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A neural network (NN) approach is proposed for the representation of six-dimensional ab initio
potential-energy surfaces (PES) for the dissociation of a diatomic molecule at surfaces. We report
tests of NN representations that are fitted to six-dimensional analytical PESs for H2 dissociation on
the clean and the sulfur covered Pd(100) surfaces. For the present study we use high-dimensional
analytical PESs as the basis for the NN training, as this enables us to investigate the influence of
phase space sampling on adsorption rates in great detail. We note, however, that these analytical
PESs were obtained from detailed DFT calculations. When information about the PES is collected
only from a few high-symmetric adsorption sites, we find that the obtained adsorption probabilities
are not reliable. Thus, intermediate configurations need to be considered as well. However, it is
not necessary to map out complete elbow plots above non-symmetric sites. Only a few energies in
the region where the molecular bond breaks need to be considered. With this understanding, the
required number of NN training energies for obtaining a high-quality PES that provides a reliable
description of the dissociation and adsorption dynamics is orders of magnitude smaller than the
number of total-energy calculations needed in traditional ab initio on the fly molecular dynamics.
Our analysis also demonstrates the importance of a reliable, high-dimensional PES to describe
reaction rates for dissociative adsorption of molecules at surfaces.

PACS numbers: 68.35.Ja, 82.20.Kh, 68.43.-h

I. INTRODUCTION

Theoretical studies of reaction dynamics at surfaces,
like the dissociative adsorption of diatomic molecules on
metal surfaces, require knowledge of the potential en-
ergy of the moving nuclei taking part in the process [1].
Density-functional theory (DFT) total-energy calcula-
tions have proven to be a powerful tool to calculate such
properties [2–5]. Ab initio MD simulations, where the
potential and the forces are determined by DFT, are
computationally very elaborate and costly. A theoretical
simulation of the dissociation probability of a molecule
on a surface for different initial energies might require up
to 107 evaluations of the potential-energy and the forces.
Due to the high computational task, ab initio molecu-
lar dynamics hardly allow the determination of reaction
probabilities and so far are limited to dynamical studies
of only a few trajectories [6–9].

In order to reduce the computational burden and make
a simulation of the sticking probably feasible, Gross and
Scheffler had proposed and implemented a three step ap-
proach [10, 11]. First, one determines the ab initio poten-
tial energy surface (PES) on a mesh of several hundred
configurations using DFT. In a second step an analytical
function is fitted to these points. The last step consists of
molecular dynamics calculations on this continuous rep-
resentation of the ab initio PES. The crucial part of this
approach is choosing the appropriate analytical function
for the interpolation of the total energies. The interac-
tion of a diatomic molecule with a well-defined surface is

at least six-dimensional, corresponding to the six degrees
of freedom of the molecule and a fixed substrate. The lat-
ter assumption is often fulfilled for densely packed metal
surfaces. However, on Si(100) for instance, the rearrange-
ment upon adsorption is indeed crucial for the adsorption
and desorption mechanism and one easily arrives at 12
and more dimensions [7].

The fitting of a mesh of ab initio energies to a con-
tinuous representation is a non-trivial task. A high-
dimensional, flexible, accurate, reliable and fast interpo-
lation scheme is needed. Ideally this method should be
general to allow its application to a wide range of prob-
lems. Various approaches to fit a PES can be found in
the literature [12–21]. All of the proposed methods have
some advantages and some drawbacks. For instance, the
fitting of ab initio data using analytical functions [10, 22–
24] requires an appropriate choice of an analytical form,
which is very cumbersome to find in high dimensions. It
is therefore fair to say that despite its importance a gen-
eral, fast, and accurate interpolation tool for PESs is still
lacking.

Six-dimensional molecular dynamics calculations
based on an analytical interpolation of total energies
had shown that dynamical effects as well as a proper
statistical sampling can be crucial and differences
from a static theory can be significant (see [25, 26]
and references therein). Such studies have advanced
the understanding of the dissociation dynamics and
caused the modification of established concepts. Some
phenomena, like the so-called steering effect [10], can
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only be modeled in a theoretical simulation including a
sufficiently large number of degrees of freedom. Thus,
high-dimensional dynamical studies lead to progress
not only in the quantitative, but also in the qualitative
understanding of processes on surfaces.

