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A neural network �NN� approach is proposed for the representation of six-dimensional ab initio potential-
energy surfaces �PES� for the dissociation of a diatomic molecule at surfaces. We report tests of NN repre-
sentations that are fitted to six-dimensional analytical PESs for H2 dissociation on the clean and the sulfur
covered Pd�100� surfaces. For the present study we use high-dimensional analytical PESs as the basis for the
NN training, as this enables us to investigate the influence of phase space sampling on adsorption rates in great
detail. We note, however, that these analytical PESs were obtained from detailed density functional theory
calculations. When information about the PES is collected only from a few high-symmetric adsorption sites,
we find that the obtained adsorption probabilities are not reliable. Thus, intermediate configurations need to be
considered as well. However, it is not necessary to map out complete elbow plots above nonsymmetric sites.
Our study suggests that only a few additional energies need to be considered in the region of activated systems
where the molecular bond breaks. With this understanding, the required number of NN training energies for
obtaining a high-quality PES that provides a reliable description of the dissociation and adsorption dynamics is
orders of magnitude smaller than the number of total-energy calculations needed in traditional ab initio on the
fly molecular dynamics. Our analysis also demonstrates the importance of a reliable, high-dimensional PES to
describe reaction rates for dissociative adsorption of molecules at surfaces.
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I. INTRODUCTION

Theoretical studies of reaction dynamics at surfaces, like
the dissociative adsorption of diatomic molecules on metal
surfaces, require knowledge of the potential energy of the
moving nuclei taking part in the process.1 Density-functional
theory �DFT� total-energy calculations have proven to be a
powerful tool to calculate such properties.2–5 Ab initio MD
simulations, where the potential and the forces are deter-
mined by DFT, are computationally very elaborate and
costly. A theoretical simulation of the dissociation probability
of a molecule on a surface for different initial energies might
require up to 107 evaluations of the potential energy and the
forces. Due to the high computational task, ab initio molecu-
lar dynamics hardly allow the determination of reaction
probabilities and so far are limited to dynamical studies of
only a few trajectories.6–9

In order to reduce the computational burden and make a
simulation of the sticking probably feasible, Gross and
Scheffler had proposed and implemented a three step
approach.10,11 First, one determines the ab initio potential-
energy surface �PES� on a mesh of several hundred configu-
rations using DFT. In a second step an analytical function is
fitted to these points. The last step consists of molecular
dynamics calculations on this continuous representation of
the ab initio PES. The crucial part of this approach is choos-
ing the appropriate analytical function for the interpolation
of the total energies. The interaction of a diatomic molecule
with a well-defined surface is at least six dimensional, cor-
responding to the six degrees of freedom of the molecule and

a fixed substrate. The latter assumption is often fulfilled for
densely packed metal surfaces. However, on Si�100� for in-
stance, the rearrangement upon adsorption is indeed crucial
for the adsorption and desorption mechanism and one easily
arrives at 12 and more dimensions.7

The fitting of a mesh of ab initio energies to a continuous
representation is a nontrivial task. A high-dimensional, flex-
ible, accurate, reliable and fast interpolation scheme is
needed. Ideally this method should be general to allow its
application to a wide range of problems. Various approaches
to fit a PES can be found in the literature.12–21 All of the
proposed methods have some advantages and some draw-
backs. For instance, the fitting of ab initio data using analyti-
cal functions10,22–24 requires an appropriate choice of an ana-
lytical form, which is very cumbersome to find in high
dimensions.

Therefore other interpolation methods have been sug-
gested. The corrugation reducing procedure25,26 is based on
the observation that most of the corrugation in a molecule-
surface PES is embedded in the atom-surface interaction. If
this interaction is properly represented by an interpolation
scheme, only a relatively smooth additional molecular inter-
polation function needs to be adjusted. This method has been
applied to the six-dimensional interaction dynamics of mo-
lecular hydrogen with rigid metal surfaces.26–29 It still re-
mains to be seen whether this method can be extended to
higher dimensional problems.

Recently, a modified Shepard interpolation scheme used
for gas phase reactions30,31 has been adjusted to be better
suited for gas-surface interactions.21,32 In this approach, the
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potential energy in the vicinity of an ab initio input point is
expanded in a second-order Taylor series. This avoids the
introduction of a regular grid and thus allows one to itera-
tively improve the accuracy of the interpolated PES by a
sampling scheme based on classical trajectory calculations.
Thus this scheme only needs a relatively small number of
input points, as has been demonstrated successfully for the
system H2/Pt�111�.21,32 However, it requires the calculation
of second-order derivatives which is usually not provided in
standard periodic DFT calculations.

Six-dimensional molecular dynamics calculations based
on an analytical interpolation of total energies had shown
that dynamical effects as well as a proper statistical sampling
can be crucial and differences from a static theory can be
significant �see Refs. 33 and 34 and references therein�. Such
studies have advanced the understanding of the dissociation
dynamics and caused the modification of established con-
cepts. Some phenomena, like the so-called steering effect,10

can only be modeled in a theoretical simulation including a
sufficiently large number of degrees of freedom. Thus, high-
dimensional dynamical studies lead to progress not only in
the quantitative, but also in the qualitative understanding of
processes on surfaces.

As an alternative to the hitherto proposed fitting schemes
we will introduce an interpolation method based on neural
networks �NNs�.35–37 A brief account of this approach has
been given elsewhere.38 Some ideas along these lines had
been used earlier by Doren et al.39 and also recently by
Agrawal et al.40 NNs can in principle approximate any con-
tinuous function to arbitrary accuracy.41,42 They do not re-
quire any assumptions about the functional form of the un-
derlying problem. Once the NN representation of the PES
has been determined, the evaluation of the potential energy is
cheap and the derivatives, the forces, are obtainable. There-
fore, provided that the number of parameters and required
data for a good fit scale favorably with dimension, NNs will
be suitable for molecular dynamics applications.

In order to learn more about the advantages, difficulties,
and limitations of a NN representation of a high-dimensional
PES it is important to analyze realistic test problems. Ana-
lytical PESs provide ideal test cases for various reasons.
They are fast to evaluate and therefore allow us to study the
influence of the data sampling on the quality of the NN fit in
great detail. Furthermore, they have been successfully used
for the ab initio description of the hydrogen dissociation on
metal surfaces using a six-dimensional PES.10,22,24,43–50

Moreover, as an additional check of the accuracy of the ob-
tained NN model we are able to compare the NN-MD results
to calculations performed on the analytical PES. We have
chosen analytical PESs for the clean10 as well as the sulfur
covered51 Pd�100� surface as test problems.

