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Quantum delocalization and correlation effects in one-dimensional chains of bosons are treated
using a Bose-Hubbard Hamiltonian including on-site and nearest-neighbor repulsion terms. The
parameters were chosen in such a way that the calculations are appropriate for hydrogen atoms
adsorbed in the troughs of fcc(110) surfaces. Employing direct diagonalization of the Hamilton
matrix for small periodic systems, we find that the hydrogen atoms are always delocalized except
for half-filling corresponding to a coverage of ρ = 1/2 where an ordered structure results for small
tunnel parameters and sufficiently large nearest-neighbor repulsion, in accordance with experimental
findings. For this coverage, a phase diagram as a function of the tunnel parameter and the nearest-
neighbor repulsion is determined. Only if the translational invariance of the chain is perturbed,
ordered structures for other coverages can be created. Larger systems are studied using the density
matrix renormalization group (DMRG) algorithm. Using the finite length version of the DMRG
algorithm, we find ordered states also for coverages of ρ = 1/3 and 1/4 which are obviously a
consequence of the perturbation caused by the termination of the finite chains.

PACS numbers: 68.43.Fg, 68.35.Rh, 67.63.Gh, 67.90.+z

I. INTRODUCTION

There is currently a strong interest in tailored quan-
tum matter confined in reduced dimensions or in periodic
lattices1. They allow to study fundamental phenomena
such as decoherence and quantum phase transitions in
strongly correlated systems which are relevant for, e.g.,
quantum computing. Typically cold atoms trapped in
optical lattices have been employed to prepare such sys-
tems2. However, nature provides a template for the trap-
ping of quantum particles in a periodic lattice that can
be prepared with a high degree of perfection, namely
low-index single-crystal metal surfaces3. Via adsorption,
these surfaces can host light particles such as hydrogen
that exhibit quantum phenomena such as delocalization
and correlation4,5.

The diffusion of hydrogen atoms on such metal surfaces
is hindered by relatively small barriers6,7. It has been re-
alized already quite long ago that because of these small
barriers hydrogen atoms can become delocalized at low
temperatures forming single-particle Bloch waves4,5,8–11.
This leads to protonic vibrational bands12, analogous to
the electron bands formed by the conduction electrons
of metals. These vibronic states can be detected by
measuring the vibrational spectra of adsorbed hydrogen
atoms13. From the band width of the vibrational bands
the degree of delocalization of the hydrogen atoms can
be deduced5. In passing, we note that there is still a
discussion going on whether adsorbed hydrogen atoms
should be regarded as bosons or as fermions5. Further-
more, quantum effects in the hydrogen adsorption dy-
namics are also still debated14–18.

Experimentally, it has been observed that the band
width of excited hydrogen-derived vibronic bands on the
(110) surfaces of Cu13 and Pd19 decreases for higher hy-
drogen coverages. Theoretically, the system was modeled

by a simple one-dimensional Bose-Hubbard-like Hamilto-
nian for one vibrationally excited hydrogen atom subject
to a repulsive interaction with fixed ground-state hydro-
gen atoms13. The restriction to a one-dimensional model
was based on the assumption that the hydrogen atoms
only move along the [11̄0] troughs of the (110) surface and
do not interact with hydrogen located in other troughs.
The repulsion between the hydrogen atoms leads to an
effective localization of the vibrationally excited hydro-
gen atom which reduces the band width of the vibronic
bands, as reproduced by the simple Bose-Hubbard-like
model13,19. Single-particle delocalization effects of ad-
sorbed hydrogen have also been observed on a number
of other single crystal surfaces (see Ref. 5 and references
therein).

As a function of the hydrogen coverage, not only one-
particle quantum effects can be observed, but also many-
body quantum effects such as quantum phase transitions,
i.e., phase transitions that are not induced by tempera-
ture but by the change of a physical parameter at zero
temperature. For example, in the H/NiAl(110) system,
at low coverages a 1 × 1 hydrogen structure was ob-
served20 that was interpreted as being due to delocalized
itinerant hydrogen. At coverages between 0.4 and 0.6, a
c(2 × 2) hydrogen structure is observed, however, with
such a shallow corrugation amplitude that it was taken
as evidence for the delocalization of hydrogen in this or-
dered phase20,21.

It is important to realize that the Bose-Hubbard stud-
ies of hydrogen atoms on fcc(110) surfaces performed
so far13,19 just treated single-particle quantum effects.
Thus collective quantum phenomena of adsorbed hydro-
gen atoms were not addressed. At low temperatures, the
quantum nature of the hydrogen atoms should be rele-
vant for the adsorption structures that evolve. To de-
scribe this properly, a real many-particle picture in the
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language of second quantization is needed. However, a
direct solution of the appropriate Hamiltonian is com-
putationally very costly because of the rapidly growing
Hilbert space of the system as a function of the system
size. This makes it necessary to use the theory of quan-
tum phase transitions and quantum mechanical renor-
malization groups.