As an alternative to the hitherto proposed fitting
schemes we will introduce an interpolation method based
on neural networks (NNs) [27–29]. A brief account of this
approach has been given elsewhere [30]. Some ideas along
these lines had been used earlier by Doren et al. [31]. NNs
can in principle approximate any continuous function to
arbitrary accuracy [32, 33]. They do not require any as-
sumptions about the functional form of the underlying
problem. Once the NN representation of the PES has
been determined, the evaluation of the potential-energy
is cheap and the derivatives, the forces, are obtainable.
Therefore, provided that the number of parameters and
required data for a good fit scale favorably with dimen-
sion, NNs will be suitable for molecular dynamics appli-
cations.

In order to learn more about the advantages, difficul-
ties, and limitations of a NN representation of a high-
dimensional PES it is important to analyze realistic test
problems. Analytical PESs provide ideal test cases for
various reasons. They are fast to evaluate and therefore
allow us to study the influence of the data sampling on
the quality of the NN fit in great detail. Furthermore,
they have been successfully used for the ab initio descrip-
tion of the hydrogen dissociation on metal surfaces using
a six-dimensional PES [10, 22, 24, 34–41]. Moreover,
as an additional check of the accuracy of the obtained
NN model we are able to compare the NN-MD results to
calculations performed on the analytical PES. We have
chosen analytical PESs for the clean [10] as well as the
sulfur covered [42] Pd(100) surface as test problems.

The structure of this paper is as follows. Section II
introduces the concept of artificial NNs. Section III de-
scribes the test of the NN interpolation ability for the
dissociation of hydrogen on the clean palladium surface,
and Sec. IV reports the interpolation of the second test
problem, the analytical PES for the dissociation of hy-
drogen on a sulfur covered Pd(100) surface. The paper
concludes with a summary in Sec. V.

II. ARTIFICIAL NEURAL NETWORKS

Neural Networks can be considered as general, non-
linear fitting functions that do not require any assump-
tions about the functional form of the underlying prob-
lem [27–29]. The main area of research in neural com-
puting is devoted to classification or pattern recognition
problems which is a profoundly different task from the
interpolation of a multidimensional function. However,
NNs have also been applied to problems involving func-
tion approximation in general [43, 44] and more recently
to the interpolation of potential-energy surfaces [31, 45–
50]. These works had concentrated on low-dimensional

studies of the PES of molecules in the gas phase. We
will extend the approach to study chemical reactions of
molecules on surfaces on a high-dimensional PES and in
particular to employ it in extended molecular dynamics
simulations.

It is important to notice that there is no such thing
like “the neural network”. NNs are rather a class of al-
gorithms inspired from neuro-science. Different architec-
tures exist. A number of optimization algorithms are
applicable for the optimization of the NN parameters.
Different basis functions can be used in the interpola-
tion. The number of parameters necessary to obtain a
satisfactory representation and how to sample the points
used for the interpolation in order to obtain a satisfactory
representation are a priori unknown.

A. Neural Network Structure

An artificial NN consists of a number of artificial neu-
rons or nodes, typically arranged in layers, and intercon-
nected via a set of links. A schematic representation of
such a net is plotted in Fig. 1. Each link multiplies its
input by a parameter, the weight, before supplying it to
a new node. Each node sums over its inputs and applies
a function to the resulting value. In the input layer the
identity function is used to distribute the information to
the second layer. This layer is called the hidden layer
because its input and output is not visible from to the
outside world. The hidden layer is the core of the non-
linear fitting of the data set. The output layer collects
the information from the hidden layer and transforms it
again. This network design, in which every node is con-
nected to every node in the adjacent layers but nodes in
the same layer are not connected and the information is
transmitted only in one direction, is called a multilayer
feed-forward NN.

The output of a fully connected three layer NN with
one input, one hidden and one output layer and n0, n1

and n2 nodes in each layer, respectively, can be written
as:
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adjustable offset of the activation function. In the case
of fitting a PES with a NN, the {y(0)

i } represent the co-
ordinates of the reactants. For a diatomic molecule the
input layer of the net consist e.g. of six units correspond-
ing to {y(0)

i } = {Xc, Yc, Zc, r, θ, φ}. In the output layer
we will have just one output node, the potential-energy
Vpot({y(0)

i }).
For convenience we have presented in Fig. 1 a feed-

forward network with only one hidden layer. However, it
should be noted that the number of hidden layers is not
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FIG. 1: Schematic architecture of a feed-forward NN. The
neurons are arranged in layers. The output function of this
network with non-linear basis functions f1,2(x) is:
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restricted. In fact, we will most often use networks with
two hidden-layers.