The structure of this paper is as follows. Section II intro-
duces the concept of artificial NNs. Section III describes the
test of the NN interpolation ability for the dissociation of
hydrogen on the clean palladium surface, and Sec. IV reports
the interpolation of the second test problem, the analytical
PES for the dissociation of hydrogen on a sulfur covered
Pd�100� surface. The paper concludes with a summary in
Sec. V.

II. ARTIFICIAL NEURAL NETWORKS

Neural networks can be considered as general, nonlinear
fitting functions that do not require any assumptions about
the functional form of the underlying problem.35–37 The main
area of research in neural computing is devoted to classifi-
cation or pattern recognition problems which is a profoundly
different task from the interpolation of a multidimensional
function. However, NNs have also been applied to problems
involving function approximation in general52,53 and more
recently to the interpolation of potential-energy surf-
aces.39,54–59 These works had concentrated on low-dimen-
sional studies of the PES of molecules in the gas phase. We
will extend the approach to study chemical reactions of mol-
ecules on surfaces on a high-dimensional PES and in particu-
lar to employ it in extended molecular dynamics simulations.

It is important to notice that there is no such thing like
“the neural network.” NNs are rather a class of algorithms
inspired from neuroscience. Different architectures exist. A
number of optimization algorithms are applicable for the op-
timization of the NN parameters. Different basis functions
can be used in the interpolation. The number of parameters
necessary to obtain a satisfactory representation and how to
sample the points used for the interpolation in order to obtain
a satisfactory representation are a priori unknown.

A. Neural network structure

An artificial NN consists of a number of artificial neurons
or nodes, typically arranged in layers, and interconnected via
a set of links. A schematic representation of such a net is
plotted in Fig. 1. Each link multiplies its input by a param-
eter, the weight, before supplying it to a new node. Each
node sums over its inputs and applies a function to the re-
sulting value. In the input layer the identity function is used
to distribute the information to the second layer. This layer is
called the hidden layer because its input and output is not
visible to the outside world. The hidden layer is the core of

FIG. 1. Schematic architecture of a feed-forward NN. The neu-
rons are arranged in layers. The output function of this network
with nonlinear basis functions f1,2�x� is Vpot�x1 ,x2�= f2�w01
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the nonlinear fitting of the data set. The output layer collects
the information from the hidden layer and transforms it
again. This network design, in which every node is con-
nected to every node in the adjacent layers but nodes in the
same layer are not connected and the information is trans-
mitted only in one direction, is called a multilayer feed-
forward NN.

The output of a fully connected three layer NN with one
input, one hidden and one output layer and n0, n1, and n2
nodes in each layer, respectively, can be written as

yk
�2� = f2�w0k

�2� + �
j=1

n1

wjk
�2�f1�w0j

�1� + �
i=1

n0

wij
�1�yi

�0��	 , �1�

"k=1,2 , . . . ,n2. The bias weights like w0k
�2� act as an adjust-

able offset of the activation function. In the case of fitting a
PES with a NN, the 
yi

�0�� represent the coordinates of the
reactants. For a diatomic molecule the input layer of the
net consists, e.g., of six units corresponding to 
yi

�0��
= 
Xc ,Yc ,Zc ,d ,� ,��, where Xc, Yc, Zc are the center-of-mass
coordinates of the H2 molecule, d is the interatomic H-H
distance, and � and � are the polar and azimuthal orientation
of the molecule. In the output layer we will have just one
output node, the potential energy Vpot�
yi

�0���.
For convenience we have presented in Fig. 1 a feed-

forward network with only one hidden layer. However, it
should be noted that the number of hidden layers is not re-
stricted. In fact, we will most often use networks with two
hidden layers.

Nonlinear activation or basis functions are what give NNs
their nonlinear capabilities. The function must be differen-
tiable for the optimization of the parameters and we normally
want it to saturate at both extremes. For example, Gaussian
functions, sinusoidal functions or Fermi-type functions can
be used. The most common forms of the so-called activation
functions are the monotonically increasing sigmoidal or
Fermi-type functions, like the sigmoid f�x�=1/ �1+e−x� or
the hyperbolic tangent function f�x�=tanh�x�. Tests on dif-
ferent activation functions are presented in Sec. III.

In order to describe the network architecture in a simple
way the following notation is used: the number of nodes in
the layers, followed by letters denoting the activation func-
tion, with s for sigmoid, l for linear, and t for the hyperbolic
tangent. In this notation, the network in Fig. 1 in conjunction
with a hyperbolic tangent function in the hidden layer and a
linear function in the output layer has a 
2-3-1 tl� structure.

B. Optimization of the network weights

The training of a feed-forward NN is equivalent to per-
forming a nonlinear optimization of the network parameters,
the weights. In so-called supervised learning the optimiza-
tion is done by comparing the output with known correct
answers. In the case of fitting a PES, the known answers are
the energies obtained from ab initio total energy calculations.
The optimization of the network weights is performed by
some iterative optimization scheme until a desirable solution
measured by the cost function, here the root mean squared
error �RMSE�, is reached. The RMSE corresponds to the

sum of the squared residuals between the true or targeted
value and the actual output of the network depending on the
inputs and the weights, divided by the number of residuals.
In order to minimize the costs the network cycles repeatedly
through the following steps of the learning process: �1�
present the network one example of the set of data, �2� mea-
sure the response of the output layer of the net, �3� calculate
the RMSE between the output and the target value, �4� adjust
the weights to minimize the cost function, �5� if the RMSE
reaches a desired lower bound, stop the iteration, otherwise
go back to �1�.

Two different update schemes of the parameters in �4�
exist. One can first present the network the whole set of
examples, called an epoch, and only then change the weights
accordingly, known as batch or off-line learning, or the up-
date is performed after the presentation of every single ex-
ample, chosen randomly. This is called stochastic or on-line
learning. There are several advantages of stochastic over
batch learning. It results most likely in better solutions, be-
cause updating the weights after each example increases the
probability of getting out of a local minimum of the error
surface before the iteration gets stuck.35–37 Optimization
methods like steepest descent and conjugate gradients can be
used for off-line learning.

