
processes did not match the experimental progress. The
main reason for this is the fact that the modelling of
processes involving several electronic states and transi-
tions between them still represents a great challenge.
First of all, for the ab initio determination of excited
state potentials it is not possible to use the computa-
tional efficient density-functional theory schemes which
work so well for the ground state. Instead one has to
rely on quantum chemistry methods which are usually
computationally very costly. And second, the simulation
of the dynamics of electronically non-adiabatic processes
explicitly requires the simultaneous treatment of both
the electronic and the nuclear dynamics. There has been
significant progress in the high-dimensional simulation
of Born-Oppenheimer reaction dynamics at surfaces in
recent years [11–16]. These studies in fact demonstrated
the importance of the multidimensionality in the reaction

dynamics. However, electronically non-adiabatic simula-
tions of reactions at surfaces are usually limited to a few
degrees of freedom [17]. This is caused by the difficul-
ties in the theoretical treatment due to the different time
scales relevant for the electronic and nuclear motion.

To allow a multidimensional treatment of reactions
with electronic transitions, we have proposed the use of
mixed quantum-classical schemes in which the nuclear
motion is described classically while at the same time the
electrons are treated quantum mechanically [18–22]. Still
the feedback between quantum and classical degrees of
freedom has to be taken into account in a self-consistent
way. The mixed quantum-classical scheme we have used
is based on the fewest switches algorithm developed by
Tully [18]. This surface-hopping algorithm minimises the
number of state switches under the constraint of main-
taining the correct statistical population of each elec-
tronic state, as given by the quantum mechanical part
of the system.

Here we will first give a rather extended introduction
into the theory underlying the surface-hopping method
we have been using. Then we will review our recent
applications of this mixed quantum-classical scheme to
the simulation of electronically non-adiabatic processes
on surfaces, but we will also present some new results.
The first system addressed is the charge transfer in the
scattering of iodine from a diamond surface. We propose
that it is not the electronic coupling per se that deter-
mines the ionization probability of I2 as a function of the
kinetic energy but rather the energy transfer into other
degrees of freedom during the scattering event. We will
also present new findings addressing the preservation of
the quantum coherence in the mixed quantum-classical
calculations.

The second process we will discuss belongs to the
class of the photo-induced desorption of simple molecules
from surfaces. We have performed high-dimensional sim-
ulations of the laser induced desorption of NO from



2

NiO(100). The potential energy surface (PES) used was
based on a low-dimensional ab initio PES [23] that we
have extended in order to include all molecular degrees
of freedom plus one surface oscillator coordinate. In or-
der to include the effect of electronic substrate states,
we have introduced an optical potential in the mixed
quantum-classical algorithms. We will show that by con-
sidering more degrees of freedom certain aspects of the
experimental situation are better reproduced, but oth-
ers are not. In addition, we show new results including
a more realistic description of dissipation effects in the
desorption dynamics. These two examples illustrate that
the mixed quantum-classical method allows a more real-
istic multi-dimensional treatment of electronically non-
adiabatic processes at surfaces.

II. THEORY

In this section, we will review the theoretical founda-
tions of mixed quantum-classical surface hopping meth-
ods. Our presentation is mainly based on Refs. [24] and
[25]. Then we will briefly describe the fewest switches
algorithm [18] and its extension including an optical po-
tential [21, 22].

In order to simulate the dynamics of electronically non-
adiabatic processes, all relevant nuclear coordinates, elec-
tronic states and the coupling between these states have
to be taken into account. For an approximate treatment,
the first step is a separation between slow and fast co-
ordinates, denoted by r and R, respectively. The fast
degrees of freedom, usually the electrons, will require ex-
plicit quantum mechanical treatment. The dynamics of
the slow coordinates can be treated with quantum me-
chanical methods but in most cases a classical treatment
will be sufficient. We will use the term electronic co-
ordinates as a synonym for the fast degrees of freedom,
despite the fact that those might include some proton po-
sitions as well [26, 27]. Correspondingly we will use the
term nuclear coordinates for the slow degrees of freedom.

The Hamilton operator of a system that separates into
slow and fast degrees of freedom can be written in the
following form

H(r,R) = TR + Tr + V (r,R), (1)

where V is the potential and TR and Tr are the kinetic
energy operators for the slow degrees of freedom and for
the electronic coordinates, respectively. The potential
can be split further into three parts

V (r,R) = Vrr(r) + VRR(R) + VrR(r,R), (2)

the interaction of the electrons with each other Vrr(r) the
interaction between the nuclei VRR(R) and the interac-
tion of the nuclei with the electrons VrR(r,R).

The dynamics of the system is given by the solution of
the time dependent Schrödinger equation

ih̄
∂

∂t
Ψ(r,R, t) = HΨ(r,R, t). (3)

In surface hopping, the wave function is expanded in
an orthonormal basis set of electronic wave functions
φi(r,R)

Ψ(r,R, t) =
∑
i

ψi(R, t)φi(r,R) (4)

where the nuclear position R acts as a parameter. In-
sertion into the Schrödinger equation (3), multiplication
with φ?j from the left and integration over r leads to a
set of coupled equations for the ψi’s:

ih̄ψ̇j(R, t) = (TR + VRR)ψj(R, t)

+
∑
i

[
Vji −

3N∑
α=1

h̄2

2Mα
Dα
ji +

3N∑
α=1

ih̄

Mα
dαji (ih̄∇Rα)