Non-linear activation or basis functions are what give
NNs their non-linear capabilities. The function must be
differentiable for the optimization of the parameters and
we normally want it to saturate at both extremes. For ex-
ample, Gaussian functions, sinusoidal functions or Fermi-
like functions can be used. The most common forms of
the so-called activation functions are the monotonically
increasing sigmoidal or Fermi-like functions, like the sig-
moid f(x) = 1/(1+ e−x) or the hyperbolic tangent func-
tion f(x) = tanh(x). Tests on different activation func-
tions are presented in the Section III.

In order to describe the network architecture in a sim-
ple way the following notation is used: the number of
nodes in the layers, followed by letters denoting the acti-
vation function, with s for sigmoid, l for linear, and t for
the hyperbolic tangent. In this notation, the network in
Fig. 1 in conjunction with a hyperbolic tangent function
in the hidden layer and a linear function in the output
layer has a {2−3−1 tl} structure.

B. Optimization of the Network Weights

The training of a feed-forward NN is equivalent to
performing a non-linear optimization of the network pa-
rameters, the weights. In so-called supervised learning
the optimization is done by comparing the output with
known correct answers. In the case of fitting a PES, the
known answers are the energies obtained from ab initio
total energy calculations. The optimization of the net-
work weights is performed by some iterative optimization
scheme until a desirable solution measured by the sum of
the squared residuals between the true or targeted value
and the actual output of the network depending on the in-
puts and the weights is reached. In order to minimize the
costs the network cycles repeatedly through the follow-
ing steps of the learning process: (1) present the network
one example of the set of data, (2) measure the response
of the output layer of the net, (3) calculate the mean

squared error between the output and the target value,
(4) adjust the weights to minimize the cost function, (5)
if the root mean squared error (RMSE) reaches a desired
lower bound, stop the iteration, otherwise go back to (1).

Two different update schemes of the parameters in (4)
exist. One can first present the network the whole set
of examples, called an epoch, and only then change the
weights accordingly, known as batch or off-line learning,
or the update is performed after the presentation of every
single example, chosen randomly. This is called stochas-
tic or on-line learning. There are several advantages of
stochastic over batch learning. It results most likely in
better solutions, because updating the weights after each
example increases the probability of getting out of a local
minimum of the error surface before the iteration gets
stuck [27–29]. Optimization methods like steepest de-
scent and conjugate gradients can be used for off-line
learning.

We tested several optimization algorithms like steepest
descend, conjugate gradients and the Extended Kalman
Filter (EKF) [51]. The EKF can be viewed as an it-
erative second-order or quasi-Newton optimization algo-
rithm and has recently been applied to the optimization
of the weights in NNs [52–54]. We found that the EKF
algorithm is clearly superior to the other methods. It
leads to smaller values of the error function which are in
addition reached faster than in other algorithms.

We will therefore use on-line learning with the Kalman
filter as the optimization scheme. We employ its adaptive
version [53]. Since some parts of the PES may be more
interesting than others we have altered the Kalman Filter
algorithm to allow individual weighting of each training
example.

For training a NN we split the data set into a train-
ing and a test set. We optimize the weights only with
respect to the training set but monitor the error on the
test set during optimization. The error on the training
set will decrease, whereas the error on the test set will
first decrease and then increase. We stop training as soon
as the error on the validation set is higher than it was
before. It is here that the network weights provide the
best generalization ability, i.e. the network does not only
represent the fitted data set very well but is also able to
predict new data points reliably.

III. NEURAL NETWORK TEST: 6-D
ANALYTICAL PES FOR H2/Pd(100)

Analytical PESs for the sticking of H2 on metal sur-
faces provide ideal test cases for the NN approach for
different reasons. First of all, the energy of an analytical
PES is fast to evaluate. This allows us to study the in-
fluence of the sampling of the data points on the quality
of the NN-approximation as measured by the root mean
squared error (RMSE) in great detail. Secondly, analyti-
cal PESs have proven to describe such adsorption events
reliably [10, 24, 34]. Furthermore, as an additional check
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of the accuracy of the obtained NN-model besides the
RMS-error, we are able to compare the results of classi-
cal molecular dynamics (MD) calculations using the NN
representation to MD-calculations performed on the an-
alytical PES. Namely, we can use the sticking probability
- calculated with the NN and the analytical PES - as a
further, and most important, test of the accuracy of the
approximation.