We tested several optimization algorithms like steepest
descend, conjugate gradients and the extended Kalman filter
�EKF�.60 The EKF can be viewed as an iterative second-
order or quasi-Newton optimization algorithm and has re-
cently been applied to the optimization of the weights in
NNs.61–63 We found that the EKF algorithm is clearly supe-
rior to the other methods. It leads to smaller values of the
error function which are in addition reached faster than in
other algorithms.

We will therefore use on-line learning with the Kalman
filter as the optimization scheme. We employ its adaptive
version,62 in which the weight update is only performed for
those error residuals which exceed a certain threshold. The
threshold can be defined as a fraction of the current RMSE.
An adaptive parameter of ath=0.3 implies an adaptive update
threshold of 0.3�RMSE. The adaptive filter helps to con-
centrate on those examples which contribute most to the
RMSE and decreases the chance of getting stuck in a local
minimum of the error surface too early during the minimiza-
tion. At the same time the adaptive EKF reduces the mini-
mization costs. We apply adaptive parameters ath between
0.3 and 0.9.

Furthermore, we apply a modified cost function for the
optimization. The neural network cost function is determined
by summing the error over all previous optimization errors,
each multiplied by an exponential weighting factor �k−p�k�,62

where k is the total number of presented residuals and p is
the number of the residual in the sum. The so-called forget-
ting schedule changes the value of � before the presentation
of each example according to ��k�=�0��k−1�+1−�0, where
�0 is typically a constant between 0.99 and 0.9995 and the
initial value of �, ��0�, is chosen between 0.95 and 0.99. At
the beginning of the minimization the forgetting schedule is
designed to take only the most recent examples into account
for the weight update �� slightly less than one�. This avoids
too early trapping into local minima. When the process con-

DESCRIPTIONS OF SURFACE CHEMICAL REACTIONS¼ PHYSICAL REVIEW B 73, 115431 �2006�

115431-3



tinues, all information available is used to improve the result
��=1�.

In addition, since some parts of the PES may be more
interesting than others we have altered the Kalman filter al-
gorithm to allow individual weighting of each example. Note
that whereas the cost function for the optimization of the
network parameters uses a modified RMSE using an adap-
tive threshold parameter, a forgetting schedule and individual
weighting, for monitoring and comparing the improvement
of different interpolations the RMSE without any such pa-
rameters is used and displayed.

For training a NN we split the data set into a training and
a test set. The test set corresponds of points that are not used
for adjusting the neural network parameters. Hence the NN
weights are only optimized with respect to the training set.
Still we monitor the error on the test set during optimization
which yields information about the ability of the neural net-
work to interpolate between the points of the training set and
possibly also to extrapolate to regions that are not fitted. We
have taken a set of equidistant points with a finer grid in the
region where the bond breaks for the test set. During optimi-
zation, the error on the training set will decrease, whereas the
error on the test set will first decrease and then typically
increase. We stop training as soon as the error on the valida-
tion set is higher than it was before. It is here that the net-
work weights provide the best generalization ability, i.e., the
network does not only represent the fitted data set very well
but is also able to predict new data points reliably.

III. NEURAL NETWORK TEST: 6D ANALYTICAL PES
FOR H2/Pd„100…

Analytical PESs for the sticking of H2 on metal surfaces
provide ideal test cases for the NN approach for different
reasons. First of all, the energy of an analytical PES is fast to
evaluate. This allows us to study the influence of the sam-
pling of the data points on the quality of the NN-
approximation as measured by the root mean squared error
�RMSE� in great detail. Second, analytical PESs have proven
to describe such adsorption events reliably.10,24,43 Further-
more, as an additional check of the accuracy of the obtained
NN model besides the RMS error, we are able to compare
the results of classical molecular dynamics �MD� calcula-
tions using the NN representation to MD calculations per-
formed on the analytical PES. Namely, we can use the stick-
ing probability—calculated with the NN and the analytical
PES—as a further, and most important, test of the accuracy
of the approximation.

A. Ab initio and analytical PES

The PES of hydrogen dissociation on the clean palladium
surface, H2/Pd�100�, has been calculated by Wilke and
Scheffler by DFT.64,65 The dissociation is nonactivated, i.e.,
pathways to dissociation exist with no energy barrier, and the
molecule can freely dissociate above certain sites. The ab
initio PES has been mapped out following the usual ap-
proach of calculating 2D cuts through configuration space
above high-symmetric geometries. The equilibrium position

of a hydrogen atom is the surface hollow site with a small
adsorption height of 0.1 Å above the topmost palladium
layer. The minimum pathway for the dissociation of H2 mol-
ecules is above the bridge site with the H-atoms oriented
towards the hollow site.

The ab initio PES has been fitted with analytical functions
by Gross, Wilke, and Scheffler,10 and expressed as a function
of the six degrees of freedom of the hydrogen molecule,
keeping the surface geometry fixed: V�Xc ,Yc ,Zc ,d ,� ,��,
where Xc, Yc, and Zc are the center of mass coordinates of the
hydrogen molecule, d is the distance between the two hydro-
gen atoms, � and � are the polar and azimuthal angles of the
molecule. The potential in the Zd plane is described in reac-
tion path coordinates s along the reaction path and r perpen-
dicular to it.10,66 The fit has been performed by a least square
method such that the difference between the analytical po-
tential V�Xc ,Yc ,s ,r ,� ,�� and the ab initio total energies,
which have been calculated for more than 250 configura-
tions, on the average is smaller than 25 meV. In Fig. 2 two
cuts through the six-dimensional configuration space of the
analytical interpolation have been plotted.

Figure 2�a� shows the analytic interpolation of the mini-
mum path. The solid line marks the dissociation pathway, it
exhibits no barrier towards dissociation. However, if we turn
the molecule by 90�, keeping the molecular axis parallel to
the surface, a distinct energy barrier of Ebarr�0.5 eV exists
�Fig. 2�b��. Only one of the six coordinates has been changed
and a qualitatively different dissociation behavior of the mol-
ecule has been obtained. Both elbow plots differ only in the
small region of the PES where the bond of the hydrogen
molecule breaks. The entrance channels with the center of
mass of the molecule more than Z=1 Å above the surface
are very similar, as well as the exit channels with a molecular
bond length r�1.50 Å. The crucial bond-breaking process
of the molecule takes place in a relatively small region of the
PES. Throughout the following, we will often refer to these
two-dimensional cuts through the configuration space, but
one should keep in mind that the complete PES is six dimen-
sional.