It is true, that there have already been several
studies addressing bosonic particles in one-dimensional
chains using Bose-Hubbard models in second quantiza-
tion together with renormalization group algorithms22,23
or Monte Carlo methods24. Hence it is well-known
that in the presence of on-site interactions only, so-
called Mott insulators are found at integer densities sur-
rounded by superfluid phases25,26, whereas the intro-
duction of nearest-neighbor interaction leads to charge-
density waves at half-integer densities23. However, these
theoretical studies were not necessarily driven to simu-
late a particular physical system but rather to under-
stand the generic behavior of one-dimensional bosonic
systems. Here we have a well-defined physical system
in mind, namely the adsorption of hydrogen atoms in a
periodic one-dimensional structure provided by a metal
substrate. Hence the physical parameters entering the
corresponding Bose-Hubbard Hamiltonian, in particular
the on-site and the nearest-neighbor repulsion, are no
longer free parameters. Rather, they should reflect the
properties of a particular system. They can be derived ei-
ther empirically from experiments or from first-principles
calculations27 which are predominantly based on density
functional theory (DFT). Since typically every adsorp-
tion site can only be occupied by one hydrogen atom
which is reflected by a large on-site repulsion term, the
filling or rather the coverage can not exceed one. To the
best of our knowledge, this particular parameter regime
with a dominant on-site repulsion has not be scrutinized
in one-dimensional Bose-Hubbard models yet.

Thus one aim of this work is it to close the gap between
studies related to quantum delocalization phenomena on
surfaces and work addressing quantum phase transitions
in a more generic sense. To do so, in the following we will
first recall some basics about the Bose-Hubbard model
and its relevance to surface problems. In the second step
we study ideal small one-dimensional systems with pe-
riodic boundary conditions using a full diagonalization
scheme. We will also consider the influence of a small
perturbation on the periodicity of the solution. Finally
we will focus on large finite systems employing the den-
sity matric renormalization group algorithm28–30.

II. THE BOSE-HUBBARD MODEL

The Hubbard model was originally introduced to study
the magnetic properties of electrons in transition met-
als31. Since then, the Hubbard model has been applied
to a wide range of fermionic systems, in particular with
respect to the theoretical description of high-temperature

superconductors32. Bosonic Bose-Hubbard Hamiltonians
have mainly been applied to neutral atomic gases trapped
in optical lattices33. As already mentioned, Astaldi et
al. were the first to use the Bose-Hubbard Hamiltonian
for a surface science problem13, namely for the descrip-
tion of hydrogen atoms adsorbed in the one-dimensional
troughs along the [11̄0] direction of a fcc(110) surface. In
the general formulation in second quantization, the Bose-
Hubbard Hamiltonian reads, including on-site (OS) and
nearest-neighbor (NN) repulsion terms,

H = −T
L∑

i=1

(a+
i−1ai + aia

+
i+1)︸ ︷︷ ︸

hopping term

+
1
2
U

L∑
i=1

ni(ni − 1)︸ ︷︷ ︸
OS-repulsion

+ V

L∑
i=1

nini+1︸ ︷︷ ︸
NN-repulsion

. (1)

In our particular application, the single indices i stand for
the adsorption sites along the one-dimensional troughs.
In the following we consider L adsorption sites within the
troughs and refer to the troughs as ”chains”. To treat
extended system, we apply periodic boundary conditions
so that effectively we obtain “rings” with the last site
being the direct neighbor of the first site.

In eq. (1), a+
i and ai stand for the bosonic creation

and annihilation operator, respectively, at site i and
ni = a+

i ai denotes the occupation number operator. The
tunneling or hopping term describes the hopping of a par-
ticle from one site to a direct neighbor site with the pa-
rameter T being related to the overlap between the local-
ized wave functions at the single sites. The OS-repulsion
term then introduces a repulsion U for particles occupy-
ing the same adsorption site. Finally, the NN-interaction
V reflects the repulsion between particles in neighboring
sites. The operator itself carries no information about
how many hydrogen atoms N are adsorbed on the L sites
or, in the language of our picture, how may particles are
in the chain. The information of the particle density
ρ = N/L is contained in the basis of the corresponding
Hilbert space. Since we consider the adsorbed H-atoms
to be bosons, this space H is given by

H = span{ |k1, ..., kL〉 : ki = 0, ..., N ;
L∑

i=1

ki = N}, (2)

where ki is the occupation number of site i. The dimen-
sion of such a space is given by

d = dim H =
(
L+N − 1

N

)
=

(L+N − 1)!(L− 1)!
N !

, (3)

Equation (3) shows, that the dimension of the considered
bosonic systems grows drastically with the size parame-
ters L and N . For example, the routines embedded in
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FIG. 1: Probability distribution of finding one of the 55 basis
states in the expansion of the ground state. See the text for
an explanation of the ordering of the basis states.

the full diagonalization program used in section V are
only able to handle fully covered chains (ρ = 1) within a
reasonable computational time for chain lengths L ≤ 8.