A. Ab initio and analytical PES

The PES of hydrogen dissociation on the clean palla-
dium surface, H2/Pd(100), has been calculated by Wilke
and Scheffler by DFT [55, 56]. The dissociation is non-
activated, i.e. pathways to dissociation exist with no
energy barrier, and the molecule can freely dissociate
above certain sites. The ab initio PES has been mapped
out following the usual approach of calculating 2D cuts
through configuration space above high-symmetric ge-
ometries. The equilibrium position of a hydrogen atom is
the surface hollow site with a small adsorption height of
0.1 Å above the topmost palladium layer. The minimum
pathway for the dissociation of H2 molecules is above the
bridge site with the H-atoms oriented towards the hollow
site.

The ab initio PES has been fitted with analytical func-
tions by Groß, Wilke, and Scheffler [10], and expressed
as a function of the six degrees of freedom of the hy-
drogen molecule, keeping the surface geometry fixed:
V (Xc, Yc, Zc, d, θ, φ), where Xc, Yc and Zc are the cen-
tre of mass coordinates of the hydrogen molecule, d is
the distance between the two hydrogen atoms, θ and φ
are the polar and azimuthal angles of the molecule. The
potential in the Zd plane is described in reaction path co-
ordinates s along the reaction path and r perpendicular
to it [10, 57]. The fit has been performed by a least square
method such that the difference between the analytical
potential V (Xc, Yc, s, r, θ, φ) and the ab initio total en-
ergies, which have been calculated for more than 250
configurations, on the average is smaller than 25 meV.
In Fig. 2 two cuts through the six-dimensional config-
uration space of the analytical interpolation have been
plotted.

Figure 2(a) shows the analytic interpolation of the min-
imum path. The solid line marks the dissociation path-
way, it exhibits no barrier towards dissociation. However,
if we turn the molecule by 90◦, keeping the molecular
axis parallel to the surface, a distinct energy barrier of
Ebarr >0.5 eV exists (Fig. 2(b)). Only one of the six co-
ordinates has been changed and a qualitatively different
dissociation behavior of the molecule has been obtained.
Both elbow plots differ only in the small region of the
PES where the bond of the hydrogen molecule breaks.
The entrance channels with the center of mass of the
molecule more than Z = 1 Å above the surface are very
similar, as well as the exit channels with a molecular bond
length r > 1.50 Å. The crucial bond-breaking process of
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FIG. 2: (a) Hollow - Bridge - Hollow and (b) Top - Bridge
- Top. Contour plots through the 6-D analytical PES of
H2/Pd(100) from [10]. Insets: Configuration of the disso-
ciation pathways. Solid line in (a): minimum path towards
dissociation. Energy spacing of the contour lines: 0.1 eV.

the molecule takes place in a relatively small region of
the PES. Throughout the following, we will often refer
to these two-dimensional cuts through the configuration
space, but one should keep in mind that the complete
PES is six-dimensional.

B. Tests of the activation functions

For a test of the different choices of activation func-
tions like Gaussians, trigonometric functions or Fermi-
like functions for the approximation of PESs a train-
ing set of 1,560 and a test set of 7,200 examples of the
6D-analytical PES have been used. Gaussian functions
proved to be unsatisfactory for the given problem and
structure of the NNs. For sine functions a number of
453 parameters was necessary to achieve a RMSE of the
training set below 0.1 eV. However, a test set error of
0.49 eV reflected a poor generalisation ability. The out-
put function was globally not smooth enough. A higher
number of parameters lead to a further worsening of the
generalization capability.

With sigmoidal or Fermi-like functions we were able
to obtain a training error of 0.004 eV and a test error
of around 0.16 eV. We will therefore use this group of
activation functions throughout the following. However,
the fit required the use of a large number of parameters,
i.e. around 3, 000, leading to longer fitting times. This
can be explained by the form of the dissociation PES. It
consists of numerous local bumps in the bond-breaking
region, one in each 2D cut of the 6D PES, and is rather
smooth elsewhere. In order to form a peak with sig-
moidals many of them - rotated around the centre of the
hill - are necessary. Consequently, in order to properly
describe the process of bond-breaking within a very lo-
calised region of a detailed PES and at the same time
modelling a smooth function outside that region, a large
number of Fermi-like basis functions is required. Both
sigmoidal and hyperbolic tangent functions can be used.
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However, convergence of the RMSE in online learning
with functions which are symmetric about the origin, like
the hyperbolic tangent, is often faster [29] and therefore
will be preferred. Furthermore, we found that a detailed
PES can be fitted with less complexity if a network with
two hidden layers is chosen for the NN architecture. In
N dimensions 2N nodes in the first hidden layer and one
node in the second hidden layer can form one bump [27].