]
ψi(R, t).(5)

where N is the number of nuclei and Mα the mass cor-
responding to the α-th coordinate Rα. Here we have in-
troduced the non-adiabatic coupling vectors Dα

ji(R) and
dαji(R) as

Dα
ji(R) = 〈φj(r,R)|∇2

Rα |φi(r,R)〉 (6)

and

dαji(R) = 〈φj(r,R)|∇Rα |φi(r,R)〉, (7)

now making use of the bra-ket notation with integration
over the fast coordinates r only. The matrix elements
Vji(R) of the electronic Hamiltonian Hr are given by

Vji(R) = 〈φj(r,R)|Hr(r,R)|φi(r,R)〉, (8)

where Hr is the electronic Hamiltonian

Hr(r,R) = Tr + Vrr(r) + VrR(r,R). (9)

For notational convenience we will later drop the sum-
mation over α as an index of the coordinates. Now we
take the classical limit for the nuclear part of the wave
function by splitting ψi(R, t) into an amplitude Ai(R, t)
and a phase Si(R, t):

ψi(R, t) = Ai(R, t)e
i
h̄Si(R,t). (10)

If we insert eq. (10) into eq. (5), multiply with e−
i
h̄Si(R,t)

and take the classical limit h̄ → 0, we obtain a separate
equation for each index j of the form

Ṡj +
1

2M
(∇RSj)2 + Vjj(R) + VRR(R) = 0. (11)

This is just the Hamilton-Jacobi equation

Hj

(
R,

∂Sj
∂R

)
+
∂Sj
∂t

= 0 (12)

with an Hamilton function for each state φj

Hj(R,P ) =
1

2M
P 2 + Vjj(R) + VRR(R). (13)
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The equations of motion governing the classical particles
are then given by

MαR̈α(t) = −∇Rα [Vjj(R) + VRR(R)] . (14)

The motion of the nuclei along a trajectory R(t) is at any
time t given by the forces between the classical particles
−∇RVRR and the potential Vjj of a single state φj .

There are some liberties in how to implement the
hopping between the potential energy surfaces result-
ing in various surface hopping versions. For example,
in their original paper Tully and Preston allowed jumps
only at distinct points in configuration space, namely at
the crossings of the diabatic potentials [28]. This has
the advantage of eliminating the need to adjust the ki-
netic energy during a hop, but determining the crossing
lines of higher dimensional energy surfaces can be a dif-
ficult problem to solve. In contrast to that, the fewest
switches algorithm, introduced by Tully in Ref. [18], al-
lows switches at any position but requires some form of
energy adjustment to recover energy conservation.

In this work we will focus on the fewest switching algo-
rithm. The electronic wave function φ(r, t) is expanded
in a set of orthonormal basis functions φi(r,R) with a
parametric dependence on the nuclear coordinates and
coefficients ci(t)

φ(r, t) =
∑
i

ci(t)φi(r,R(t)). (15)

In order to determine the time evolution of the co-
efficients cj , one considers ∂

∂tA
?
jAj and identifies cj

with Aje
i
h̄Sj . Then the time evolution of the coefficients

is given by [24, 25]

ċi(t) = −
∑
j

{
cj(t)

∑
α

[
Ṙα(t)dαij (R(t))

]}

− i
h̄

∑
j

Vij (R(t)) cj(t). (16)

We now can define the components of the density ma-
trix aij ≡ c?i cj with the diagonal elements being the oc-
cupation probabilities of the corresponding states. The
time derivative of the aij is given by

ih̄ȧkj =
∑
l

{alj [Vkl−ih̄ ~̇R ~dkl]}−akl[Vlj−ih̄ ~̇R ~dlj ]} . (17)

For the diagonal elements aii, this equation can be sim-
plified to

ȧii =
∑
j

bij (18)

where the bij are defined as

bij =
2
h̄
= [aijVij ]− 2<

[
aijdijṘ

]
. (19)

Note that the bij are anti-symmetric under index inter-
change bij = −bji following from the fact that the dij are
anti-symmetric as well.

At any given time the system is considered to be in a
single basis state, the currently occupied state, which we
will denote with φocc. The motion of the slow degrees of
freedom is governed by that state

R̈α(t) =
−1
Mα
∇Rα {VRR (R(t))

+
∫
dr φ?occ (r,R(t))Hr (r,R(t))φocc (r,R(t))

}
.(20)

Note that this set of equations was derived, in a slightly
different manner, by Tully in Ref. [18] with the assump-
tion that the slow particle movement is given by a trajec-
tory and that the electronic wave function is expanded
according to eq. (15).

One problem with the mixed quantum classical sur-
face hopping is the dependence on the choice of basis
functions. Usually we will use the adiabatic basis, but
depending on the particular system it is not always clear
what would be an optimal basis [20].

We will now discuss how the occupied state is de-
termined in the fewest switches algorithm. The equa-
tions (16) and (14) are integrated simultaneously and, be-
tween integration steps, switches between the electronic
states are performed, in order to maintain the correct
statistical occupation probabilities. This method min-
imises the number of switches performed. How this is
achieved is explained nicely in [18] and we will follow
that presentation. If we consider a swarm of N trajecto-
ries with occupation probabilities aii at time t and a′ii at
time t′ = t+ ∆t then Ni = aiiN and N ′i = a′iiN are the
number of trajectories in state i at times t and t + ∆t.
The net change of the number of trajectories in state i is
then given by

∆Ni = N ′i −Ni = (a′ii − aii)N. (21)

For short time steps ∆t we can replace the difference a′ii−
aii with ȧii∆t and using eq. (18) we get

∆Ni = ȧii∆tN = N∆t
∑
j

bij , (22)

with the state-to-state transition rates bij giving the
change in state i due to state j, as defined in eq. (19).
Thus only if bij is less than zero trajectories jump from
state i into state j and their number is given by N∆tbji.
If we now divide that by the number of trajectories in
state i we get the probability pij for a trajectory to jump
from state i into state j

pij =
N∆tbji
aiiN

= ∆t
bji
aii
. (23)

Note that the switching probabilities are proportional to
the time step, thus the total switching probability for
a trajectory when passing through a certain region is,
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apart from an discretisation error, independent of the
time steps used. Note also that the probabilities given
by eq. (23) could in principle get arbitrarily large, but
usually the time step required for accurate integration of
eq. (16) is small and switches will be improbable (see also
Ref. [19]).