III. SIMPLE PROBABILITY SPECTRA

In order to understand the resulting distribution of the
hydrogen atoms along the chain, we will first discuss the
energy eigenvalue spectrum. As an example, we con-
sider a system with N = 2 particles in a chain of L = 10
sites with periodic boundary conditions corresponding to
a filling or coverage of ρ = 1/5 using the parameters sug-
gested by Astaldi et al.13: U = 80 meV, V = 1 meV,
T = 5 meV. Note that these parameters were chosen
in order to represent an adsorbed hydrogen atom in a
higher vibrational state, in which the atomic wavefunc-
tion is spread out to a larger extent than in the vibra-
tional ground state. Therefore the on-site repulsion U
is much smaller and the overlap parameter T is much
larger compared to the parameters chosen to represent
vibrational ground state systems considered in section
V.

For the considered system with N = 2 and L = 10
the Hilbert space has the dimension d = 55 according
to eq. (3). Diagonalizing the Hamilton matrix leads to
18 distinct energy eigenvalues. They can be divided into
four groups related to the energy parameters of the sys-
tem:

I ) ±4T ≈ −19.1; 19.0 meV
II ) ±3T ≈ −15.5; −15.4; 15.2; 15.4 meV

III ) ±2T ≈ −12.1; −9.6; −9.5; 9.3; 9.5; 11.3 meV
IV ) U ≈ 80.0; 80.2; 80.9; 81.6; 82.3; 82.5 meV(4)

We will now use the occupation number representation
outlined in eq. (2) to discuss the energy spectrum extend-
ing an interpretation made in Ref. [13]. The basis states

are ordered as follows. State 1 is given by both particles
occupying the first site,

e1 ≡ |2000000000〉 . (5)

The next states are created by keeping one particle at
site 1 and moving the other particle along the chain.
Then the first particle is set to the second site and the
second particle is again moved along the chain. Note that
states that correspond to an exchange of the particles are
not considered twice because of the indistinguishability of
the particles. There are in each case ten laterally equiv-
alent states in which the particles are zero to four lattice
sites apart from each other and five equivalent states in
which the particles have the maximum distance of five
sites.

In the analysis of the energy spectrum, we will consider
the probability expansion of a representative state of each
group. For group I, we pick the ground-state with energy
E0 = −19.1 meV. Its expansion in terms of the 55 basis
states is given in Fig. 1. Maximum occupation is found
for states such as

e6 ≡ |1000010000〉 (6)

and the five translational equivalent situations. These
correspond to situations in which the particles have the
largest possible distance from each other, namely five
lattice sites. Hence the atomic positions are correlated
over a longer distance than the actual range of the NN-
repulsion.

Inspecting the state (6), it is obvious that both par-
ticles can jump to the ”right” and to the ”left” without
getting in contact with each other. So in the situations
(6) the system has 4 unconditional degrees of freedom.
The same is true for states with the particles being 4
and 6 sites apart from each other which also contribute
to the ground state shown in Fig. 1. This explains the
energy value of EI ≈ ±4T , but this also means that the
correlation length is less than four lattice sites.

Analogous explanations are also applicable to the other
three energy groups listed in (4). Analyzing the first
excited state as a representative of group II reveals that
the highest occupation occurs for states such as

e4 ≡ |1001000000〉 (7)

In states such as (7), just one particle can jump without
being influenced by the position of the second particle.
The second particle can directly be affected by the move-
ment of the first particle. To be specific, just assume that
one particle described in (7) jumps towards the other. In
this case, the other particle can only jump into one direc-
tion without any energy cost since a jump into the other
direction costs the NN-repulsion V . Thus we can identify
3 unconditional degrees of freedom reflected in the total
energy EII ≈ ±3T .

Looking at the remaining 2 energy groups one can ob-
serve that the members of group III are dominated by
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basis states such as

e9 ≡ |1000000010〉 (8)

in which the particles have just 2 unconditional degrees of
freedom; therefore an total energy of EIII ≈ ±2T results.
Finally, group IV states consists mainly of basis states
given by Eq. (5) corresponding to a situation in which
two hydrogen atoms are located at the same adsorption
site associated with the high energy cost U of the OS-
repulsion.

This discussion shows that in spite of the fact that
the Hamiltonian (1) only includes on-site and nearest-
neighbor repulsion, the position of the particles is corre-
lated over much larger distances.

IV. PHASES OF THE BOSE-HUBBARD MODEL

In contrast to the surface science studies performed
so far13,19, we do not want to restrict ourselves to
one-particle quantum effects but rather address many-
particle quantum effects, in particular quantum phase
transitions as a function of the coverage. To denote the
phases and make contact to previous work, we will use
the terminology commonly used to characterize quantum
many-particle states although they do not really make
sense for the systems considered by us, hydrogen atoms
adsorbed on metal surfaces in linear troughs. For the
Bose-Hubbard model with NN-interaction, three possible
phases can be expected22. For coverages lower than ρ = 1
there is the opportunity to find either a Suprafluid Phase
(SF phase) or a Charge Density Wave Phase (CDW). If
we consider coverages ρ or filling factors corresponding
to positive integers, we have the additional possibility of
finding a Mott-Insulator Phase (MI phase).