In summary, as an optimization algorithm for the
network weights we will employ the adaptive global
extended Kalman filter (AGEKF) with two forgetting
schedule parameters λ(0), λ0 and an adaptive threshold
of ath× RMSE. The activation functions of the hid-
den layers are hyperbolic tangents and linear functions
in the output layer. The NN structure will mainly con-
sist of one input layer, two hidden layers and one output
layer with a high number of parameters. Furthermore,
the input data are pre-conditioned, i.e. we subtract the
means and normalize the variances in order to improve
ill-conditioning. In order to ensure a most accurate rep-
resentation of the potential we use individual weighting
of each energy. For instance, dissociation dynamics de-
pend crucially on the region in which the bond of the
molecule breaks, whereas the part where the potential is
already elevated is of less importance. We will associate
the former region with weights, which are up to ten times
higher than the rest of the geometries.

C. Explicit consideration of the symmetry

The computational effort in DFT calculations can be
reduced by taking advantage of the symmetry of the un-
derlying problem. Since we know the surface symme-
try beforehand it is clearly advantageous to include this
knowledge prior to the optimization of the NN param-
eters. In this way we let the network concentrate on
the crucial process, the bond-breaking of the molecule.
In order to do so we pre-process the coordinates of the
problem.

The original set of coordinates Xc, Yc, Zc, d, θ, φ de-
scribe the six degrees of freedom of the molecule. Due
to the high costs of ab initio calculations information
on the clean Pd(100) has been determined only on the
edges of the irreducible part of the unit cell [55, 56]. In
order to represent the whole surface area the analytical
fit assumed a certain set of symmetry operations to be
valid [10]. We point out that the applied symmetry in-
troduces artificial features into the PES. For instance,
the molecule in the analytical PES does not have any
φ dependency on the diagonals of the unit cell. How-
ever, since this PES serves as a test problem for our NN
approach, we employed the same symmetry and trans-
formed the original coordinates into a set of eight inputs
to the NN:

X1 = d,
X2 = d2,

X3 = Zc,
X4 = sin2(θ) cos(2φ) [cos(G ·Xc)− cos(G · Yc)],
X5 = sin2(θ) cos(2φ) [cos(2G ·Xc)− cos(2G · Yc)],
X6 = cos2(θ),
X7 = cos(G ·Xc) + cos(G · Yc),
X8 = cos(2G ·Xc) + cos(2G · Yc).

The transformations are based on Fourier terms in the
lateral coordinates Xc and Yc up to a reciprocal lattice
vector of 2 G representing the periodicity of the surface,
with G = 2π/a and the lattice constant a. The term
cos(2φ) [cos(G ·Xc)− cos(G · Yc)] in the fourth coordi-
nate reflects the four-fold symmetry of the surface. The
factor sin2(θ) weights this term, since the energy of an
upright molecule should not have any azimuthal depen-
dency. It also reflects the internal symmetry of the di-
atomic molecule. From the theoretical ab initio calcu-
lations it has been found that the energy increases like
cos2(θ) [55], which we included as one input. There is
no symmetry within the coordinates d and Zc. How-
ever, the vibration of the molecule in the gas phase can
be described by a harmonic oscillator and therefore we
incorporated an additional coordinate d2.

Instead of presenting the original six degrees of free-
dom of the molecule to the NN we now apply this new
set of eight inputs representing the symmetry of the sur-
face. The NN performs a non-linear fit on these new
inputs. The transformation needs to be done only once
per surface symmetry.

D. Neural Network PES

We will now present six dimensional continuous NN
representations of the mesh of points created from the
analytical PES for the dissociation of hydrogen over
Pd(100). Open questions are the necessary number of
training points and their sampling for obtaining a good
description of the PES as well as the number of parame-
ters of the NN description needed.

1. NN-fit based on a dense grid of configurations

In order to test if NNs are able to fit PESs of surface
reactions at all we first sampled the configurations from
the analytical PES on a very dense mesh in all six dimen-
sions. The corresponding training set consists of 80,685
energies evaluated above 55 adsorption sites. For the test
set we collected 91,665 points. After 20 so-called epochs,
i.e. 20 iterations through the whole set of training ex-
amples, the training root mean squared error measured
9 meV with a test error of 46meV. Both errors lie well
below the desired ab initio accuracy of 0.1 eV.