B. Tests of the activation functions

For a test of the different choices of activation functions
like Gaussians, trigonometric functions or Fermi-type func-
tions for the approximation of PESs a training set of 1560
and a test set of 7200 examples of the 6D analytical PES
have been used. Gaussian functions proved to be unsatisfac-
tory for the given problem and structure of the NNs. For sine
functions a number of 453 parameters was necessary to
achieve a RMSE of the training set below 0.1 eV. However,
a test set error of 0.49 eV reflected a poor generalization
ability. The output function was globally not smooth enough.
A higher number of parameters lead to a further worsening of
the generalization capability.

With sigmoidal or Fermi-type functions we were able to
obtain a training error of 0.004 eV and a test error of around
0.16 eV. We will therefore use this group of activation func-
tions throughout the following. However, the fit required the
use of a large number of parameters, i.e., around 3000, lead-
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ing to longer fitting times. This can be explained by the form
of the dissociation PES. It consists of numerous local bumps
in the bond-breaking region, one in each 2D cut of the 6D
PES, and is rather smooth elsewhere. In order to form a peak
with sigmoidals many of them—rotated around the center of
the hill—are necessary. Consequently, in order to properly
describe the process of bond breaking within a very localized
region of a detailed PES and at the same time modeling a
smooth function outside that region, a large number of
Fermi-type basis functions is required. Both sigmoidal and
hyperbolic tangent functions can be used. However, conver-
gence of the RMSE in online learning with functions which
are symmetric about the origin, like the hyperbolic tangent,
is often faster37 and therefore will be preferred. Furthermore,
we found that a detailed PES can be fitted with less complex-
ity if a network with two hidden layers is chosen for the NN
architecture. In N dimensions 2N nodes in the first hidden
layer and one node in the second hidden layer can form one
bump.35

In summary, as an optimization algorithm for the network
weights we will employ the adaptive global extended Kal-
man filter �AGEKF� with two forgetting schedule parameters
��0�, �0 and an adaptive threshold of ath�RMSE.60,62 The
activation functions of the hidden layers are hyperbolic tan-
gents and linear functions in the output layer. The NN struc-
ture will mainly consist of one input layer, two hidden layers
and one output layer with a high number of parameters. Fur-
thermore, the input data are preconditioned, i.e., we subtract
the means and normalize the variances in order to improve
ill-conditioning. In order to ensure a most accurate represen-
tation of the potential we use individual weighting of each
energy. For instance, dissociation dynamics depend crucially
on the region in which the bond of the molecule breaks,
whereas the part where the potential is already elevated is of
less importance. We will associate the former region with
weights, which are up to 10 times higher than the rest of the
geometries.

C. Explicit consideration of the symmetry

The computational effort in DFT calculations can be re-
duced by taking advantage of the symmetry of the underly-
ing problem. Since we know the surface symmetry before-
hand it is clearly advantageous to include this knowledge
prior to the optimization of the NN parameters. In this way
we let the network concentrate on the crucial process, the
bond breaking of the molecule. In order to do so we prepro-
cess the coordinates of the problem.

The original set of coordinates Xc, Yc, Zc, d, �, � describe
the six degrees of freedom of the molecule. Due to the high
costs of ab initio calculations information on the clean
Pd�100� has been determined only on the edges of the irre-
ducible part of the unit cell.64,65 In order to represent the
whole surface area the analytical fit assumed a certain set of
symmetry operations to be valid.10 We point out that the
applied symmetry introduces artificial features into the PES.
For instance, the molecule in the analytical PES does not
have any � dependency on the diagonals of the unit cell.
However, since this PES serves as a test problem for our NN
approach, we employed the same symmetry and transformed
the original coordinates into a set of eight inputs to the NN,

X1 = d , X2 = d2, X3 = Zc,

X4 = sin2���cos�2���cos�G · Xc� − cos�G · Yc�� ,

X5 = sin2���cos�2���cos�2G · Xc� − cos�2G · Yc�� ,

X6 = cos2��� ,

X7 = cos�G · Xc� + cos�G · Yc� ,

X8 = cos�2G · Xc� + cos�2G · Yc� .

The transformations are based on Fourier terms in the
lateral coordinates Xc and Yc up to a reciprocal lattice vector

FIG. 2. �a� Hollow-bridge-hollow and �b� top-bridge-top. Contour plots through the 6D analytical PES of H2/Pd�100� from Ref. 10.
Insets, configuration of the dissociation pathways. Solid line in �a� minimum path towards dissociation. Energy spacing of the contour lines,
0.1 eV.
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of 2G representing the periodicity of the surface, with G
=2� /a and the lattice constant a. The term cos�2��
��cos�G ·Xc�−cos�G ·Yc�� in the fourth coordinate reflects
the fourfold symmetry of the �100� surface which has been
considered in this study. However, it is no problem to adjust
this transformation to other surfaces with different symme-
tries. The factor sin2��� weights this term, since the energy of
an upright molecule should not have any azimuthal depen-
dency. It also reflects the internal symmetry of the diatomic
molecule. From the theoretical ab initio calculations it has
been found that the energy increases like cos2���,64 which we
included as one input. There is no symmetry within the co-
ordinates d and Zc. However, the vibration of the molecule in
the gas phase can be described by a harmonic oscillator and
therefore we incorporated an additional coordinate d2.

Instead of presenting the original six degrees of freedom
of the molecule to the NN we now apply this set of eight
inputs representing the symmetry of the surface. The NN
performs a nonlinear fit on these inputs. The transformation
needs to be done only once per surface symmetry.

D. Neural network PES

We will now present six-dimensional continuous NN rep-
resentations of the mesh of points created from the analytical
PES for the dissociation of hydrogen over Pd�100�. Open
questions are the necessary number of training points and
their sampling for obtaining a good description of the PES as
well as the number of parameters of the NN description
needed.

1. NN fit based on a dense grid of configurations

In order to test if NNs are able to fit PESs of surface
reactions at all we first sampled the configurations from the
analytical PES on a very dense mesh in all six dimensions.
The corresponding training set consists of 80 685 energies
evaluated above 55 adsorption sites. For the test set we col-

lected 91 665 points. After 20 so-called epochs, i.e., 20 itera-
tions through the whole set of training examples, the training
root mean squared error measured 9 meV with a test error of
46 meV. Both errors lie well below the desired ab initio
accuracy of 0.1 eV.

