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The determination of dissociative adsorption probabilities based on first-principles total-energy
calculations requires a numerically efficient and accurate interpolation scheme in order to be able
to run a sufficient number of trajectories. Here we present a neural network scheme for the con-
struction of a continuous potential energy surface (PES). We illustrate the accuracy and efficiency
of our method for H2 interacting with the (2×2) potassium covered Pd(100) surface. The sticking
probability of H2/K(2×2)/Pd(100) is determined by molecular dynamics simulations on the neural
network PES and compared to results using an independent analytical interpolation.
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I. INTRODUCTION

The interaction of molecules with surfaces is of great
technological and fundamental relevance for, e.g. hetero-
geneous catalysis, growth of semiconductor devices, cor-
rosion, and wear protection [1]. The key quantity in the
description of this interaction is the potential-energy sur-
face (PES). For the reaction of simple molecules with sur-
faces, PESs can nowadays be mapped out in great detail
by first-principles electronic structure calculations [2–4].
Still, the determination of reaction probabilities requires
many molecular-dynamics simulations (treating the nu-
clei either as classical or as quantum-mechanical parti-
cles) [5–7]. For such calculations a continuous and dif-
ferentiable representation of the PES is needed, and this
must be build from a discrete set of total-energy data that
can be obtained from electronic structure calculations.
Of course, also direct ab initio molecular dynamics sim-
ulations are possible [8]. However, in such calculations
many electronic-structure calculations are repeated again
and again for practically the same atomic configuration,
and as such computations are very demanding, i.e. costly,
it is rather time-consuming to calculate a sufficient num-
ber of trajectories in order to obtain an accurate statistics
in the determination of the reaction probabilities [5, 9].

Therefore a numerically efficient and accurate repre-
sentation of the PES is crucial as a second step, after the
PES is mapped out on a mesh, in order to have a compu-
tationally efficient scheme for the evaluation of potential
energies and gradients. Several methods have been sug-
gested in the past for the description of, e.g., the disso-
ciation of molecules on surfaces. Analytical expansions
using symmetry-adapted functions [10, 11] are computa-
tionally very efficient, but they are rather inflexible and
their complexity grows rapidly with increasing dimen-
sionality of the considered systems. The notion that most
of the corrugation in a molecule-surface PES is embedded
in the atom-surface interaction leaves a relatively smooth
molecular interpolation function to be adjusted [12, 13].

Interpolation schemes based on this idea have been suc-
cessfully applied to the study of the interaction dynamics
of molecular hydrogen with metal surfaces [13–15]. It still
remains to be seen whether this method can be extended
to higher dimensional problems. In the modified Shep-
ard interpolation scheme [16, 17], the potential energy in
the vicinity of an ab initio input point is expanded in a
second-order Taylor series. This avoids the introduction
of a regular grid so that the accuracy of the PES can
be iteratively improved by a sampling scheme based on
classical trajectory calculations.

As an alternative, we propose the use of multilayer,
feedforward neural networks [18] for the continuous rep-
resentation of a PES. Neural networks can be described
as general, non-linear fitting functions that do not re-
quire any assumptions about the functional form of the
underlying problem. Neural networks have already been
applied to problems involving function approximation in
general [19] and more recently to the represention of
PESs [20, 21]. These studies dealt with a few config-
urational parameters. We extend these applications of
the neural network approach to the high-dimensional de-
scription of reactions of molecules on surfaces. The re-
sulting neural network PES is smooth, continuous and
leads to a relatively simple but accurate expression for
the PES. The evaluation of the potential with a fitted
neural network is cheap and the derivatives of the po-
tential energy are easily obtainable which makes neural
networks suitable, and in fact efficient, for molecular dy-
namics calculations.

Here we present and analyse the neural network
PES that we built from the ab initio results of
H2/K(2×2)/Pd(100). We will demonstrate that neural
networks can be successfully applied for the determina-
tion of dissociative adsorption probabilities, but we will
also discuss problems in the construction of a neural net-
work PES. The number of parameters and required data
points for an accurate neural network fit can be rather
smale but only if an appropriate set of input points in
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FIG. 1: Schematic architecture of an artificial neural network,
here a multilayer feed-forward net. The neurons are arranged
in layers. The bias unit acts as an adjustable offset.

chosen and if a priori knowledge about the considered
system such as underlying symmetries is properly taken
into account.