In the context of the delocalization problem of bosons
the MI and CDW phases are just interpreted as localized
phases and the SF phase stands for a delocalized state.
To distinguish between them we introduce the local den-
sity (9)

ρi ≡ 〈n̂i〉 (9)

Qualitatively, the following trends in the quantum de-
localization as a function of the parameters entering the
model can be expected. Increasing the kinetic energy T
increases the mobility and thus the delocalization of the
phases leading eventually to a SF-Phase. A higher NN-
repulsion V , on the other hand, keeps the particles apart
from each other favoring a CDW. Likewise, a higher cov-
erage ρ increases the atom-atom interaction and hence
restricts the mobility. Consequently, enlarging ρ should
also lead to localization effects in a similar manner as
described in13. The possible phases are characterized in
Table (I).

V. PERIODIC SYSTEMS

In a first step, we determine the quantum phases
as a function of the tunneling parameter T , the NN-
repulsion V and the hydrogen coverage in periodic chains
with a relatively short length L of the periodic region so
that the solutions of the Bose-Hubbard Hamiltonian (1)
can still be obtained by direct diagonalization. The pa-
rameters entering the Hamiltonian are chosen in such a
way that they reflect properties of hydrogen atoms ad-
sorbed on single-crystal surfaces. For any particular hy-
drogen/metal system, these parameters are given and can
be derived from first-principles calculations. However,
there is a wide range of possible surface structures and
compositions, all with their own characteristic hydrogen-
metal interaction. Therefore we have decided to consider
a certain realistic range of parameters found in total en-
ergy calculations.

The nearest-neighbor repulsion V can be derived from
first-principles studies based on density functional the-
ory (DFT) in which the adsorption energy of hydro-
gen on metal surfaces as a function of coverage was de-
termined34–39. For example, for H/Pd(210) a value of
V = 25 meV can be derived37. Hence, a range 10 meV ≤
V ≤ 200 meV seems to be reasonable.

The overlap parameter T can be related to the
width W of hydrogen vibronic bands. Here we will as-
sume W = 8T where W is the width of the band. This is
only strictly valid for the case of a two-dimensional square
lattice in the tight-binding approximation with only next-
nearest neighbor interaction, however, this should be suf-
ficient as an estimate.

The width W has been derived for several hydrogen
adsorption system based on potential energy surface cal-
culated using DFT. On (100) surfaces, the correspond-
ing tunnel parameters are extremely small. Tunnel am-
plitudes of T = 2 · 10−7 meV (H/Ni(100)40) and T =
5 · 10−11 meV (H/Cu(100)41) have thus been obtained.
At the (100) surface, the hydrogen atoms are adsorbed
on four-fold hollow sites which are relatively far away
from each other. On the close-packed (111) surfaces, the
first-principles derived tunnel parameter are much larger,
namely T = 0.5 meV for H/Ni(111) 8 and H/Rh(111) 42 ,
T < 0.01 meV for H/Pt(111) at fcc sites and T = 0.2 meV
for H/Pt(111) at hcp sites12. Since we are consider-
ing one-dimensional rows of adsorption sites along some
close-packed directions, we have assumed the parameter
T to be in the range 0.01 meV ≤ T ≤ 0.1 meV.

Usually every adsorption site on metal surfaces hosts
only one hydrogen atom. Additional hydrogen either
does not stick or enters subsurface absorption sites4,43,44.
These observations should be reflected by a large OS-
repulsion term U and coverages with ρ ≤ 1. In order
to estimate a typical value for U , we performed periodic
DFT calculations45 for two hydrogen atoms on Pd(100)
modeled by a five-layer slab within a 4 × 4 surface unit
cell using the generalized gradient approximation46 to
describe the exchange-correlation effects. Two hydrogen
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phases SF CDW MI

Local Density ρi ∈ Q ρi ∈ R ρi ∈ N
and and and

ρi = N
L

ρi 6= const. ρi = N
L

Ground-state L =∞ degenerate degenerate not degenerate
Ground-state L <∞ not degenerate degenerate not degenerate

Interpretation delocalized localized localized

TABLE I: Characterization of the three possible quantum phases of a one-dimensional bosonic system described by a Bose-
Hubbard model for infinite and finite chain length L.
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FIG. 2: Renormalized local densities ρ1 ≡ crosses, ρ2 ≡
squares and ρ3 ≡ circles over T and V for L = 8, N = 4
and U = 1000 meV. The black line is the projection line of
the phase boundary into the V -T plane.

atoms ontop of each other at the fourfold-hollow site are
880 meV more costly than at their maximum distance
within the 4×4 surface unit cell. Hence we have selected
a value of U = 1000 meV to represent this large on-site
repulsion. Note that the chosen parameter range lead
to ratios of T/V ≤ 10−2 and T/U ≤ 10−4, much smaller
than those typically considered in studies based on one-
dimensional Bose-Hubbard Hamiltonians22–24.

