Supplementary Information

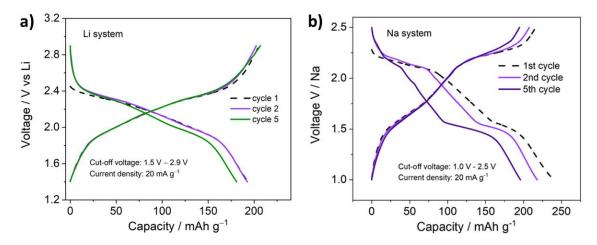
Improving Rechargeable Magnesium Batteries through Dual Cation Co-Intercalation Strategy

Ananyo Roy¹, Mohsen Sotoudeh², Sirshendu Dinda¹, Yushu Tang^{3,4}, Christian Kübel^{1,3,4}, Axel Groß^{1,2}, Zhirong Zhao-Karger^{1,3}, Maximilian Fichtner^{1,3}, Zhenyou Li^{1,5,6,7}*

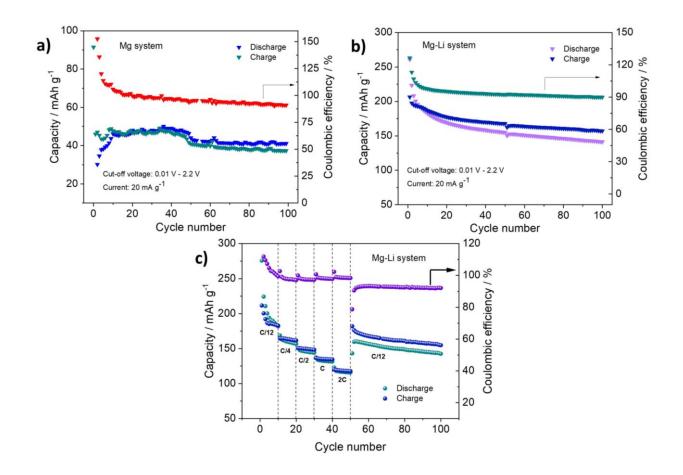
¹Helmholtz Institute Ulm (HIU), Helmholtzstraße 11, 89081 Ulm, Germany

² Institute of Theoretical Chemistry, Universität Ulm, Oberberghof 7, 89081 Ulm, Germany

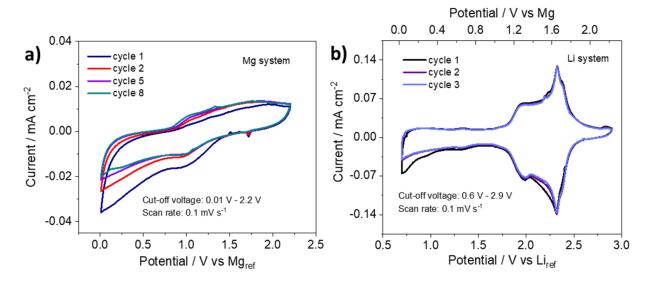
³ Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany

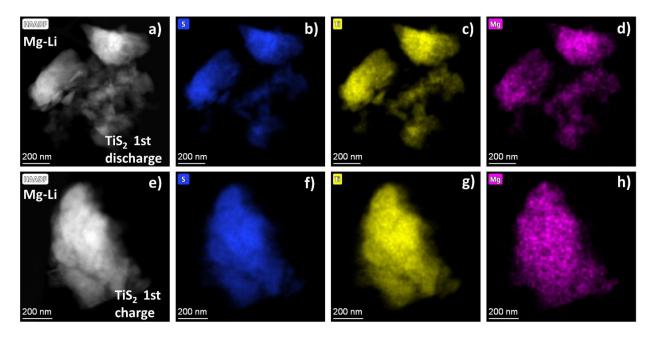

⁴ Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany

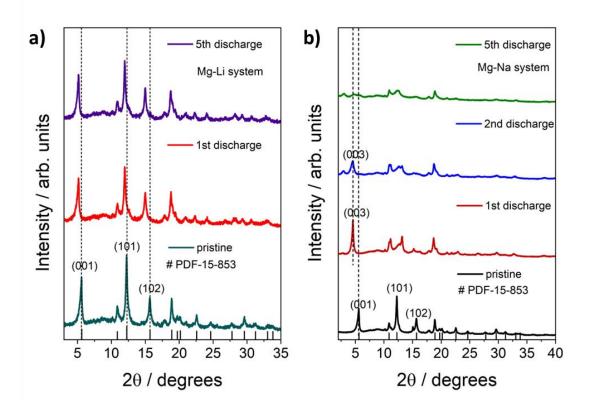
⁵ Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Laoshan District, Qingdao, Shandong 266101, China

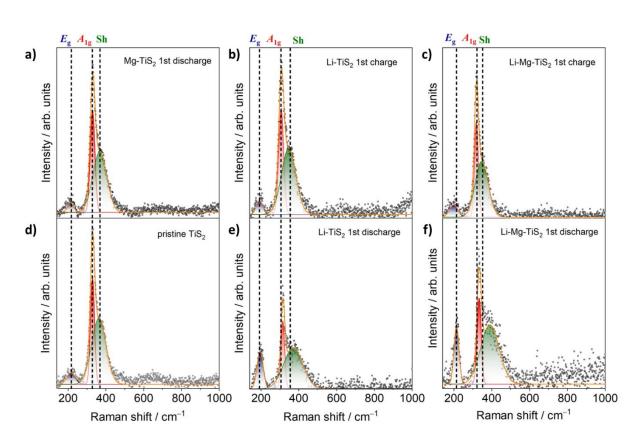

⁶Shan-dong Energy Institute, Qingdao 266101, China

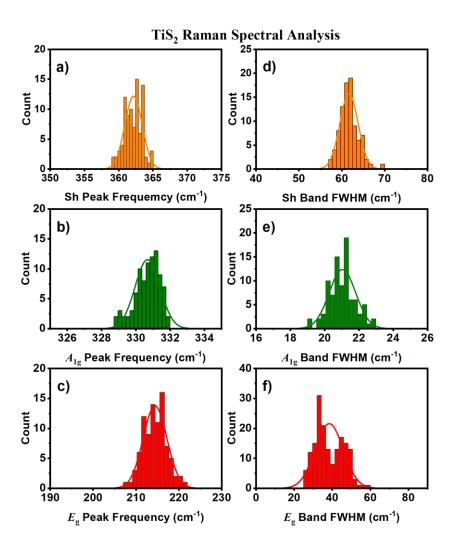
⁷Qingdao New Energy Shandong Laboratory, Qingdao 266101, China