The obtained NN representation is then used as an input
to extensive molecular dynamics calculations. Figure 3 illus-
trates the adsorption process over one particular site, the
bridge site with the hydrogen atoms pointing towards the
on-top sites. The molecule approaching the surface under
normal incidence with its axis parallel to the surface at an
energy of 0.5 eV is not able to overcome the barrier for
dissociation. Due to the highly repulsive palladium top sites
it is scattered back into the gas phase �Fig. 3�a��. With a
kinetic energy of 0.9 eV the molecule has enough momen-
tum to overcome the energy barrier and dissociates �Fig.
3�b��. Because of the high symmetry of the initial conditions,
the shown trajectories are restricted to the two-dimensional
cut of the high-dimensional configuration space. In general,
however, the interaction dynamics involve a complex motion
in the six-dimensional configuration space.

From the molecular dynamics simulations we evaluated
the sticking probability of the impinging hydrogen molecule
as a function of the initial kinetic energy. The dissociation
process is highly site dependent which requires us to con-
sider a good statistical average over the initial configurations
for the determination of the sticking coefficient. For each
kinetic energy we need to calculate 500–1000 trajectories
with randomly sampled initial configurations until conver-
gence of the sticking coefficient is attained. The error of the
sticking coefficient corresponds to �S�1−S� /�n, where S is
the sticking probability and n is the number of trajectories.
For each sticking curve the sticking probability must be
evaluated at a number of energies depending on the energy
range of interest. For the presented adsorption coefficients
we performed MD calculations with 10 000–30 000 trajec-
tories.

With the dense grid in all six degrees of freedom of the
hydrogen molecule we were able to get excellent agreement

FIG. 3. �Color online� Two classical molecular dynamics trajectories �dashed lines� on a NN-PES. The initial conditions of the molecules
are the same except for their kinetic energy which are �a� Ekin=0.5 eV and �b� Ekin=0.9 eV. The simulation time was �a� 52 fs and �b� 40 fs.
Insets, configuration of the molecule.
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between the analytical and neural sticking curve as displayed
in Fig. 4. Both the initial high adsorption probability fol-
lowed by a drop of sticking due to the steering effect and the
increase with higher kinetic energies typical for dissociative
adsorption are well reproduced. The differences between the
analytical and neural sticking curve are smaller than 5% over
the presented energy range.

However, in order to be applicable to the fitting of ab
initio PESs, which are very time consuming to evaluate and
therefore only allow the calculation of a few hundred up to a
few thousand configurations, we must find a method to
sample the configurations more efficiently.

2. NN fit based on high-symmetric configurations

The usual approach in theoretical ab initio studies of dis-
sociation processes is based on the calculation of 2D sections
of the 6D energy surface, the elbow plots. For one such
section, the orientation of the molecule �� and �� and the
coordinates of the center of mass in the surface plane �Xc, Yc�
are kept fixed. Only the height Zc and the bond length d vary.
Commonly these elbow plots are evaluated with the mol-
ecule above high-symmetric sites. We will adopt this ap-
proach here as well and sample the points from the analytical
PES in the same way. The NN is then used to interpolate
between these sections.

We trained a 
8-50-50-1 tl� NN with 1560 examples cal-
culated from the analytical PES. The elbow plots were evalu-
ated above different high-symmetric sites, i.e., top, bridge,
and hollow sites and one intermediate configuration at �Xc
=0.25a, Yc=0.25a, with a being the lattice constant of the
�1�1� surface unit cell�. At each site the energies were col-
lected for five different angles � with the molecule upright,
45° tilted, and parallel to the surface. For a single elbow plot
we used 30 points along and perpendicular to the reaction
path. The configurations of the test set have been chosen
from the same elbow cuts as the training set. In total, we

have used 5200 energies as the test set. The training error
after 50 epochs and 2 hours run time on an IBM-SP2 node
measured 0.1 meV with a test error of 0.15 eV. From the
information of the root mean squared error alone we would
judge this approximation as being satisfactory.

Also this NN representation was used as input to molecu-
lar dynamics simulations. Figure 5 compares the sticking
probability obtained from the NN-PES with the dynamical
result from the underlying analytical PES. The NN-PES in-
terpolating high-symmetric sites reproduces the increase of
the sticking probability at energies larger than 0.2 eV quali-
tatively, but it fails to reproduce the high sticking probability
at low kinetic energies.

It is now well understood that this behavior is a conse-
quence of the corrugation and anisotropy of the multidimen-
sional PES which lead to strong forces acting at the mol-
ecules upon adsorption. At low kinetic energies, these forces
can either steer the molecule into a favorable configuration
for direct dissociation10,50,67,68 or lead to the conversion of
perpendicular kinetic energy into parallel kinetic energy
and/or internal energy of the molecule so that they become
temporarily dynamically trapped.18,19,29,69–71 Both effects re-
sult in high adsorption probabilities at low kinetic energies
but become suppressed at higher kinetic energies which
causes the decrease in the adsorption probabilities. At even
higher kinetic energies, molecules start to directly overcome
the dissociation barriers.

We analyzed the data in more detail in order to determine
the reason for the discrepancy of the sticking probability in
the NN fit. In particular, we compared the corrugation of the
barrier heights calculated from the analytical and neural PES,
respectively. We did this by fixing the hydrogen molecule at
a height of Z=1.6 Å above the surface with an intramolecu-
lar distance of r=1.0 Å and angles �=� /2, �=� /2 while
changing the lateral coordinates across the unit cell. The con-
figuration of the molecule corresponds to the region where
the bond already starts to break. In the underlying analytical
corrugation a high barrier for dissociation is present if the
molecule approaches the surface above the top site. Above
the bridge and the hollow site the molecule is able to disso-

FIG. 4. Sticking probability versus kinetic energy for the disso-
ciation of hydrogen on the Pd�100� surface. The training set con-
sists of 80 685 training points sampled on a dense grid in all six
dimensions, with, e.g., 55 lateral configurations. The fit is based
on a 
8-50-50-1 tl� NN. Parameter set, ��0�=0.98, �0=0.999 36,
ath=0.6.

FIG. 5. Sticking probability versus kinetic energy for the system
H2/Pd�100�. The sticking has been calculated by classical molecu-
lar dynamics on a six-dimensional analytical and neural PES, re-
spectively. Training set, 1560 examples.
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ciate freely. Furthermore, the energy barrier decreases mono-
tonically from the top site to the bridge site. A slow molecule
is able to move from the top site where it experiences a high
barrier to the favorable dissociation configuration above the
bridge site. It is also able to reach the bridge site from the
hollow site. However, we found that this is not true for the
NN-PES interpolating the top, bridge, hollow and one inter-
mediate site only. The PES exhibits additional barriers be-
tween bridge and top site and bridge and hollow site, respec-
tively. These artificial barriers diminish the steering effect
and thus cause a monotonically increasing sticking curve as
shown in Fig. 5.