The procedure for the simulation of a single surface
hopping trajectory with the fewest switching method can
be roughly divided into the following five steps.

Step 1 Set initial conditions for the nuclear coordi-
nates R and velocities Ṙ, the coefficients of the elec-
tronic states ci and choose the currently occupied
state.

Step 2 Integrate eq. (16) and eq. (14) for the time
step ∆t with the currently occupied state j.

Step 3 According to eq. (23), determine the switching
probabilities from the current state to all other
states. Calculate the pji’s and set all with pji < 0
to zero (fewest switches). Draw a uniformly dis-
tributed random number z in the range of 0 < z <

1. Jump into the state i for which
∑i−1
l=1 pjl < z ≤∑j

l=1 pjl.

Step 4 If a switch to the state l occurs, usually the po-
tential energies Vjj(R) and Vll(R) differ at the cur-
rent position R. To recover energy conservation
the velocity is adjusted accordingly in the direc-
tion of the non-adiabatic coupling vector djl(R),
for justification of this particular choice see refer-
ences [29–31]. If the kinetic energy is not sufficient
to cover the potential energy difference the hop is
refused and propagation continues on the original
potential energy surface.

Step 5 Repeat steps two to four until the trajectory sat-
isfies an appropriate stopping condition.

There are some problems with the surface hopping ap-
proach that shall be briefly mentioned here. While the
trajectory stays in one state the total energy of the sys-
tem is clearly conserved. But one problem is how to
retain energy conservation upon a jump between sur-
faces with different potential energies. As mentioned
above there are some arguments, derived from semiclas-
sical considerations by Pechukas in [32, 33], to adjust the
velocity along the non-adiabatic coupling vector in order
to compensate for the difference in potential energy. This
requires the solution of the following equation

0 = ∆V + λ
∑
α

Ṙαd
α
ij

Mα
+ λ2

∑
α

dαij
2

Mα
, (24)

where ∆V is the change in potential energy and the new
velocity is given by Ṙnew = Ṙold + λdij (for a graphi-
cal representation see Fig. 1). Usually this equation has
two solutions λ and it is not clear which one should be

FIG. 1: Schematic drawing of the rescaling of the velocity in
two dimensions after an switch occurred. Ṙold is the velocity
before the hop and ṘT and ṘR are the two new velocities
corresponding to the two solutions for λ of 24. The radius of
the circle is given by the velocity after the jump, where Ekinnew
is the new kinetic energy.

used. The solution with the smaller absolute value cor-
responds to a transmission of the surface normal to dij
and the solution with the larger value is a reflection. As
is suggested in [31, 34] we used the λ with the smaller
absolute value. This corresponds to the suppression of
any quantum reflection at the position of the switch.

Another problem is that quantum mechanics allows
the intrusion of the wave function into classical forbid-
den areas. This results in hops where there is no solution
for eq. (24). In the case of such an event one has to
either sacrifice consistency, suggesting a hop, or energy
conservation. In the fewest switches algorithm energy
forbidden hops are rejected thus partially giving up con-
sistency. There is an extensive discussion in the literature
about this problem, but to our knowledge no satisfactory
solution has been found yet [35, 36].

Recently, a combination of the surface hopping and the
mean field methods was proposed [37]. In this method
the nuclear degrees of freedom evolve along a classical
trajectory R(t) and the electronic wave function is only
partially expanded in a finite set of S orthonormal func-
tions φi and the remainder of the wave function φC is
treated collectively

φ(r, t) =
S∑
i=1

ci(t)φi (r,R(t)) + φC (r,R(t)) . (25)

The equation of motion for φ is given by

ih̄
∂

∂t
φ(r, t) = Hr (r,R(t))φ(r, t), (26)

which is a time dependent Schrödinger equation due to
the time dependence of R(t). The electronic Hamilto-
nian Hr was defined before in eq. (9). The occupied
state φocc can now be either one of the φi or the collective
state φC . Since the collective state φC is not necessarily
normalised, the equations of motion for the slow particles
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become

R̈α(t) =
−1
Mα
∇Rα [VRR (R(t))

+
∫
dr φ?occ (r,R(t))Hr (r,R(t))φocc (r,R(t))∫

dr φ?occ (r,R(t))φocc (r,R(t))

]
.(27)

The time evolution of the system is given by equa-
tions (26) and (27) and for the occupation probabilities
we get

ȧii =
S∑
j=1

bij + biC , (28)

with the bij as in eq. (19) and biC defined as

biC =
2
h̄
= [c?i ViC ]− 2<

[
c?i 〈φi|φ̇C〉

]
. (29)

The population aCC ≡ 〈φC |φC〉 in the collective state is
computed using the normalisation of the electronic wave-
function, and for the time derivative we get

ȧCC = −
S∑
i=1

ȧii = −
S∑
i=1

biC . (30)

For the second expression we used eq. (28) and the fact
that the bij are anti-symmetric under index interchange.
Note that the generalised surface hopping contains mean
field, if S = 0, as well as the “classical” surface hopping,
if φC = 0.

A large drawback of this method is the need for explicit
propagation of the wave function according to eq. (26).
This is usually a much more demanding task than the
integration of equation 16 since it requires an additional
evaluation of the kinetic energy operator.