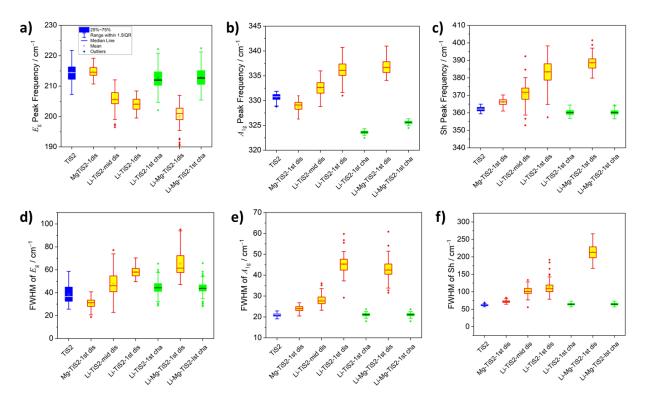

*Correspondence to: zhenyou.li@kit.edu

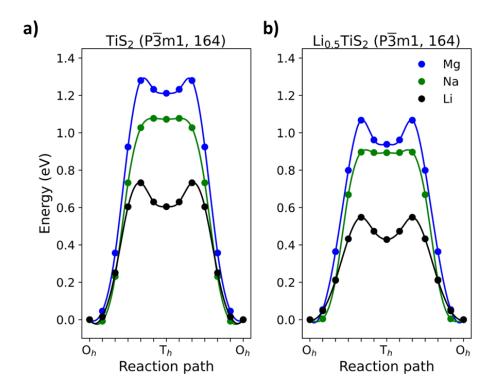

Supplementary Figure 1: Electrochemical voltage profile of TiS₂. a) Li system, configured by implementing Li metal anode and Li[B(hfip)₄] electrolyte. b) Na system, configured by implementing Na[B(hfip)₄] electrolyte in a Na half-cell setup.

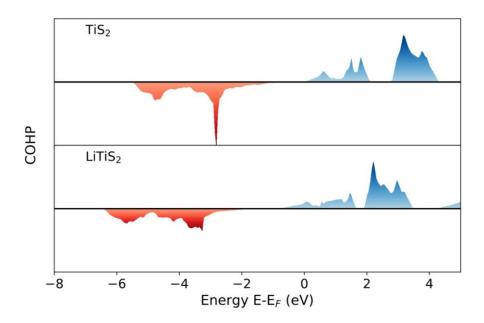

Supplementary Figure 2: Cycling performance and coulombic efficiency of TiS₂. a) Mg system, configured by incorporating Mg metal anode and Mg[B(hfip)₄]₂ electrolyte. b) Mg-Li system, configured by incorporating Mg metal anode and Mg[B(hfip)₄]₂ – Li[B(hfip)₄] dual salt electrolyte. c) Rate test of TiS₂ in the Mg-Li system.


Supplementary Figure 3: Three-electrode cyclic voltammogram of TiS₂. a) Mg system with Mg reference electrode (Mg_{ref}). b) Li system with Li reference electrode (Li_{ref}).


Supplementary Figure 4: STEM-HAADF and EDX analysis of cycled TiS₂ in the Mg-Li system. a) 1st discharge. **e)** 1st charge. Elemental mapping showing the distribution of S (blue), Ti (yellow) and Mg (pink) (**b-d**) after 1st discharge and (**f-h**) 1st charge.


Supplementary Figure 5: Post mortem XRD of TiS₂. a) Mg-Li system after 1st and 5th discharge. **b)** Mg-Na system after 1st 2nd and 5th discharge.


Supplementary Figure 6: Fitted Raman spectra of TiS2. Comparing the Raman active in-plane E_{1g} and the out-of-plane A_{1g} and Sh mode frequencies in **d**) pristine sample, **a**) Mg system after 1^{st} discharge; Li system after **e**) 1^{st} discharge and **b**) 1^{st} charge; Mg-Li system after **f**) 1^{st} discharge and **c**) 1^{st} charge.


Supplementary Figure 7: Statistical evaluation and validation of the collected Raman spectra. Peak position of **a**) Sh mode, **b**) A_{1g} mode and **c**) E_g mode. FWHM of **d**) Sh band, **e**) A_{1g} band and **f**) E_g band.

Supplementary Figure 8: Peak frequency and FWHM distribution using box chart showing median, standard deviation and outliers. Pristine TiS₂ (blue), discharged TiS₂ (yellow) and charged TiS₂ (green) samples showing **a**, **c**) E_g mode, **b**, **e**) A_{1g} mode and **c**, **d**) Sh mode.

Supplementary Figure 9: Calculated activation barriers. Mg, Na and Li ion diffusion in bulk **a**) O3-TiS₂ and **b**) O3-Li_{0.5}TiS₂.

Supplementary Figure 10: The Crystal Orbital Hamiltonian (COHP) analysis between a Tid orbital and S-p state. COHP values manifest as both negative (indicating bonding, shown in red) and positive (indicating anti-bonding, shown in blue) interactions, positioned below and above the horizontal black line, respectively. The zero energy is aligned with the valence band top.