The obtained NN representation is then used as an
input to extensive molecular dynamics calculations. Fig-
ure 3 illustrates the adsorption process over one particu-
lar site, the bridge site with the hydrogen atoms pointing
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FIG. 3: Two classical molecular dynamics trajectories
(dashed lines) on a NN-PES. The initial conditions of the
molecules are the same except for their kinetic energy which
are (a) Ekin = 0.5 eV and (b) Ekin = 0.9 eV. The simulation
time was (a) 52 fs and (b) 40 fs. Insets: configuration of the
molecule.

towards the on-top sites. The molecule approaching the
surface under normal incidence with its axis parallel to
the surface at an energy of 0.5 eV is not able to overcome
the barrier for dissociation. Due to the highly repulsive
palladium top sites it is scattered back into the gas phase
(Fig. 3(a)). With a kinetic energy of 0.9 eV the molecule
has enough momentum to overcome the energy barrier
and dissociates (Fig. 3(b)).

From the molecular dynamics simulations we evalu-
ated the sticking probability of the impinging hydrogen
molecule as a function of the initial kinetic energy. The
dissociation process is highly site dependent which re-
quires to consider a good statistical average over the ini-
tial configurations for the determination of the sticking
coefficient. For each kinetic energy we need to calcu-
late 500−1, 000 trajectories with randomly sampled ini-
tial configurations until convergence of the sticking coef-
ficient is attained. The error of the sticking coefficient
corresponds to

√
S(1− S)/

√
n, where S is the sticking

probability and n is the number of trajectories. For each
sticking curve the sticking probability has to be evaluated
at a number of energies depending on the energy range
of interest. For the presented adsorption coefficients we
performed MD calculations with 10, 000−30, 000 trajec-
tories.

With the dense grid in all six degrees of freedom of the
hydrogen molecule we were able to get excellent agree-
ment between the analytical and neural sticking curve as
displayed in Fig. 4. Both the initial high adsorption prob-
ability followed by a drop of sticking due to the steering
effect and the increase with higher kinetic energies typical
for dissociative adsorption are well reproduced. The dif-
ferences between the analytical and neural sticking curve
are smaller than 5% over the presented energy range.

However, in order to be applicable to the fitting of ab
initio PESs, which are very time-consuming to evaluate
and therefore only allow the calculation of a view hundred
up to a view thousand configurations, we have to find a
method to sample the configurations more efficiently.
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FIG. 4: Sticking probability versus kinetic energy for the
dissociation of hydrogen on the Pd(100) surface. The train-
ing set consists of 80,685 training points sampled on a dense
grid in all six dimensions, with e.g. 55 lateral configurations.
The fit is based on a {8−50−50−1 tl} NN. Parameter set:
λ(0)=0.98, λ0 =0.99936, a rmth =0.6.

2. NN-fit based on high-symmetric configurations

The usual approach in theoretical ab initio studies of
dissociation processes is based on the calculation of 2D
sections of the 6D energy surface, the elbow plots. For
one such section, the orientation of the molecule (θ and φ)
and the coordinates of the center of mass in the surface
plane (Xc, Yc) are kept fixed. Only the height Zc and
the bond length d vary. Commonly these elbow plots are
evaluated with the molecule above high-symmetric sites.
We will adopt this approach here as well and sample the
points from the analytical PES in the same way. The NN
is then used to interpolate between these sections.

We trained a {8−50−50−1 tl} NN with 1,560 examples
calculated from the analytical PES. The elbow plots were
evaluated above different high-symmetric sites, i.e. top,
bridge, and hollow sites and one intermediate configura-
tion at (Xc = 0.25a, Yc = 0.25a, with a being the lattice
constant of the (1x1) surface unit cell). At each site the
energies were collected for five different angles φ with the
molecule upright, 45◦ tilted, and parallel to the surface.
For a single elbow plot we used 30 points along and per-
pendicular to the reaction path. The test set consists of
5, 200 energies sampled from the same elbow plots as the
training set. The training error after 50 epochs and two
hours runtime on an IBM-SP2 node measured 0.1 meV
with a test error of 0.15 eV. From the information of the
root mean squared error alone we would judge this ap-
proximation as being satisfactory.

Also this NN representation was used as input to
molecular dynamics simulations. Figure 5 compares the
sticking probability obtained from the NN-PES with the
dynamical result from the underlying analytical PES.
The NN-PES interpolating high-symmetric sites repro-
duces the increase of the sticking probability at energies
larger than 0.2 eV qualitatively, but it fails to reproduce
the high sticking probability at low kinetic energies.