We have adopted the generalised surface hopping algo-
rithm in order to address laser-induced reactions at sur-
faces combining ideas of previous treatments [18, 37–39].
In particular, we have introduced an optical potential in
order to simulate the collective influence of electronic ex-
citations of the substrate. The resulting mixed quantum
classical method will allow the inclusion of all the relevant
nuclear coordinates of both adsorbate and substrate at
sufficiently long propagation times to correctly describe
thermalization and dissipation effects.

One of the problems encountered when modelling
DIET processes with surface hopping algorithms is the
huge number of electronic adsorbate and substrate states
involved which need to be taken into account. Due to the
large number of and similar shapes of the corresponding
potentials, it is clear that it is neither feasible to explic-
itly include all these substrate states into our simulation
nor is it necessary since the reaction dynamics is dom-
inated by a few adsorbate states, which must be taken
into account. The main effect of the substrate states is
coupling different adsorbate states either to each other
or to an external electromagnetic field. We model this

effect collectively by combining ideas from Tully’s fewest
switching algorithm [18] and generalised surface hopping
method [37] with those of Brenig [38] and Saalfrank [39]
who introduced optical potentials to the description of
DIET processes.

As with all methods before the Hamiltonian H is split
into the kinetic energy TR of the nuclear coordinates R
and an electronic part Hr, where the electronic part de-
pends explicitly on the electronic coordinates r and para-
metrically on the position of the nuclei R

H(r,R) = TR +Hr(r,R). (31)

Just as in the generalised surface hopping algorithm, the
electronic wave function Ψ is expanded into the explicitly
treated excited adsorbate states φi and a collective state
ψ containing the molecular ground state together with
the continuum of substrate excitations

Ψ(r,R, t) =
∑
i

ci(t)φi(r,R) + φC(r,R, t). (32)

The influence of this collective state φC on the rest of
the electronic system can be taken into account by an
effective non-Hermitian Hamiltonian (see chapter 16 in
[40])

Heff (r,R) = Tr + Veff (r,R) + i∆(r,R), (33)

where Tr is the kinetic energy operator of the electrons.
The effective potential Veff and the optical potential ∆
are real functions of r and R. In a Newns-Andersson pic-
ture ∆ is related to the lifetime broadening of a resonance
state which can be determined via [41]

∆(E) = π
∑
k

|Vk|2δ(E − εk). (34)

With the effective Hamiltonian and a diabatic (i.e.
∇Rφi = 0) representation of the wave functions φi, the
electronic Schrödinger equation has the following form

ċj = − i
h̄

∑
i

ciVji +
1
h̄

∑
i

ci∆ji, (35)

where the matrix elements Vij and ∆ji are defined as

Vji ≡ 〈φj Te + Veff (r,R) φi〉
∆ji ≡ 〈φj ∆(r,R) φi〉 , (36)

respectively. For the diagonal elements of the density
matrix aji this leads to

ȧjj =
∑
i

bji +
∑
i

2
h̄
< [aji∆ji] , (37)

with bji ≡ 2
h̄= [ajiVji] and the density matrix elements

defined as before. Note that for a normalised wave func-
tion Ψ the occupation probability acc for the “rest” is
simply given by acc ≡ 1−

∑
j ajj , leading to

ȧcc = −
∑
j

ȧjj = − 2
h̄

∑
ij

< [aji∆ji] , (38)
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since
∑
ji bji = 0. The classically treated nuclear coordi-

nates R obey formally the same Newtonian equation of
motion as for the generalised surface hopping

R̈ =
−1
M
∇
[
〈φocc He φocc〉
〈φocc φocc〉

]
, (39)

where φocc is the currently occupied state. In order to
determine both the classical and the quantum dynamics
self-consistently, the equations (35) and (39) need to be
integrated simultaneously while the currently occupied
state is determined via the fewest switching algorithm.
The probabilities Pji for hops between the different po-
tentials 〈ψocc He ψocc〉 / 〈ψocc ψocc〉 for the classical mo-
tion are for jumps between explicitly treated states

pji =
∆t 2=(aijVij)

h̄ajj
, (40)

and the probability pjC to go from state j to the collective
state φC is given by

pjC =
−2∆t
h̄ajj

∑
i

aji∆ji. (41)

As in the fewest switches algorithm, surface hopping
switches between the states can occur at any point along
the classical trajectories R(t). Note that switches into
the collective state occur only if the sum

∑
i aji∆ji is

negative. We will also use this formalism to describe the
excitation from the collective state into a particular elec-
tronic state j. For such a transition the sum in eq. (41)
has to be positive, i.e. the sign of the optical potential has
to be reversed. In order to simulated the excitation by
a short laser pulse the optical potential needs to be time
dependent which is a straight-forward generalisation.

This approach differs from the generalised surface
hooping of the previous section in some points. First,
we have introduced an optical potential in order to de-
scribe transitions to the collective state ψ. Furthermore
we assume that the whole excess energy upon a transi-
tion to or from the continuum state is taken up by the
substrate electrons, as it is usually done in the modelling
of laser-induced desorption [17]. This means that upon
a switch to the continuum state we just make a Franck-
Condon transition, i.e. we transfer the molecule to the
ground state potential with its kinetic energy preserved
and perform ordinary Born-Oppenheimer molecular dy-
namics until the final fate of the molecule has been de-
termined.