II. TECHNICAL DETAILS

An (artificial) neural network is a highly flexible, non-
linear model that can in principle approximate any con-
tinuous function to arbitrary accuracy [22]. It consists of
a number of artificial neurons or nodes, typically arranged
in layers, interconnected via a set of links. A schematic
representation of such a net is plotted in Fig. 1. Each
link multiplies its input by a parameter, the weight, be-
fore supplying it to a new node. Each node sums over its
inputs and applies a function to the resulting value. In
the input layer the identity function is used to distribute
the information to the second layer. This layer is called
the hidden layer because its input and output is not vis-
ible from the outside world. The output layer collects
the information from the hidden layer and transforms it
again. This network design, in which every node is con-
nected to every node in the adjacent layers but nodes in
the same layer are not connected and the information is
transmitted only in one direction, is called a multilayer
feed-forward neural network.

The input variables of the neural network are here the
coordinates of the six degrees of freedom of the hydro-
gen molecule. The neural network output function for
a neural network with one hidden layer and one output
node representing the potential energy is an analytical
function which can be written as:

Vnn(x) = f2

 w2
01 +

∑
j

w2
j1 f1

(
w1

0j +
6∑
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w1
ijxi

) ,

(1)
where Vnn(x) is the potential energy, x = (x1, . . . , x6)
are the six coordinates of the H2 molecule, f1 and f2 are

non-linear functions and the {wpij} are the parameters
of the representation, the so-called weights, here from
layer p, node i to layer p + 1, node j. The bias weights
such as {w1

0j} act as an adjustable offset of the activa-
tion function. The output function is a nested function
f of f . The non-linear basis functions (often called ac-
tivation functions) give neural networks their non-linear
capabilities. The function must be differentiable for the
optimization of the parameters. We have tested different
non-linear functions and found that Fermi-like functions
are well suited.

In order to describe the network architecture in a sim-
ple way the following notation is used: the number of
nodes in the layers, followed by letters denoting the acti-
vation function, with s for sigmoid, l for linear and t for
the hyperbolic tangent. In this notation, the network in
Fig. 1 in conjunction with a hyperbolic tangent function
in the hidden layer and a linear function in the output
layer has a {2−3−1 tl} structure.

When fitting the neural network parameters, the
weights are optimized by comparing the output with
known correct answers. The cost function is normally
taken as the sum of the squared residuals between the
true or targeted energies V (x) obtained from ab initio
total-energy calculations and the actual output of the
network Vnn(x):

E ({x}) =
n∑
i=1

ui

(
Vnn(x(i))− V (x(i))

)2

/
n∑
i=1

ui (2)

where n is the number of examples in the data set and
the ui are weighting factors (see below). The optimiza-
tion of the network weights is performed by some iterative
optimization scheme until a desirable quality, measured
by the root mean squared error (RMSE) which is the
square root of E ({x}), is reached. In order to minimize
the RMSE, the network cycles repeatedly through the
following steps of the optimization process: (1) present
the network one example of the data set, (2) measure
the response of the output layer of the net, (3) calcu-
late the mean squared error between the output and the
target value, (4) adjust the weights to minimize the cost
function, and last, if the mean squared error reaches a de-
sired lower bound, stop the iteration, otherwise go to (1).
However, as it will be discussed below, it may be advis-
able if not necessary to add more information on the
physics of the system.

The neural network expression (1) can be viewed as
a fitting function. The advantage of using a neural net-
work expression is that one can build on the detailed
experience already gained in developing efficient algo-
rithm for finding the optimum fit parameters, a pro-
cess that in the language of neural networks is called
“learning”. The optimization of the weights is usually
done by gradient-based learning methods like steepest
decent, conjugate gradients or quasi-Newton algorithms.
We use the global, extended Kalman filter [23]. Detailed
aspects of our approach for the neural network fit are
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FIG. 2: The training and test root mean square error as a
function of the number of epochs for the neural network fit
of the ab initio energies of the system H2/K(2×2)/Pd(100).
The inset shows the errors for a larger number of epochs.

described elsewhere [24]. We build a neural network
PES from density-functional theory (DFT) total-energy
data. The Kohn-Sham equations were solved using the
full-potential linear augmented plane wave (FP-LAPW)
method [25, 26] together with the generalized gradient
approximation (GGA) [27] for the exchange-correlation
functional.

III. RESULTS AND DISCUSSION

As an example of molecular dynamics simulations
based on a neural network PES that was derived from ab
initio calculations we present the determination of the
dissociative adsorption probability of H2 on the (2×2)
potassium covered Pd(100) surface. Overall, we have
calculated 659 DFT total energies for the construction
of the neural network PES. The majority were sampled
within eleven two-dimensional cuts as a function of the
distance Zc of the molecular center-of-mass from the sur-
face and the intra-molecular bond length d above five dif-
ferent high-symmetry sites. Additionally, we focused on
the energies associated with the corrugation of the en-
ergy barriers across the unit cell. We did so by placing
the molecule in the most favorable configuration for dis-
sociation, i.e. parallel to the surface at a height and a
bond length which corresponds to the region where the
hydrogen bond breaks. We then scanned the corrugation
by moving the molecule across the unit cell in such a con-
figuration. The calculated PES of H2/K(2×2)/Pd(100)
is in fact strongly corrugated. The dissociation of H2 at
K(2×2)/Pd(100) is activated with the minimum barrier
of 0.18 eV above the hollow site, whereas the dissociation
barrier at the ontop position above the potassium atom
is at least 5 eV [24].