It is now well understood that this behavior is a con-
sequence of the corrugation and anisotropy of the mul-
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FIG. 5: Sticking probability versus kinetic energy for the sys-
tem H2/Pd(100). The sticking has been calculated by clas-
sical molecular dynamics on a six-dimensional analytical and
neural PES, respectively. Training set: 1,560 examples.

tidimensional PES which lead to strong forces acting at
the molecules upon adsorption. At low kinetic energies,
these forces can either steer the molecule into a favor-
able configuration for direct dissociation [10, 41, 58, 59]
or lead to the conversion of perpendicular kinetic energy
into parallel kinetic energy and/or internal energy of the
molecule so that they become temporarily dynamically
trapped [18, 19, 60–63]. Both effects result in high ad-
sorption probabilities at low kinetic energies but become
suppressed at higher kinetic energies which causes the
decrease in the adsorption probabilities. At even higher
kinetic energies, molecules start to directly overcome the
dissociation barriers.

We analyzed the data in more detail in order to deter-
mine the reason for the discrepancy of sticking probabil-
ity in the NN fit. In particular, we compared the corru-
gation of the barrier heights calculated from the analyt-
ical and neural PES, respectively. We did this by fixing
the hydrogen molecule at a height of Z = 1.6 Å above
the surface with an intramolecular distance of r =1.0 Å
and angles φ = π/2, θ = π/2 while changing the lateral
coordinates across the unit cell. The configuration of
the molecule corresponds to the region where the bond
already starts to break. In the underlying analytical
corrugation a high barrier for dissociation is present if
the molecule approaches the surface above the top site.
Above the bridge and the hollow site the molecule is able
to dissociate freely. Furthermore, the energy barrier de-
creases monotonically from the top site to the bridge site.
A slow molecule is able to move from the top site where
it experiences a high barrier to the favorable dissocia-
tion configuration above the bridge site. It is also able
to reach the bridge site from the hollow site. However,
we found that this is not true for the NN-PES interpolat-
ing the top, bridge, hollow and one intermediate site only.
The PES exhibits additional barriers between bridge and
top site and bridge and hollow site, respectively. These
artificial barriers diminish the steering effect and thus
cause a monotonically increasing sticking curve as shown
in Fig. 5.

We conclude that for interpolations of PESs with NNs

it is essential to include more than the usually calculated
elbow plots above high-symmetric sites in the training
and test sets. For instance, if we apply additional con-
figurations in the test set of the above presented NN-
approximation we get a test error of 0.32 eV, which is
clearly above the desired accuracy. Hence, with the use of
additional configurations also the RMSE reflects the un-
satisfactory interpolation based on high-symmetric sites
only. The results also demonstrate that the steering ef-
fect involves all six degrees of freedom and underlines
the importance of high-dimensional studies in order to
predict reaction probabilities.

3. NN-fit based on an enhanced lateral grid

In order to achieve a better representation of the steer-
ing effect with NNs we increased the number of training
points in the lateral directions of the unit cell. Instead
of applying only four lateral configurations we used ten
different adsorption sites in the irreducible part of the
unit cell.

We performed a number of interpolations of the ana-
lytical PES with different training sets using a {9−50−
50−1 tl} NN. Figure 6 displays the dynamical results of
two of them. For the interpolation with 3,270 training
points with the above introduced enhanced lateral grid -
while keeping the sampling of the other dimensions as de-
scribed in the previous section - the sticking probability
of the analytical PES is well reproduced. The training
and test error after 20 epochs were 2meV and 0.1 eV.
In particular, the corrugation is now well represented,
allowing the steering effect to become effective.

In Fig. 6 we also plotted the result obtained from a
less good NN fit. The training and test errors with 6meV
and 0.15 eV based on a training set of 8,850 energies were
slightly worse. The higher training and test errors lead
to a larger deviation of the sticking probability from the
analytical PES. We point out that it may always be pos-
sible that a better NN fit with a different set of Kalman
filter parameters and a different number of weights ex-
ists. Yet, we like to emphasize that it is difficult to assess
the quality of a PES without knowing the results of dy-
namical simulations.

We emphasize that the NN-PES with this finer lateral
grid is not uniquely defined. An increase of the number
of points in the other degrees of freedom as done for the
training set with 8,850 energies, does not necessarily lead
to a better fit. All degrees of freedom play a role and the
mesh is not sufficiently dense enough in order to give
a quantitatively better dynamical result with a higher
number of points. In any case, the NN-models based on
an enhanced lateral mesh reproduced the steering effect
in all cases qualitatively.