In passing we note that because of this large OS-
repulsion the hydrogen atoms behave effectively as
fermions, i.e., we obtain practically identical results in-
dependent of whether we treat the hydrogen atoms as
fermions or as bosons. This can for example be un-
derstood by considering the fact that in the limit of
U → ∞ corresponding to hard-core bosons the Bose-
Hubbard Hamiltonian Eq. (1) becomes equivalent to the
spin- 1

2 XXZ chain47 so that some of the results for this
model48,49 can be transfered to the system considered
in this study. Still it is important to realize that there
are qualitative differences between considering hard-core
bosons and having a large but finite U since in the latter
case the double occupancy of one site is still possible.

Experimentally, at half coverage an ordered phase of

FIG. 3: Normalized density-density correlation function χi

(eq. (11)) for L = 8 and N = 2, 3, 4. The particular parame-
ters are U = 1000 meV, T = 0.02 meV and V = 70 meV.

adsorbed hydrogen at low temperatures has been ob-
served20,21. To model this coverage, we considered a
chain of length L = 8 filled with N = 4 hydrogen atoms.
In order to characterize the specific phases we focus on
renormalized local densities

ρ0
i ≡

ρi

N/L
. (10)

These renormalized local densities are plotted as a
function of the tunneling parameter T and the NN-
repulsion V in Fig. 2 for the first three sites i = 1, 2, 3.
For a charge density wave, we expect a varying local
density whereas it should be constant for the suprafluid
phase. Indeed we find a region where the renormalized
local densities are not constant. Note, however, that in
the considered parameter range the renormalized local
densities only vary between 0.85 and 1.15, i.e., there is
still a rather small corrugation amplitude. The phase
boundary between the phases is indicated by the black
line.

The non-uniform densities plotted in Fig. 2 are based
on one of the two degenerate ground-state solutions
which exist because of the translational invariance of the
Hamiltonian. This means that there is a spontaneous
symmetry breaking. While also an uniform solution as
a superposition of the two degenerate states is possible,
when we sample the system, the system is cast on one of
the two non-uniform eigenstates.

Another way to look at the structure of the solutions
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FIG. 4: Phase diagram for half filled chains as a function of
the tunnel parameter T and the nearest-neighbor repulsion V
with an on-site repulsion of U = 1000 meV. The small dots
denote systems in which a CDW phase has been found.

is to consider the normalized density-density correlation
function

χi =
< n1ni > − < n1 > · < ni >√

< n1− < n1 >>2< ni− < ni >>2
. (11)

It corresponds to the conditional probability to find a
particle at site i if there is a particle a site 1. In Fig. 3,
we have plotted this normalized density-density correla-
tion function for L = 8, N = 2, 3, 4, U = 1000 meV,
T = 0.02 meV and V = 70 meV. Because of symme-
try reasons, the correlation functions are symmetric with
respect to site 5. It is obvious that for N = 4, the oc-
cupation of even and odd sites is strictly anti-correlated
without any change in the magnitude of the correlation
indicating the ordered solution.

To discuss the quantum phase transitions, we have
plotted the phase diagram in Fig. 4. For small T ≤
0.04 meV and V sufficiently large we find charge den-
sity waves corresponding to an ordered adsorbate struc-
ture with an unit cell length of 2 sites. It is obvious
that T has to be rather small together with a sizable
nearest-neighbor repulsion in order to allow the existence
of a CDW. Otherwise one obtains an uniform density.
Note that this CDW at half-filling has been found be-
fore23, however, in an entirely different parameter regime
(U = 1, T = 0.1 and V = 0.4 in dimensionless units).
Obviously, the high value of the on-site repulsion U used
in our application already leads to an effective delocal-
ization of the particles. Then, only a rather small value
of the tunnel parameter is needed to stabilize the delo-
calized suprafluid phase.

The renormalized local densities as a function of T and
V for L = 8 and N = 3, i.e. for a filling of ρ = 3/8, are
shown in Fig. 5. Only for vanishing T , a CDW results
with the localized densities being either 0 or 1, while for
any T > 0 the uniform SF phase is stable. In fact, we
obtain the same results for all particle numbers N 6= 4.
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FIG. 5: Renormalized local densities ρ1 ≡ crosses, ρ2 ≡
squares and ρ3 ≡ circles over T and V for L = 8, N = 3
and U = 1000 meV.

This means that obviously only for half-filling a localized
phase is possible. For all other fillings or coverages, a
delocalized uniform phase is formed when the atoms are
allowed to hop or tunnel (T > 0). These findings seem
to be consistent with the experimental observation20,21

of the existence of a localized hydrogen phase only in a
sharp coverage window around half coverage.