If just one electronically excited state is considered,
then the equations become much simpler. According to
eqs. (37) and (38), the de-excitation rate is directly given
by

ȧ11 = −ȧcc = ċ1c
∗
1 + c1ċ

∗
1 =

2a11∆(R)
h̄

. (42)

In fact, for such a situation no electronic Schrödinger
equation has to be integrated, leading to much shorter
computation times.
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FIG. 2: One-dimensional two-state model potential for the
ionization of I2 in the scattering from diamond surfaces. V11

corresponds to the potential energy surface for the neutral
molecule (solid line) and V22 to the potential for the charged
molecule (dash-dotted line). V12 is the coupling between
the two potentials (dashed line). The one-dimensional non-
adiabatic coupling vector d12 (thin dashed line) is given in
arbitrary units.

III. RESULTS AND DISCUSSION

A. Ionization probability in I2 scattering from
diamond

We will now review two recent applications of the
mixed quantum-classical method to the description of re-
actions at surfaces with electronic transitions. The first
example deals with the ionization probability in the scat-
tering of I2 from a diamond surface [19, 20]. Experimen-
tally, above a threshold energy of about 3 eV a ionization
probability strongly rising with increasing kinetic energy
has been found [1]. At 10 eV kinetic energy of the in-
cident I2 molecules, the absolute I−2 yield was 1%. In
the absence of any ab initio total energy calculation for
the I2/diamond system, we modeled the interaction by
an empirical potential. As a first step, we considered
an one-dimensional two-state potential for I2 and I−2 in-
teracting with diamond as a function of the molecular
distance from the surface which is shown in Fig. 2. Both
potentials were modeled as Morse potentials, the cou-
pling between them was assumed to fall off exponentially
with the distance from the surface. In addition, we have
also included the non-adiabatic coupling vector d12 in
Fig. 2. It is obvious that d12 is strongly localized at the
curve crossings between the two diabatic curves.

The classical equations of motion eq. (14) together
with the Schrödinger equation eq. (16) are numerically
integrated with an Adams method using a variable time
step [42]. The results thus obtained by the fewest-
switches algorithm were compared to exact quantum sim-
ulations on the same potential for the one-dimensional
situation. The quantum mechanical calculations of the
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FIG. 3: Theoretical results of the ionization probability of
I2/diamond as a function of the incident kinetic energy of the
molecule using an one-dimensional two-state potential. Thick
solid line: quantum mechanical result; dashed line: semiclas-
sical result within the adabatic representation; dash-dotted
line: Landau-Zener approximation.

ionization probability were performed by solving the
time-independent Schrödinger equation within a coupled-
channel scheme [11].

In Fig. 3, the ionization probability is plotted as a
function of the incident kinetic energy. The thick solid
line corresponds to the quantum mechanical results. The
mixed quantum-classical results within the adiabatic rep-
resentation were obtained by averaging over 1000 tra-
jectories which leads to a statistical uncertainty of ap-
proximately 3%. In addition, we have included results
according to the Landau-Zener approximation [19, 43]
(dash-dotted line).

The quantum and mixed quantum-classical methods
give an oscillatory behaviour of the ionization probabil-
ity around nearly the same mean value which is approx-
imately given by the Landau-Zener results. The scat-
tered molecule can make transitions between the ground
and excited state potential on the way to or from the
surface. The oscillations, so-called Stückelberg oscilla-
tions, result from coherent interference between these two
possible pathways. It is evident that the quantum and
mixed quantum-classical results show the same ampli-
tude of the Stückelberg oscillations, the phase, however,
does not agree. This is not too surprising regarding that
the semiclassical approximation breaks down at the clas-
sical turning points where the de Broglie wave length of
the molecule becomes infinite.

In addition, in the mixed quantum-classical calculation
one peak of the Stückelberg oscillations at approximately
4 eV is missing. The reason for the missing peak can be
explained by analysing the time evolution of the density
matrix elements. In our one-dimensional case with just
two electronic states and a real non-adiabatic coupling
vector the time evolution eq. (17) in the adiabatic repre-
sentation can be expressed as a set of coupled differential
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FIG. 4: Phase factor calculated according to eq. (46) for the
original potential and for the excited state potential shifted by
25 meV. The horizontal lines indicate the condition for con-
structive interference. In addition, the ionization probability
for the modified potential is shown.

equations

ȧ11 = −2Ṙd12 <(a12)

ȧ22 = +2Ṙd12 <(a12)

ȧ12 = − ia12

h̄
(V11 − V22) + Ṙ d12(a11 − a22)

ȧ21 = +
ia21

h̄
(V11 − V22) + Ṙ d12(a11 − a22) (43)

Our simulations show, that the amplitude of the
Stückelberg oszillations is related to the magnitude of
the non-adiabatic coupling vector. But neither the fre-
quency of the Stückelberg oszillations nor the missing
peak are influenced by variations in the coupling vector.
This can be easily understood: d12 is strongly localized at
the curve crossing points of the diabatic potential curves
and almost vanishes in the potential well. Hence all vari-
ations of the aij induced by d12 do not directly depend
on the length of the path in the potential well. Further-
more, the effect of d12 on the aij almost cancels on the
way to and from the surface due to the different sign of
Ṙ. Thus variations of d12 hardly change the phase of the
aij , and consequently they do not alter the positions of
the peaks.