We conclude that for interpolations of PESs with NNs it is
essential to include more than the usually calculated elbow
plots above high-symmetric sites in the training and test sets.
For instance, if we apply additional configurations in the test
set of the above presented NN approximation we get a test
error of 0.32 eV, which is clearly above the desired accuracy.
Hence, with the use of additional configurations also the
RMSE reflects the unsatisfactory interpolation based on
high-symmetric sites only. The results also demonstrate that
the steering effect involves all six degrees of freedom and
underlines the importance of high-dimensional studies in or-
der to predict reaction probabilities.

3. NN fit based on an enhanced lateral grid

In order to achieve a better representation of the steering
effect with NNs we increased the number of training points
in the lateral directions of the unit cell. Instead of applying
only four lateral configurations we used 10 different adsorp-
tion sites in the irreducible part of the unit cell.

We performed a number of interpolations of the analytical
PES with different training sets using a 
9-50-50-1 tl� NN.
Figure 6 displays the dynamical results of two of them. For
the interpolation with 3270 training points with the above
introduced enhanced lateral grid—while keeping the sam-
pling of the other dimensions as described in the preceding
section—the sticking probability of the analytical PES is
well reproduced. The training and test errors after 20 epochs
were 2 meV and 0.1 eV. In particular, the corrugation is now
well represented, allowing the steering effect to become ef-
fective.

In Fig. 6 we also plotted the result obtained from a less
good NN fit. The training and test errors with 6 meV and
0.15 eV based on a training set of 8850 energies were
slightly worse. This shows that an increase of the number of
points in the other degrees of freedom as done for the train-
ing set with 8850 energies does not necessarily lead to a
better fit. The higher training and test errors lead to a larger
deviation of the sticking probability from the analytical PES.
We point out that it may always be possible that a better NN
fit with a different set of Kalman filter parameters and a
different number of weights exists. Yet, we like to emphasize
that it is difficult to assess the quality of a PES without
knowing the results of dynamical simulations.

A detailed analysis of the accuracy of the NN model
based on the dense grid of points revealed that 94% of the
test examples have an error smaller than 0.1 eV and already
99% do not exceed a threshold of 0.2 eV. Large errors occur

only at values above 1 eV. This is the region far away from
the valley of the elbow plots. The errors were influenced by
the imposed higher weighting of the points close to the mini-
mum dissociation pathway. However, the results support that
indeed the regions of higher potential energies have almost
no influence on the reaction probabilities as plotted in Fig. 4.
This is an important issue for the fitting of PESs. Not all
configurations are equally important for the determination of
the sticking probability. For instance, at lower kinetic ener-
gies the adsorption dynamics depend crucially on whether
there is a small energy barrier in the entrance channel, where
the center of mass of the molecule is still far away from the
surface, or not. Yet, the region where the potential is already
elevated might have almost no influence on the dissociation
probability. Consequently, the root mean squared error,
which is usually used as a measurement of the accuracy of
the fit, is of less significance. We will always weight the
configurations close to the valley of each dissociation path-
way up to 10 times higher than the other geometries.

IV. NN TEST: 6D ANALYTICAL PES
FOR H2/ „2Ã2…S/Pd„100…

In the preceding section we discussed a system in which
activated and nonactivated pathways towards dissociation
existed on the same surface, with the former ones being a
minority but having important dynamic consequences. We
showed that in order to obtain a very good agreement be-
tween the analytical and neural sticking probability a high
number of training points and parameters were required.
Still, in comparison to direct ab initio molecular dynamics
where up to 107 energies need to be calculated, orders of
magnitude fewer DFT calculations would be necessary to
obtain a reliable description of the dynamical properties.

As a second test problem for the representation of the PES
in dissociation reactions with NNs we will now investigate a

FIG. 6. Sticking probability versus kinetic energy for the system
H2/Pd�100� for two different training sets based on 10 lateral con-
figurations of the molecule. The training and test errors for each fit
are indicated in the graph. Higher errors lead to larger discrepancies
to the original sticking curve. NN, 
8-50-50-1 tl�. Extended Kal-
man filter parameter, ��0�=0.98, �0=0.999 36, ath=0.6.
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system for which all reaction pathways are activated: The
dissociation of H2 over a sulfur covered Pd�100� surface.

A. Ab initio and analytical PES

It is experimentally well known that sulfur adsorbates
hinder the H2 dissociation process on Pd�100�.72–74 DFT cal-
culations of the system H2/ �2�2�S/Pd�100� confirmed that
the PES is modified significantly compared to the dissocia-
tion on the clean Pd�100� surface.51,64,75 While the process
on the latter surface is nonactivated, for a �2�2� sulfur ad-
layer corresponding to a coverage of �S=0.25 it is inhibited
by energy barriers. Their heights depend strongly on the dis-
tance between the hydrogen and the sulfur atoms leading to a
highly corrugated PES. The minimum barrier towards disso-
ciative adsorption has a height of 0.1 eV, while close to the
adsorbate atoms the barriers become larger than 2.5 eV due
to the strong repulsion between sulfur and hydrogen. The
adsorption height of the sulfur atoms is 1.31 Å above the
surface. The adsorption energy at all sites close to sulfur
atoms is reduced in comparison to the clean surface. But
still, H2 adsorption into all hollow sites not occupied by sul-
fur remains an exothermic process which means that the poi-
soning effect of sulfur adatoms for H2 dissociation at low
sulfur coverages ��S	0.25� is governed by the formation of
energy barriers and not by blocking of adsorption sites.

For the theoretical investigation of the high-dimensional
PES the common strategy of computing 2D cuts through the
6D configuration space has been followed, using an analyti-
cal representation that is similar to the form previously em-
ployed for the clean Pd�100� surface.51 Due to the larger unit
cell some higher Fourier coefficients have been included in
the lateral directions, and in the azimuthal dependence a
higher order term was introduced. Again, the coordinates in
the �Zd� plane were transformed into reaction path coordi-
nates. The parameters were determined such that the differ-
ence to the ab initio calculations on the average is smaller
than 50 meV.