In order to avoid the use of prohibitively many input
points, an efficient and reliable selection scheme for the
input data is asked for. Unfortunately, there is no a pri-

ori criterion for such a selection. In activated systems,
the regions of the PES close to the minimum barriers are
certainly the most important for the determination of re-
action probabilities. These regions should be accurately
reproduced which can be achieved by a finer grid of in-
put points and/or higher weighting factors for the error
at these points. If dynamical effects such as steering [28]
or dynamic trapping [14, 29] play a decisive role in the
reaction dynamics, then also regions of the PES further
away from the barrier positions become crucial in the
fit. Therefore we propose a feedback between dynami-
cal simulations and the sampling of input points in order
to obtain a reliable fit, as for example also used in [16].
This means that molecular dynamics simulations should
be performed on the interpolated PES already during the
fitting procedure. The regions of the configuration space
which are most often visited during the dynamics runs
are the most relevant for the reaction dynamics. These
regions should then be fitted with a higher accuracy than
regions that are less often visited.

For the neural network representation of ab initio
PES for the system H2/K(2×2)/Pd(100) we divided the
659 ab initio energies into a training set of 619 and a test
set of 40 energies. The selection of the ab initio points
was guided by our experience gained in the neural net-
work fitting of the H2/S(2×2)/Pd(100) PES [24] which
exhibits similar features as the H2/K(2×2)/Pd(100)
PES. Furthermore, it is advantageous to include all a
priori knowledge about the considered system such as
the underlying symmetries. Thus it is ensured that dur-
ing optimisation of the Neural Network the emphasize lies
on fitting the crucial chemical process, the bond-breaking
of the molecule, and no fitting power is wasted on fitting
the known symmetry of the surface. We have achieved
this by choosing eight symmetry-adapted coordinates as
the input to the neural network fit [24] which are

x1 = d ,

x2 = eZc/2 ,

x3 = sin2 θ cos 2φ [cosGXc − cosGYc] eZc/2 ,

x4 = sin2 θ cos 2φ [cos 2GXc − cos 2GYc] eZc/2 ,

x5 = cos2 θ eZc/2 ,

x6 = [cosGXc + cosGYc] eZc/2 ,

x7 = [cos 2GXc + cos 2GYc] eZc/2 ,

x8 = sin4 θ cos 4φ [cos 2GXc + cos 2GYc] eZc/2 . (3)

Instead of presenting the original six degrees of freedom
of the molecule to the neural network we now apply this
new set of eight inputs representing the symmetry of the
surface. The weighting factor e−Zc/2 is used in order to
ensure that the energy in the vacuum only depends on
the bond length. The neural network performs a non-
linear fit on these new inputs. The transformation needs
to be done only once per surface symmetry. It is impor-
tant to note that the terms x1, · · · , x8 represent only the
minimum symmetry employed in the data set, any other
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FIG. 3: Two-dimensional cuts through the six-dimensional
PES of H2/K(2×2)/Pd(100). The molecular configuration
within the surface unit cell is depicted in the insets. a) two-
dimensional spline interpolation of ab initio results; b) two-
dimensional cut through a six-dimensional neural network in-
terpolation. The dots in (b) mark the calculated grid of ab
initio energies for this specific cut.

symmetry can then be learned by the Neural Network.
Without such an approach, the number of training

points necessary for an accurate fit becomes much larger.
A similar effect can also be achieved by including the
gradients of the potential in the optimization procedure.
A 8−24−18−1 sl neural network, i.e. with two hid-
den layers, each with 24 or 18 nodes respectively, and
685 weights, a sigmoidal transfer function in the hid-
den layers and a linear function in the output layer
was used for the fit. In an activated system such as
H2/K(2×2)/Pd(100) the configurations close to the val-
ley of each elbow plot are most crucial for the reaction dy-
namics, as revealed by molecular dynamics simulations.
During the fit, for these configurations the weighting fac-
tors ui in the cost function Eq. (2) were chosen to be ten
times larger than for other regions where the potential
energy is significantly elevated. Thus the region acces-
sible for molecular dynamics simulations is represented
with a higher accuracy.

The training and test root mean squared errors for the
neural network fit as a function of the number of so-
called epochs are shown in Fig. 2. An epoch corresponds
to the process of presenting the network one whole cy-
cle of the data. The training and test errors drop very
quickly and start to saturate at around 100 epochs. Both
error functions continue to go down with longer training
time, but after 100 epochs the test error decreases only
by another 30 meV. The training error after 5000 epochs
measured 21 meV, the test error on the 40 energies not
presented during the optimization of the network weights
was 74 meV. Both errors lie well below the desired accu-
racy of 0.1 eV.