With respect to the delocalized phase at lower cov-
erages we note that it is constructed from the transla-
tionally symmetric superposition of states as described
in eq. (6) resulting in a uniform density. Still, in each
of the single states the distance between the particles is
maximized, but this is only relevant for conditional distri-
butions or pair correlation functions describing, e.g., the
probability of finding a particle given that another par-
ticle is already located at a specific site. This is reflected
in the density-density correlation functions χi plotted in
Fig. 3 for N = 2, 3. The result for N = 2 is equivalent
to the one obtained by Kühner et al.23 for a filling of
ρ = 1/4.

In order to study the influence of lattice imperfections
on the resulting hydrogen phases, we introduced a lattice
defect into our model by adding the term

Hval ≡ −ε · n̂1 (12)

to the Hamiltonian (1). We considered a very weak per-
turbation making the site 1 energetically more favorable
by ε = 0.0005 meV. The resulting renormalized local
densities as a function of V and T for a filling of ρ = 3/8
are plotted in Fig. 6. With the defect we now find non-
uniform local densities for small T . For larger T , how-
ever, the density becomes constant which means that for
mobile particles the effect of the defect is washed out.

In order to see the detailed influence of the defect on
the distribution of the particles, we plot in Fig. 7 the cor-
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FIG. 6: Renormalized local densities ρ1 ≡ crosses, ρ2 ≡
squares and ρ3 ≡ circles as a function of the tunnel param-
eter T and the nearest-neighbor repulsion V for L = 8 and
N = 3 with a perturbation ε = 0.0005 meV at site 1.

responding local densities ρi, i = 1, ..., 8 without renor-
malization for coverages ρ = 1/4 and 3/8 for one par-
ticular set of parameters (T = 0.02 meV, V = 70 meV,
U = 1000 meV) for which for half coverage a CDW occurs
(see Fig. 4). Note that because of the periodic boundary
conditions with chain length L = 8 the local densities
have to be symmetric with respect to site 1 and also
site 5. Since site 1 has been made energetically slightly
more favorable, the densities show a maximum at this
particular site. However, for both coverages there is only
a small corrugation in the local densities which is a little
bit larger for the higher coverage, though. This can be ex-
plained by the fact that because of the nearest-neighbor
repulsion a higher coverage leads to a larger degree of lo-
calization. This was already observed on the one-particle
level as a decrease in the vibronic band width with in-
creasing coverage13.

So far, we have not considered any coverages larger
than 1/2. In fact, there is no need to do so because
for our particular setup there is effectively a particle-
hole-symmetry. As already mentioned, because of the
high value U = 1000 meV for the on-site repulsion, a
double occupancy of the adsorption sites is very unlikely.
Consequently, there is a close relation between bosonic
spin- and chargeless atoms and holes or vacancies on the
chain. However, there are still small deviations from a
perfect particle-hole symmetry are due to the large, but
finite value of U .

In order to show this explicitly, we considered chains
(L = 8) with coverages 3/8 and 5/8. For the less
than half-filled chain we again introduced the pertur-
bation eq. (13) with ε = 0.0005 meV. For the more
than half-filled chain we introduced the defect with ε =
−0.0005 meV. This means that we made site i slightly
less favorable for atoms which also means that site i is

FIG. 7: Local densities ρi, i = 1, ..., 8, of a chain of length L =
8 occupied byN = 2 andN = 3 particles (T = 0.02 meV, V =
70 meV, U = 1000 meV) with a perturbation ε = 0.0005 meV
at site 1.

FIG. 8: Deviation δi of a chain of length L = 8 with par-
ticle densities ρ = 3/8 and 5/8 and perturbations according
to eq. (12) with ε = 0.0005 meV and ε = −0.0005 meV, re-
spectively. The remaining parameters are U = 1000 meV,
T = 0.02 meV, and V = 70 meV.

slightly more favorable for holes.
In Fig. 8, the deviation

δi ≡ ρi −
N

L
(13)

from the mean density is plotted in both cases. In fact,
there is almost a perfect mirror symmetry in the devia-
tions demonstrating that hydrogen atoms and vacancies
are analogously distributed.

VI. LONG FINITE CHAINS

With respect to the findings of the last section,
there still remains the question whether some of the
results are artefacts of the periodic boundary condi-
tions with a rather small unit cell. However, as men-
tioned above, the quickly growing dimension of the rel-
evant Hilbert space prevents a direct diagonalization
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for periodic systems with a larger unit cell. Therefore
some approximate, but computationally less demanding
method is required. In recent years, the Density Matrix
Renormalization Group (DMRG) method22,23,28–30 has
become very popular for simulating ground state prop-
erties of one-dimensional quantum systems. Since this
method has hardly been used for surface science prob-
lems yet, we will briefly recall its basics and then show
applications of the treatment for longer chains with var-
ious hydrogen coverages.

The pioneering work with respect to the DMRG
method was done by S.R. White28,29. As in other quan-
tum renormalization algorithms, the basic idea of this
method is to start with a small system and then enlarge
this system iteratively to the desired size. In each step,
the set of basis functions is kept small by restricting it to
the ”most relevant” states. Before deciding about what
are the most relevant states, DMRG embeds the system
into a thermodynamic bath called the environment. The
system and the environment together form the so-called
superblock. The actual decision about the importance of
the states for the system is made after tracing out the
environment. The remaining reduced density matrix de-
scribing the system is then diagonalized and the dS most
probable states are kept as the relevant basis.