On the other hand, the time evolution of a12 directly
depends on the potential difference ∆V = V11−V22 which
assumes its maximum in the potential well. The dif-
ference ∆V (R(t)) becomes a function of time along the
trajectory R(t) and thus depends implicitly on the ki-
netic energy. The second term on the right-hand side of
the differential equation for a12 in (43) contributes only
very little to the total phase difference, again because
of the localized nature of d12. This allows us to ana-
lyze the occurence of the Stückelberg oszillations in the
limit of vanishing non-adiabatic coupling vector d12. In
this limit, the non-diagonal elements which describe the



8

coherence evolve harmonically

ȧ12 = − ia12

h̄
∆V . (44)

The solution of this differential equation is

a12(t) = a12(t0) exp
(
− i
h̄

∫ t

t0

∆V (R(t′))dt′
)

(45)

Thus the condition for constructive interference between
the two pathways is given by∫ tdown

tup

∆V (R(t′))dt′ = 2πh̄n, n ∈ Z (46)

This integration has been performed numerically. In
Fig. 4, we have plotted the phase factor eq. (46) as a
function of the incident kinetic energy. The horizontal
lines indicate the condition for constructive interference,
i.e. they correspond to multiples of 2π. Constructive in-
terference should occur at all points at which the phase
factor crosses one of the horizontal lines. The phase fac-
tor for our original 1D two-state potential is shown by the
dashed line. All peaks in Fig. 3 do indeed occur at the
points where the phase factor fulfills the condition (46).
Now one can understand why the peak at E ≈ 4 eV is
missing. There the phase difference shows its maximum,
but it is just not sufficient for constructive interference.

This also means that if the potential diffence ∆V is
slightly larger, constructive interference should occur at
this energy. We checked this by just shifting the I−2 po-
tential down by 25 meV. We have also plotted the phase
factor for the modified potential in Fig. 4 (solid line);
in addition, we have included the ionization probability
using the modified potential. Now the maximum of the
phase factor lies slightly above a multiple of 2π. The con-
dition for constructive interference is now approximately
satisfied for a broad range of kinetic energies around 4 eV.
Consequently, we get a broad peak in the ionization prob-
ability.

This analysis explains the occurence of the Stückelberg
oscillations in the mixed quantum-classical calculations.
However, it does not explain the difference between quan-
tum and mixed quantum-classical calculations. Cur-
rently we still do fully understand this differences in the
phase difference. It is obvious that the quantum phase
difference between the two different paths to ionization is
not correctly reproduced by the mixed quantum-classical
calculations. At high energies above 8 eV, the distance
between the peaks is correctly reproduced, but not the
position. This means that there is a constant phase offset
between quantum and mixed quantum-classical calcula-
tions which is most probably due to the behavior at the
classical turning points, as already mentioned above. At
lower kinetic energies, the distance between the peaks
becomes larger in the mixed quantum-classical simula-
tions since the phase factor approaches its maximum (see
Fig. 4). In the quantum calculations, however, the peaks
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FIG. 5: Ionization probability of I2/diamond as a function of
the incident kinetic energy of the molecule. Solid line: 3D
mixed quantum-classical (MQC) calculations including a sur-
face oscillator and the molecular rotation; dash-dotted line:
4D MQC calculations taking additionally the molecular vi-
brations into account; long-dashed line: experimental results
from ref. [1]. The 1D Landau-Zener results (short-dashed line)
are plotted as a guide to the eye.

stay almost equidistant indicating that there is appar-
ently no maximum in the phase difference.

So far, the one-dimensional data showed no resem-
blance with the experimental results. However, any one-
dimensional model describing a complex scattering event
is often rather unrealistic. In order to make our model
more realistic, we have taken into account more degrees
of freedom. First of all, we added one surface oscillator
coordinate in order to model energy transfer processes
to the substrate. Furthermore, we included molecular
rotations and vibrations [20]. Our still idealized four-
dimensional model corresponds to the scattering of vi-
brating and rotating I2 molecules on a flat vibrating sur-
face.

As Fig. 5 shows, by taking into account more degrees
of freedom, a significant suppression of the ionization
probability is obtained, in particular at low kinetic en-
ergies. The reason for the suppression can be explained
by a simple energy argument. The inclusion of more de-
grees of freedom in the scattering simulation causes an
efficient energy transfer to these modes during the im-
pulsive encounter. In our simulations up to several eV
are transfered to the surface oscillator and the molecu-
lar rotations and vibrations. This energy is then missing
for the transition over the ionization threshold of 3 eV.
Thus we propose that it is not the electronic coupling
per se that leads to the observed trend in the kinetic en-
ergy dependence of the ionization probability. It is rather
the energy transfer to other degrees of freedom which
causes the suppression of the ionization probability in
particular for energies close to the ionization threshold.
This explanation actually demonstrates the importance
of high-dimensional simulations because it could not have
been found in a one-dimensional model. It is also obvious
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from Fig. 5 that the Stückelberg oscillations are almost
completely washed out in the higher-dimensional simu-
lations. The multidimensionality of the charge transfer
process leads to the loss of coherence. The remaining os-
cillations are due to the statistical uncertainty of ±0.03
in the summation over the trajectories.

There are still large quantitative differences between
the experiment and our 4D results, as Fig. 5 demon-
strates. However, we have not tried to further adjust
our potential parameters in order to achieve quantita-
tive agreement with the experiment. Since our simula-
tions are still performed within a limited geometry, there
must still be room for the influence of other degrees of
freedom in a more realistic simulation such as the lat-
eral surface corrugation and the azimuthal anisotropy.
Still, our calculations reproduce the observed qualitative
dependence of the ionization probability in I2/diamond
scattering rather well and provide a physically reasonable
explanation for this dependence. Of course we have to
admit that this proposition is based on a model interac-
tion potential. Hence we can not rule out other possible
mechanisms.