Figure 3 illustrates the accuracy of the neural network
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FIG. 4: Sticking probability versus kinetic energy of the dis-
sociation of H2 on a K(2×2)/Pd(100) using a neural network
and an analytical interpolation of the ab initio PES. The sta-
tistical error of the sticking probabilities is ±2.2 %. In addi-
tion, the results according to the hole model [30] (see text)
are shown.

fit. One two-dimensional cut through the six-dimensional
potential energy surface, a so-called elbow plot, obtained
by the DFT calculations (Fig. 3a) is compared to the
corresponding neural network elbow plot (Fig. 3b). This
cut corresponds to the dissociation above the hollow site
between two K atoms which is hindered by a barrier
0.27 eV. Both cuts are based on the DFT-points indicated
as dots in Fig. 3b. However, the DFT-cut in Fig. 3a shows
a two-dimensional spline interpolation of these points,
whereas Fig. 3b is a two-dimensional cut through a six-
dimensional neural network interpolation. It is obvious
that a finer grid of input points was used close to the
minimum barrier for an accurate representation of this
region.

A more detailed analysis of the distribution of the pre-
diction error for the training and test set reveals that
99.6 % of the training data have an error smaller than
0.1 eV. Only three examples exceed this level. The high-
est absolute error is only 0.12 eV and occurs at an energy
of 1.2 eV, i.e. in a region where the potential is already
elevated and errors are less significant. This region has
been fitted with a smaller weight during the minimization
of the error function. It cannot be reached in our molec-
ular dynamics calculations, which we perform for initial
kinetic energies of the molecule of up to 0.8 eV. Also the
40 ab initio total energies contained in the test set are
well reproduced by the neural network PES. 30 points of
the test set exhibit an error smaller than 0.05 eV and 8
between 0.05 eV and 0.1 eV. Only two examples exceed
the latter value. Both these geometries correspond again
to the region far away from the valley of the elbow plots.
The associated potential energies are 1.4 and 2.8 eV.

Based on the neural network PES, we performed clas-
sical molecular dynamics simulations of the dissocia-
tive adsorption of hydrogen on the potassium covered
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Pd(100) surface under normal incidence and determined
the sticking probability. For each energy we calculated
2000 trajectories, i.e. the statistical error of the stick-
ing probability is 1/

√
2000 ≈ 2.2 %. The sticking curve

is shown in Fig. 4. In addition, the sticking proba-
bility in the classical sudden approximation or the so-
called “hole model” [30] is shown. It corresponds to
the integrated barrier distribution Pb(E) which is the
fraction of the two-dimensional cuts through the six-
dimensional configuration space, as shown in Fig. 3 for
which the barrier towards dissociation is less than E.
The large difference between the hole model and the
calculated sticking probability demonstrates that there
are strong dynamical effects in the dissociation dynam-
ics of H2/K(2×2)/Pd(100). Although the dissociative
adsorption is activated, there is also significant steer-
ing of the impinging molecules to low-barrier configura-
tions, as has already been found for the similar system
H2/S(2×2)/Pd(100) [5, 31, 32].

In order to check the reliability of the neural net-
work fit, we obtained an independent analytical fit of the
H2/K(2×2)/Pd(100) PES using the same parametriza-
tion scheme as employed for H2/S(2×2)/Pd(100) [32].
The adsorption probability based on this analytical PES
with 1000 trajectories per energy is also plotted in Fig. 4.
Both dynamical results agree well which lends further
credibility to the neural network fit. However, we em-

phasise that the neural network approach to the repre-
sentation of ab initio data is general, i.e. it is not re-
stricted to the application of dissociation problems only.
Furthermore, neural networks are flexible and can eas-
ily be adjusted to higher dimensions, in contrast to the
analytical representation which is not immediately trans-
ferable to other problems and whose extension to higher
dimensions is rather problematic.

IV. CONCLUSIONS

Using the hydrogen dissociation on the (2 × 2)
potassium-covered Pd(100) surface as an example, we
have demonstrated that neural networks provide an ac-
curate, flexible and efficient scheme for the continuous
representation of an ab initio potential energy surface.
Taking into account the symmetries underlying the par-
ticular system and the feedback from dynamical simula-
tions, a relatively moderate number of training points is
needed in order to obtain a reliable fit. The evaluation
of the potential and its gradient with a fitted neural net-
work is cheap. Thus the neural network representation
of ab initio energies with molecular dynamics simulations
provides a efficient tool to study reaction processes where
extensive statistics are required.
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