From its construction, DMRG introduces two differ-
ent kinds of numerical errors. First, there is the natu-
ral truncation error which arises from the reduced basis
transformations in each renormalization step. This error
can be reduced by increasing dS . The second error cannot
be described in a clear mathematical way. In the corre-
sponding literature30, it is often refered to as the error
through incorrectly “simulating the final system size”. It
has its origin in the fact that through the enlargement
steps of the system wrong particle densities are realized
on the chain since one is not able to add fractional bosons.
To overcome this problem, one applies an additional al-
gorithm after the system has grown to any desired size.
This extra procedure is called the finite length algorithm.
The idea is to take the chain of the desired length and
to apply the steps of the infinite-system DMRG, but to
keep the super-block size constant by growing the size of
one block at the expense of the other. One loop of the
finite length algorithm is called a sweep.

We have implemented our own version of the DMRG
algorithm which follows in large parts the description in
Ref. 30. However, there is one important difference to
former DMRG applications. Since the on-site repulsion U
is much larger than the other energy parameters, it has a
decisive influence on the particle distribution. The states
with more than one particle at a particular site that are in
principle accessible are in practice impossible to realize.
The contribution of these states to the ground state is
therefore negligible. Since these states represent in fact
the majority, it is sufficient within the DMRG algorithm
to renormalize the system to a surprisingly small Hilbert
space. Technically, this gave us the possibility to carry
out a full diagonalization of the superblocks.

FIG. 9: Local densities ρi of a chain with length L = 100 and
a coverage of ρ = 1

2
obtained from DMRG calculations for

two different sets of parameter given in the legend. 15 states
and 3 sweeps were used.

In order to validate our implementation, we compared
its results with those obtained with the open source pack-
age ALPS50. Running ALPS with dS = 128 kept states
and 4 finite length sweeps yielded ground state energies
that differed only by less than 2 % from the results ob-
tained with our implementation with 15 states and 3
sweeps.

As far as the boundaries of the chains are concerned,
it would be desirable to use periodic boundary condi-
tions. Unfortunately, the DMRG results are much less
reliable for periodic boundary conditions30. Therefore
we have chosen open boundary conditions. One has to
be aware that this also means that boundary effects are
introduced which have been observed before to be quite
significant23 and which also influence the results in the
parameter regime considered by us, as will become obvi-
ous in the following.

First we focus on half-filled chains where we expect the
formation of a CDW. Tests showed that a chain length
of L = 100 is sufficient, for longer chains no qualitative
changes occur, as was also found in a previous study23.
In Fig. 9, the local densities for U = 1000 meV, T =
0.01 meV and V = 70 meV are plotted. Indeed we find
an ordered localized structure. Note, however, that the
amplitude of the local-density fluctuations is much larger
compared to the calculations for L = 8 with periodic
boundary conditions. While now the densities alternate
practically between zero and one, for periodic boundary
conditions the deviation from the mean value 0.5 is below
10 % in this parameter regime (see Fig. 2).

This is obviously a boundary effect. At the edge sites,
the nearest-neighbor repulsion is only active from one
side. This leads to a high probability for the occupation
of the edge sites by the hydrogen atoms which induces
the large amplitude local-density fluctuations. There is
another consequence of this preferential occupation of the
edge site. From either site of the chain a CDW builds up.
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FIG. 10: Local densities ρi of a chain with length L = 100
and a coverage of ρ = 1

2
obtained from DMRG calculations

for U = 1000 meV, T = 0.05 meV and V = 70 meV. Between
sites 65 and 92, an anti-phase boundary occurs.

However, since we have an even number of sites in order
to realize a coverage of ρ = 1/2, these two CDWs are
phase-shifted by π. Consequently, an anti-phase bound-
ary has to occur where these two CDWs meet. In Fig. 9
it is not visible since it occurs at the very left edge. Inter-
estingly enough, the anti-phase boundary moves towards
the middle of the chain when the tunnel parameter is in-
creased. For T = 0.05 meV, there is an extended region
of the anti-phase boundary between sites 65 and 92, as
Fig. 10 demonstrates. Using the ALPS code, such anti-
phase boundaries were obtained as well. Note that with
periodic boundary conditions, we did not obtain a CDW
for such a larger value of T (see Fig. 4) indicating that
the boundary effects extend the stability range of the
localized CDW phase.

In Fig. 9, results for the parameters used by Astaldi et
al. (U = 80 meV, V = 1 meV, T = 5 meV)13 are also
included. For such a small on-site repulsion and a large
T/V ratio, a delocalized SF phase results. It is impor-
tant to realize that the parameters chosen by Astaldi et
al. were meant to describe a hydrogen atom in a higher
vibrationally excited state in which the dispersion of the
corresponding vibronic band and consequently also the
relevant tunnel parameter T is much larger11,40 so that
it is not surprising that a delocalized phase results.