B. Laser induced desorption of NO from NiO(100)

The photon-stimulated and the electron-stimulated
desorption of molecules from surfaces has been inten-
sively studied in the last decades [6]. In both kind of
processes, the desorption is induced by electronic transi-
tions (DIET). In Fig. 6, a DIET process is schematically
shown. First the system is excited in a Franck-Condon
transition by, e.g., a laser pulse. This pulse may directly
excite the adsorbate, but most probably first the sub-
strate becomes electronically excited with the creation
of hot electrons. On the excited state potential, the ad-
sorbate is no longer at a minimum position; therefore it
becomes accelerated. After a certain lifetime the adsor-
bate returns to its electronic ground state in a second
Franck-Condon transition, i.e. without changing its ve-
locity. Often this is depicted by a transition down to
the ground state potential. However, the excess energy
of this transition has to be taken up by the substrate
which then becomes electronically excited through, e.g,
the population of electron-hole pairs. Hence this tran-
sition should be rather regarded as occuring at a curve
crossing between the excited adsorbate state and the elec-
tronic adsorbate ground state together with a substrate
excitation. In Fig. 6, we have assumed that the exci-
tation of delocalized electron-hole pairs in the substrate
does not modify the adsorbate electronic ground state
potential.

Thus for a realistic modelling of a DIET process, the
quasi-continuum of substrate excitations has to be taken
into account appropriately. Of course it is impossible
to explicitly include all substrate excitations. Therefore
we take the substrate excitations into account through
a optical potential, as described by eqs. (33) and (34).

Ground state

Excited state

e−h
continuum

Molecule−surface separation
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FIG. 6: Schematic drawing of a desorption process induced
by electronic transitions. The electronic ground state adsor-
bate potential together with the quasi-continuum of substrate
excitations and a excited state adsorbate potential are shown.

Note that such an approach in the modelling of DIET
processes has been used before [38, 39, 44]. In detail,
in our mixed quantum-classical implementation we de-
scribe the laser induced desorption as follows (see Fig. 6).
We start with the mixed quantum-classical simulation
after the first Franck-Condon transition on the excited
state surfaces. The norm of the wave function decreases
due to the presence of the optical potential ∆(E) which
is illustrated by the reduced diameter of the circle rep-
resenting the particle on the excited state potential in
Fig. 6. By comparing the norm of the wave function with
a random number we decide whether the second Franck-
Condon transition back to the molecular ground state
occurs with the excess energy taken up by the substrate.
Finally, molecular dynamics simulations are performed
on the adiabatic ground state, i.e. without any optical
potential, in order to determine the desorption distribu-
tions.

As a first application we have used this scheme to
investigate the laser induced desorption of NO from a
NiO(100) surface. The experimentally observed desorp-
tion cross section in this system is several orders of mag-
nitude larger than that from metal substrates (10−17cm2

vs 10−21cm2 [45]). One of the most interesting experi-
mental observations is the measured bimodality in the
velcocity distribution of the desorbing NO molecules.
This system has already been addressed by theoretical
studies [23, 46–49]. A two-dimensional potential energy
surface for the ground and a charge transfer state as a
function of the NO center of mass distance from the sur-
face Z and the polar orientation θ of the molecule was
determined by quantum chemical calculations. Based on
this potential, jumping wave-packet simulations of the
laser induced simulations were performed [23]. In these
calculations, the observed bimodality in the velocity dis-
tribution could be reproduced qualitatively. The simula-
tions suggested that the bimodality is a consequence of
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2D 3D 6D 7D
Pdes (%) 4.84 3.63 4.74 4.02
Pearly (%) 2.93 0.32 2.53 0.32
Erot (K) 770 366 883 395

TABLE I: Desorption probabilities and mean rotational ener-
gies according to the 2D, 3D, 6D and 7D calculations. Early
means desorption within the first 1.2 picoseconds.

a bifurcation of the wave-packet due to the topology of
the excited state potential energy surface.

We have used the parametrized version of the ab ini-
tio potential for NO/NiO(100) as the basis of mixed
quantum-classical simulations of the laser-induced des-
orption of NO from NiO(100). As a first step, we de-
termined the desorption probabilities and distributions
within the same two-dimensional setup as used in the
wave-packet calculations. Using the same numerical pa-
rameters, we obtained good agreement between the wave-
packet and the mixed quantum-classical results [21, 22].
However, we found that there are two kinds of desorbing
trajectories, those desorbing within the first 1.2 picosec-
onds, which we will call early, and a long trail of late des-
orbing trajectories. On the ground state the molecules
hit the repulsive potential wall and either scatter di-
rectly into the vacuum, giving rise to the early desorbing
species, or start to rotate in front of the surface thus be-
coming dynamically trapped [16, 50–52] and leading to
the late species.

The wave-packet results were obtained by propagat-
ing in the ground state until the desorption yield seem-
ingly saturated, so that only the early channel was cap-
tured. In Table I, we have listed the main results with
respect to the total desorption probability Pdes and the
rotational temperature of desorbing molecules according
to the mixed-quantum calculations. Pearly denotes the
fraction of molecules desorbing in the early channel.

For a more realistic modelling of the desorption process
we extended the ab initio two dimensional potentials to
in total seven dimensions by taking into account all six
molecular degrees of freedom plus one surface oscillator
coordinate in order to allow for energy transfer between
molecule and substrate. In the absence of any ab initio
results we were required to use a model potential for the
additional degrees of freedom. Thus the particular choice
of the parameters has to be considered as an educated
guess. We like to point out, however, that the qualitative
results we obtained did not depend very sensitively on the
particular choice of parameters.