Figure 7 shows two 2D cuts through the six-dimensional
configuration space. Whereas on the clean surface the mol-
ecule over the palladium bridge site was able to dissociate

freely, due to the presence of sulfur the molecule experiences
a barrier of 0.16 eV. The minimum pathway is now over the
fourfold hollow site with an energy barrier of 0.11 eV.

B. Incorporation of the symmetry

We incorporated the symmetry within the NN by using
the same terms as on the clean Pd�100� surface but adding
one higher order term for the azimuthal dependency. In anal-
ogy to the analytical PES we employed reaction path coor-
dinates in the �Zd� plane. Furthermore, we did not employ
the distance of the hydrogen molecule from the surface as an
input to the NN, but rather an exponential decay of that
coordinate. In reaction path coordinates this translated to the
term e�−s/2�, where s is the coordinate along the reaction path.
The transformation reflects that far away from the surface the
molecule is in the gas phase and any dependency on the
distance from the substrate should vanish. Moreover, in the
gas phase the potential energy is isotropic. Only the bond
length of the two hydrogen atoms should play a role, and
therefore we weighted all other terms with the same factor
e�−s/2�.

The set of nine coordinates, i.e., the inputs to the NN, are

X1 = d , X2 = d2, X3 = e�−s/2�,

X4 = sin2���cos�2���cos�GXc� − cos�GYc��e�−s/2�,

X5 = sin2���cos�2���cos�2GXc� − cos�2GYc��e�−s/2�,

X6 = cos2���e�−s/2�,

X7 = �cos�GXc� + cos�GYc��e�−s/2�,

X8 = �cos�2GXc� + cos�2GYc��e�−s/2�,

X9 = sin4���cos�4���cos�2GXc� + cos�2GYc��e�−s/2�.

C. NN-PES

On the clean Pd�100� surface it was necessary to use a
high number of training points along with a high number of

FIG. 7. Contour plots through the six-dimensional analytical PES of the dissociation of H2 over �2�2�S/Pd�100� for �a� the Pd bridge
site and �b� the fourfold hollow site. Insets, geometry of the dissociation pathways.
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parameters to represent the detailed PES with activated and
nonactivated paths towards dissociation. Correspondingly,
the first test of a NN approximation of the analytical PES for
the sulfur covered Pd�100� will be based on a dense grid of
points.

1. NN fit based on a dense grid of configurations

We fitted 43 928 data points from the analytical PES on a
dense grid of configurations in all six degrees of freedom of
the hydrogen molecule. The network consists of two hidden
layers with 50 nodes in each of them 
9-50-50-1 tl�. For the
test of the accuracy of the interpolation we used 5891 ener-
gies. After 40 epochs the training and test error were
0.033 eV and 0.043 eV. The NN-PES has subsequently been
used in molecular dynamics calculations to determine the
sticking probability. Figure 8 displays these results. The NN
sticking curve agrees very well with the analytical sticking
coefficient, their values differ by less than 3%. In compari-
son, for a good fit on the clean surface a number of examples
twice as large was required.

Furthermore, for the sulfur poisoned surface the number
of weights in the approximation can be greatly reduced with-
out losing much of the networks performance. The sticking
probability for a 
9-20-20-1 tl� network differs from the
value based on the analytical PES by less than 5%. The
training and test error �0.068 eV and 0.081 eV� were slightly
higher than for the network with 3101 parameters, but still
within the desired ab initio accuracy. The training time with
such a high number of examples but only 641 weights re-
duces to 7 hours on an IBM-SP2 node in comparison to
several days for the 3101 parameter case.

On the clean surface a NN with such a small number of
parameters was not able to describe the correct coexistence
of activated and nonactivated pathways. We conclude, with
respect to the number of training points and the complexity
of the appropriate NN, that fitting a strictly activated PES is
a profoundly easier task.

2. NN fit based on 11 elbow plots

Usually, a dense grid of energies as presented in the pre-
ceding section will not be available due to the high numeri-

cal costs of ab initio calculations. Commonly, DFT studies of
PESs concentrate on 2D cuts through the configuration space
with the molecule above high-symmetric sites. In Fig. 9 we
plotted 11 such configurations which have been used for the
system H2/ �2�2�S/Pd�100�. The molecule approaches the
surface above the fourfold hollow site, the palladium bridge
site, the sulfur bridge site, on-top of a palladium atom and
on-top of a sulfur atom. The orientation of the molecule is
either parallel or perpendicular to the surface.

We performed a 
9-20-20-1 tl� NN interpolation based on
1189 training and 471 test energies obtained from the ana-
lytical PES in the configurations of Fig. 9. The test and train-
ing error after 100 epochs measured 0.078 eV and 0.096 eV,
respectively. The resulting neural sticking coefficient in Fig.
10 exhibits the same increase in the sticking probability with
kinetic energy as the corresponding analytical curve but its
value is strongly reduced. A NN fit based on 1778 training
examples from the same cuts resulted in a description of the
PES which was too reactive at high kinetic energies �see Fig.
10�.

3. NN fit based on 11 elbow plots and corrugation

In order to get a reliable description of dynamical proper-
ties for dissociation processes with NNs it is not sufficient to
follow the usual approach of restricting the calculations to
2D cuts above high-symmetric sites. We need to add infor-
mation about the PES, which is not present in the elbow
plots. Numerical calculations based on the analytical PES
revealed that the steering effect is not only present on the
clean Pd�100� surface, but also on the sulfur covered
sample.24 Molecules approaching the surface above sites
with a high barrier to dissociation can be reoriented by the
forces to more favorable adsorption configurations. We
showed in the discussion of the first test problem that the
distribution of the barriers within the unit cell is important
for the reproduction of the steering effect and we have there-
fore tested how the incorporation of the energetic corrugation
improves the interpolations.

FIG. 8. Sticking probability versus kinetic energy for H2/ �2
�2�S/Pd�100� for a 
9-50-50-1 tl� NN. The data sampling from
the analytical PES is based on a dense mesh of configurations in all
six degrees of freedom of the H2 molecule. Parameter, ��0�=0.98,
�0=0.999 06, ath=0.6.

FIG. 9. �Color online� Eleven adsorption configurations of the
system H2/ �2�2�S/Pd�100�. The corresponding elbow plots are
used for the NN fit.
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The H2 molecule dissociates with its axis oriented parallel
to the surface; the minimum path is located above the four-
fold hollow site. Figures 11�a� and 11�b� display the lateral
variation of the energy the H2 molecule experiences during
adsorption for two angular orientations above different lat-
eral positions. In Fig. 11�a� the molecule is oriented parallel
to the surface above the sulfur bridge site with the H2 atoms
pointing towards the fourfold hollow site. In order to scan
the lateral corrugation we fixed the �Zc ,d ,� ,�� configuration
for two different bond lengths d and heights Zc and moved
the molecule from the sulfur bridge site to the fourfold hol-
low site. The same is done in Fig. 11�b� but now the H atoms
point initially in the direction of the sulfur atoms.