In the next step, the particle density is lowered to
ρ = 1/3. In order to simulate this density within the
DMRG formalism on a finite chain, the chain length is
set to L = 102. According to Fig. 11, for an on-site repul-
sion of U = 1000 meV and small tunnel parameters T we
now obtain a CDW with periodicity 3, in contrast to the
chain with periodic boundary conditions where no CDW
at such a coverage was observed. However, the fluctua-
tions around the mean value ρ = 1/3 are smaller than for
ρ = 1/2. Interestingly enough, when the tunnel param-
eter is increased from T = 0.01 meV to T = 0.05 meV,
the amplitude of the density oscillations is even increased.

FIG. 11: Local densities ρi of a chain with length L = 102
and a coverage of ρ = 1

3
obtained from DMRG calculations

for two different sets of parameter given in the legend.

For the conditions considered by Astaldi et al.13, the lo-
cal densities become more uniform again. Still, there is
some oscillatory structure left with amplitudes that are
larger than for a coverage of ρ = 1/2. Note that also
for the system considered by Kühner et al.23 (U = 1,
T = 0.1 and V = 0.4 in dimensionless units) a CDW has
only been found for half-filling, but not for other fillings.

Finally, we have considered a coverage of ρ = 1/4 on
a finite chain with length L = 120 (Fig. 12). Again we
obtain a localized CDW phase, here with periodicity 4,
again in contrast to the situation with periodic bound-
ary conditions. This shows that strong perturbations or
defects can induce an ordered structure that would not
be stable in a perfectly translationally invariant system.
Still, the amplitude of the oscillations for U = 1000 meV
is further reduced. As already discussed in the context of
Fig. 7, the effect of the nearest-neighbor repulsion that
leads to a higher degree of localization for the larger cov-
erages is reduced at lower coverages.

Furthermore, as in Fig. 11 for a coverage of ρ = 1/3
we observe first a stabilization of the ordered structure
with increasing tunnel parameter T and then a reduction
of the oscillations towards a delocalized SF-Phase for a
higher T/V ratio. Obviously, a larger tunnel parameter T
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FIG. 12: Local densities ρi of a chain with length L = 120
and a coverage of ρ = 1

4
obtained from DMRG calculations

for two different sets of parameter given in the legend.

first increases the influence of the nearest-neighbor repul-
sion before it leads to a delocalization. But again, for the
conditions of vibrationally excited hydrogen atoms con-
sidered by Astaldi et al.13, the remaining amplitude of
the oscillations is even larger than for coverage ρ = 1/3.
Apparently, the effect of increasing the T/V ratio is less
strong for smaller coverages.

This strong influence of boundary effects on the result-
ing phase also means that one has to be cautious in this

particular parameter regime in applying results for finite
chains, as obtained in DMRG calculations, to infinite pe-
riodic chains.

VII. CONCLUDING REMARKS

Employing a Bose-Hubbard Hamiltonian, we have
addressed the quantum delocalization and quantum
phase transitions of hydrogen atoms adsorbed in one-
dimensional chains on metal surfaces. These systems are
characterized by a large on-site repulsion U , a very small
overlap or tunnel parameter T and a sizable nearest-
neighbor repulsion V . Using periodic boundary condi-
tions and a direct diagonalization scheme, we find, as
other groups before, that an ordered localized structure
can only be obtained for a coverage of ρ = 1/2 which
is consistent with experimental observations of hydrogen
adsorption phases at low temperatures. Apparently, for
ρ < 1, ρ 6= 1/2, quantum particles are always uniformly
delocalized in a periodic translationally invariant chain
if there is a non-vanishing overlap between adjacent sites
(T > 0).

For the particular systems considered in this study,
some properties result that were not found in one-
dimensional bosonic systems with generic parameters
studied before. First of all, the large on-site repulsion
makes a double occupancy of the adsorption sites en-
ergetically very costly having an effective particle-hole
symmetry as a consequence. Second, there is a rather
strong influence of perturbations or defects on the result-
ing quantum phases. If the perturbations are sufficiently
strong, they can induce ordered structures at other cover-
ages than ρ = 1/2 in an extended region. This also means
that in this parameter regime the results for finite chains
can not be applied to infinite systems without caution.
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24 G. G. Batrouni, F. Hébert, and R. T. Scalettar, Phys. Rev.

Lett. 97, 087209 (2006).
25 M. P. A. Fisher, P. B. Weichman, G. Grinstein, and D. S.

Fisher, Phys. Rev. B 40, 546 (1989).
26 P. Niyaz, R. T. Scalettar, C. Y. Fong, and G. G. Batrouni,

Phys. Rev. B 44, 7143 (1991).
27 A. Groß, Surf. Sci. 500, 347 (2002).
28 S. R. White, Phys. Rev. Lett. 69, 2863 (1992).
29 S. R. White, Phys. Rev. B 48, 10345 (1993).
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