Supplementary Table 1: Stoichiometry of TiS₂ electrodes normalized by Ti measured by ICP-OES after 1st discharge, 1st charge, 5th discharge and 5th charge of the Mg-Li and single ion Mg systems.

Stoichiometry

Samples	Mg-Li cell	Mg cell
1 st discharge	$Mg_{0.24}Li_{0.35}TiS_{2.04}$	$Mg_{0.16}TiS_{1.78}$
1 st charge	$Mg_{0.17}Li_{0.01}TiS_{2.02}$	$Mg_{0.11}TiS_{1.83}$
5 th discharge	$Mg_{0.40}Li_{0.53}TiS_{2.26}$	$Mg_{0.27}TiS_{2.01}$
5 th charge	$Mg_{0.27}Li_{0.007}TiS_2$	$Mg_{0.19}TiS_{2.07}$

Supplementary Table 2: Stoichiometry of TiS_2 electrodes, normalized by Ti, that were measured by ICP-OES at different states of charge of the Mg-Na system.

Samples	Discharge 1.13 V	Discharge 0.6 V	Discharge 0.01V	Charge 2.2 V
Stoichiometry	$Mg_{0.11} Na_{0.46} TiS_{1.97}$	$Mg_{0.13}Na_{0.75}TiS_{2.05}$	$Mg_{0.13}Na_{0.81}TiS_{1.86}$	$Mg_{0.125}Na_{0.09}TiS_{1.98}$

Supplementary Table 3: The calculated lattice constants (a, b, c) as well as Ti-S, Ti-Ti, A-S, and A-A bond lengths in angstroms for the considered layered compounds. A denotes intercalated atoms (Li, Mg, and Na). The angle between the anions has been represented by S - S - S in the unit of degree. The corresponding space group of the considered compounds are also listed.

Compound	a (Å)	b (Å)	c (Å)	Ti-S (Å)	Ti-Ti (Å)	A-S (Å)	A-A (Å)	$\widehat{S-S-S}$	Space group
TiS ₂	3.394	3.394	5.488	2.413	3.394/5.488	-	-	180.00°	P3m1
LiTiS ₂	3.408	3.408	6.013	2.451	3.408/6.013	2.502	3.408	180.00°	P3m1
MgTiS ₂	3.458	3.458	6.106	2.495	3.458/6.106	2.531	3.458	180.00°	P3m1
$Mg_{0.5}TiS_2$	3.408	6.718	18.860	2.413/2.438	3.414/6.572	2.580	3.408	176.85°	R3m
Mg _{0.5} TiS ₂	3.395	3.395	17.809	2.418/2.446	3.395/6.252	2.450	6.791	178.64°	R3m
NaTiS ₂	3.527	3.527	19.584	2.474	3.527/6.838	2.758	3.527	180.00°	R3m
Na _{0.5} TiS ₂	3.387	3.387	19.728	2.407	3.387/6.861	2.711	6.774	180.00°	R3m

Element	Charge (VASP) TiS ₂		Charge (VASP) LiTiS ₂	Charge (Bader) LiTiS ₂
Li	-	-	2.074	2.129
Ti	8.574	8.291	8.585	8.427
S	3.745	6.854	3.795	7.221
S	3.745	6.855	3.795	7.221

Supplementary Table 4: The calculated charges using PBE functional.

Charge	Charge	Charge	Charge
(VASP)	(Bader)	(VASP)	(Bader)
TiS ₂	TiS ₂	LiTiS ₂	LiTiS ₂
-	-	2.067	2.116
8.378	7.997	8.506	8.230
3.804	7.002	3.844	7.326
3.804	7.001	3.844	7.327
	(VASP) TiS ₂ - 8.378 3.804	(VASP) (Bader) TiS2 TiS2 - - 8.378 7.997 3.804 7.002	(VASP) (Bader) (VASP) TiS2 TiS2 LiTiS2 - - 2.067 8.378 7.997 8.506 3.804 7.002 3.844

Supplementary Table 5: The calculated charges using HSE06 functional.