Going from 2D to 6D, i.e. including the remaining
molecular degrees of freedom in the simulations, has only
a small influence on the desorption dynamics, as Table I
shows. The same is also true for the transition from 3D
to 7D. However, including recoil processes of the sub-
strate, by coupling the motion of the adsorbate molecule
to a surface oscillator, changes the outcome of the trajec-
tory calculations significantly. While the total desorption
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FIG. 7: Velocity distributions as a function of the rotational
state according to the seven-dimensional mixed quantum-
classical calculations.

probability is only reduced by about 1%, the effect on the
early desorption channel is really significant: It is reduced
by a factor of eight (see Table I). But the most dramatic
effect of the surface oscillator is on the rotational mo-
mentum distribution. While in the 2D calculations we
obtain a double peaked structure with a large probabil-
ity for high rotational quantum numbers, the inclusion of
the surface oscillator causes the suppression of the peak
at high J . The shape of the distribution is now similar to
that of the late molecules in the rigid surface case. This
is leading to a greatly reduced mean rotational energy of
the desorbing molecules, 366 K and 395 K for 3D and
7D calculations, respectively, instead of 770 K for the 2D
and 883 K for the 6D calculations. These reduced rota-
tional temperatures are in fact in much better agreement
with experiment [45].

As far as the velocity distribution in desorption is con-
cerned, however, the agreement between theory and ex-
periment is greatly reduced if the late desorption chan-
nel and the surface oscillator are taken into account. In
Fig. 7, we have plotted the momentum distribution ac-
cording to the 7D calculations. There is no indication
of any bimodal velocity distribution which was found in
the experiment [45] and which was also reproduced in
the wave-packet calculations [23]. Note that apart from
an overall scaling due to the reduced desorption prob-
ability the shapes of the velocity distributions summed
over all rotational momenta are almost identical for all
dimensionalities used.

These findings do not necessarily imply that the con-
clusions of Ref. [23] with respect to the origins of the bi-
modality in the velocity distribution are no longer valid.
It might well be that the explanation in terms of a bifur-
cation of the wave-packet is still correct. However, in the
simulations only one excited charge transfer state poten-
tial out of a great number of charge transfer states [46]
has been chosen. Possibly more than one excited state
might be involved in the desorption process. Further-
more, the extension of the two-dimensional ab initio po-
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γ [fs−1] 0.0 0.0002 0.0005 0.001 0.002
τD [ps] ∞ 10.0 4.0 2.0 1.0
Pdes [%] 4.43 1.46 0.73 0.27 0.07

TABLE II: Values used for the friction constant γ and corre-
sponding decay times τD and desorption probabilities.

tential to seven dimensions using a physically reasonable
model potential could not be realistic enough. This will
be checked by mapping out higher-dimensional potential
energy surfaces through quantum chemical calculations.
Finally, the consideration of a spatially varying transition
probability could lead to a better agreement between the-
ory and experiment. If the deexcitation mainly occurs at
specific configurations of the adsorbate, this can have a
strong effect on the desorption dynamics.

To investigate the possible effect of dissipation at the
surface on the desorption dynamics we added a frictional
force term −mγṡ to the surface oscillator in the full di-
mensional model, i.e. if s̈ = Fs(R) was the original equa-
tion of motion with the force Fs(R) and R standing for
all the coordinates, the new equation of motion is given
by

s̈ = Fs(R)−mγṡ. (47)

If we are not in the aperiodic limit, i.e. if γ < 2ω
where ω is the oscillator frequency, the oscillation am-
plitudes of a free damped oscillator decrease with time
as exp(−γt/2) and the corresponding decay time τD is
given by τD = 2/γ. The values used for γ and the corre-
sponding decay times τD are shown in table II. We used
decay times between 1 ps and 10 ps as we would expect
them for phonon mediated energy dissipation. We see
that already a relatively small friction causes a consider-
able drop in the desorption probability from 4.4 percent
down to 1.5 %. A closer analysis shows that almost all
the dissipation takes place while the molecule is in its
ground state and only the time during which desorption
still occurs is shortened by the friction. Without friction,
there is a long trail of molecules desorbing at very large
times, which contribute a substantial amount to the total
desorption probability. This tail is cut off by the dissipa-
tive effects and thus lowering the desorption probability.

The effect of the friction on the momentum distribu-
tion and the vibrational, oscillator and rotational state
occupation probabilities of the desorbing molecules is
negligible, apart from an overall scaling due to the re-
duced desorption probability. Most trajectories that do
desorb leave the surface at times usually smaller than
the corresponding decay time τD of the oscillator. Thus
the amount of energy lost is rather small and thus the fi-
nal occupation probabilities are almost unaffected. Note
that this is true for all frictional constants used.

IV. CONCLUSIONS

We have implemented a mixed quantum-classical sur-
face hopping scheme for the simulation of electronically
non-adiabatic processes at surfaces. In this method, the
nuclear motion is described classically while the electrons
are treated quantum mechanically. Still the feedback be-
tween nuclei and electrons is fully taken into account.
In contrast to a quantum treatment the computational
efficiency of our method allows a multi-dimensional treat-
ment. We have applied this method to the ionization of
I2 in the scattering from a diamond surface and to the
laser-induced desorption of NO from NiO(100) using a
previously determined ab initio potential energy surface.
By comparing our method to low-dimensional quantum
calculations on exactly the same potential energy surfaces
we verified that it is indeed justified to neglect quantum
effects in the nuclear motion.

Our mixed-quantum classical method is computation-
ally very efficient. This has allowed us to extend the
simulations to longer time scales and higher dimensional-
ities. Our high-dimensional simulations demonstrate the
importance of the multi-dimensionality in the reaction
dynamics. In the system I2/diamond, our calculations
suggest that the dependence of the ionization probability
on the kinetic energy is not determined by the electronic
coupling per se, but by the energy transfer to other de-
grees of freedom during the scattering process. For the
laser-induced desorption of NO/NiO(100) we find that
the bimodality in the velocity distribution of desorbing
molecules obtained in low-dimensional simulations van-
ishes if in particular surface recoil processes are taken
into account. This indicates that more than one excited
state might be involved in the desorption process.
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