The configuration of the H2 molecule for the solid lines in
Fig. 11 correspond to the position of the minimum barrier in
the entrance channel above the fourfold hollow site. In Fig.
11�a� the potential energy decreases monotonically from a
value of 0.3 eV above the sulfur bridge site at �Xc ,Yc�
= �0a ,0.5a� to 0.1 eV above the fourfold hollow site at
�0.5a ,0.5a�, where a defines the length of the �2�2� unit
cell. The monotonic decrease of the energy barriers enables
the molecule to be redirected to the most favorable dissocia-
tion configuration above the hollow site even when it ap-
proaches the surface above, say, the palladium bridge site at
�Xc ,Yc�= �0.25a ,0.5a�. If we further stretch the bond length
of the hydrogen molecule and decrease the distance to the
surface we obtain again a monotonic decrease of the energy
�see the dashed line in Fig. 11�a��. However, the energy bar-
rier at the sulfur bridge site has significantly increased due to
the shorter distance to the repulsive sulfur atoms. Above the
fourfold hollow site the energy is now negative, the molecule
has started to dissociate. Note, that the energy zero relates to
the situation where the molecule is located far away from the
surface �Zc�5 Å� having its equilibrium bond length. If we
let the bond length stretch further and allow the atoms to
approach the surface the energy at the fourfold hollow site
would further decrease reflecting that the dissociation pro-
cess on the sulfur covered Pd�100� surface is exothermic.

In Fig. 11�b� the H2 molecule has been rotated by 90� in
the azimuthal direction. For the configuration corresponding
to the solid line again the potential energy decreases mono-
tonically as a function of the distance from the sulfur atoms.

FIG. 10. Sticking probability versus kinetic energy for the sys-
tem H2/ �2�2�S/Pd�100�: Analytical PES and a NN-PES based on
the 11 configurations in Fig. 9. NN, 
9-20-20-1 tl�. Parameter,
��0�=0.98, �0=0.999 06, ath=0.3.

FIG. 11. �Color online� �a� H2 bond axis parallel to Xc, �b� H2

bond axis perpendicular to Xc, and �c� sticking probability. �a� and
�b� Corrugation of the potential energy for the system H2/ �2
�2�S/Pd�100� with H2 in two different orientations and its axis
parallel to the surface. The energies are calculated for two different
heights and bond lengths of the molecule. In both plots the mol-
ecule is moved from the sulfur bridge site to the fourfold hollow
site. �c� Sticking probability versus kinetic energy for H2/ �2
�2�S/Pd�100� calculated from the analytical PES and two NN-
PESs. The neural PESs are based on the 11 configurations in Fig. 9
and the corrugation in �a� and �b�.
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With a stretched bond length of d=0.9 Å and a distance from
the surface of z=1.1 Å the picture has changed. Now the
barriers are at its highest value above the Pd bridge site. This
is due to the repulsive character of the palladium atoms
which the H-atoms point at in this configuration. At the four-
fold hollow site the potential energy is again negative.

To improve the NN description we included the informa-
tion about the lateral variation of the energy within the unit
cell from Fig. 11 in the training examples. We added 66
potential energies related to the corrugation of the barriers to
the information governed from the previously discussed 11
2D cuts. Namely, instead of optimizing the NN with 1189
and 1778 training examples based on the elbow plots only as
shown previously in Fig. 10, we now use 1255 and 1844
points, respectively. The sticking probability for both train-
ing sets in Fig. 11�c� agrees now semiquantitatively with the
underlying analytical PES. Thus, incorporating only a small
number of additional information to the calculated elbow
plots can lead to significant improvement of the dynamical
result. Figure 11�c� demonstrates that the incorporation of
available physical knowledge about the system of investiga-
tion improves the interpolation considerably. It is well
known that steering in dissociation dynamics is present and
can be essential for the calculation of a dynamical property
like the sticking probability. It is clear that the reorientation
of the molecule is affected by the distribution of the energy
barriers on the surface. Together with the knowledge about
the favorable dissociation configuration of the studied mol-
ecule which can be gained from DFT calculations we were
able to calculate a small number of additional energies. With
this information the NN was able to reproduce the adsorption
coefficient with an error of less than 6%.

We have already successfully applied the strategy de-
scribed above to a system where only ab initio data were
available, namely to the dissociative adsorption of H2 on
K�2�2� /Pd�100�.38 There 659 ab initio energies which were
divided into a training set of 619 and a test set of 40 energies

turned out to be sufficient to obtain reliable adsorption prob-
abilities, as was tested by calculations based on another, in-
dependent interpolation scheme.

V. CONCLUSION

We have shown that NNs can represent ab initio PESs of
several degrees of freedom accurately. The computational
cost of training a NN is small and just a fraction of the costs
of the DFT calculations. The resulting NN output function,
the potential energy, and its derivatives, the forces, are very
efficient to evaluate and allow molecular dynamics calcula-
tions with extensive statistics.

Concerning the amount of training data required to obtain
a reliable representation it is not sufficient to perform a NN
fit based on the usually calculated top, bridge, and hollow
sites only. Intermediated configurations need to be consid-
ered. An equidistant sampling results in a number of
104–105 total energies for an accurate interpolation. The re-
quired number of training energies for dissociation processes
can be further reduced by an efficient sampling of the con-
figurations.

Model calculations on the systems H2/Pd�100� and
H2/S�2�2� /Pd�100� revealed that the form of the energetic
corrugation can significantly influence the dynamical result.
We therefore proposed a modification of the usually applied
sampling of total energies in DFT calculations of dissocia-
tion processes. In addition to elbow plots above high-
symmetric sites we recommend to calculate the corrugation
of the barrier heights in more detail by collecting information
of the potential energy as a function of the lateral coordinates
within the surface unit cell. The modified sampling scheme
allows one to calculate dynamical results with NNs based on
103–104 ab initio energies. The costs for a description of
dissociation reactions with NNs are orders of magnitude
smaller than those of “on the fly” ab initio dynamics where
up to 107 energies might be necessary.
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