A detailed analysis of the accuracy of the NN-model
based on the dense grid of points revealed that 94% of
the test examples have an error smaller than 0.1 eV and
already 99% do not exceed a threshold of 0.2 eV. Large er-
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FIG. 6: Sticking probability versus kinetic energy for the
system H2/Pd(100) for two different training sets based on
ten lateral configurations of the molecule. The training and
test errors for each fit are indicated in the graph. Higher er-
rors lead to larger discrepancies to the original sticking curve.
NN: {8−50−50−1 tl}. Extended Kalman Filter parameter:
λ(0)=0.98, λ0 =0.99936, ath =0.6.

rors occur only at values above 1 eV. This is the region far
away from the valley of the elbow plots. The errors were
influenced by the imposed higher weighting of the points
close to the minimum dissociation pathway. However,
the results support that indeed the regions of higher po-
tential energies have almost no influence on the reaction
probabilities as plotted in Fig. 4. This is an important
issue for the fitting of PESs. Not all configurations are
equally important for the determination of the sticking
probability. For instance, at lower kinetic energies the
adsorption dynamics depend crucially on whether there
is a small energy barrier in the entrance channel, where
the center of mass of the molecule is still far away from
the surface, or not. Yet, the region where the poten-
tial is already elevated might have almost no influence
on the dissociation probability. Consequently, the root
mean squared error, which is usually used as a measure-
ment of the accuracy of the fit, is of less significance. We
will always weight the configurations close to the valley
of each dissociation pathway up to 10 times higher than
the other geometries.

IV. NN TEST: 6-D ANALYTICAL PES FOR
H2/(2×2)S/PD(100)

In the previous section we discussed a system in which
activated and non-activated pathways towards dissocia-
tion existed on the same surface, with the former ones
being a minority but having important dynamic con-
sequences. We showed that in order to obtain a very
good agreement between the analytical and neural stick-
ing probability a high number of training points and pa-
rameters were required. Still, in comparison to direct ab
initio molecular dynamics where up to 107 energies need
to be calculated, orders of magnitude fewer DFT calcula-
tions would be necessary to obtain a reliable description
of the dynamical properties.

As a second test problem for the representation of the
PES in dissociation reactions with NNs we will now in-
vestigate a system for which all reaction pathways are
activated: The dissociation of H2 over a sulfur covered
Pd(100) surface. It is experimentally well known that
sulfur adsorbates hinder the H2 dissociation process on
Pd(100) [64–66]. This observation was verified by DFT
studies [42, 55, 67], and it was found that the poisoning
effect of sulfur adatoms for H2 dissociation at low sulfur
coverages (ΘS ≤ 0.25) is governed by the formation of
energy barriers and not by blocking of adsorption sites.

A. Ab initio and analytical PES

DFT calculations of the system H2/(2×2)S/Pd(100) re-
vealed that the PES is modified significantly compared to
the dissociation on the clean Pd(100) surface [42, 55, 67].
While the process on the latter surface is non-activated,
for a (2×2) sulfur adlayer corresponding to a coverage
of ΘS = 0.25 it is inhibited by energy barriers. Their
heights depend strongly on the distance between the hy-
drogen and the sulfur atoms leading to a highly corru-
gated PES. The minimum barrier towards dissociative
adsorption has a height of 0.1 eV, while close to the ad-
sorbate atoms the barriers become larger than 2.5 eV due
to the strong repulsion between sulfur and hydrogen. The
adsorption height of the sulfur atoms is 1.31 Å above the
surface. The adsorption energy at all sites close to sulfur
atoms is reduced in comparison to the clean surface. But
still, H2 adsorption into all hollow sites not occupied by
sulfur remains an exothermic process.

For the theoretical investigation of the high-
dimensional PES the common strategy of computing 2D
cuts through the 6D configuration space has been fol-
lowed, using an analytical representation that is similar
to the form previously employed for the clean Pd(100)
surface [42]. Due to the larger unit cell some higher
Fourier coefficients have been included in the lateral di-
rections, and in the azimuthal dependence a higher or-
der term was introduced. Again, the coordinates in the
(Zd) plane were transformed into reaction path coordi-
nates. The parameters were determined such that the
difference to the ab initio calculations on the average is
smaller than 50 meV.

Figure 7 shows two 2D-cuts through the six-
dimensional configuration space. Whereas on the clean
surface the molecule over the palladium bridge site was
able to dissociate freely, due to the presence of sulfur the
molecule experiences a barrier of 0.16 eV. The minimum
pathway is now over the fourfold hollow site with an en-
ergy barrier of 0.11 eV.

B. Incorporation of the symmetry

We incorporated the symmetry within the NN within
the neural by using the same terms as on the clean
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FIG. 7: Contour plots through the six-dimensional analytical
PES of the dissociation of H2 over (2×2)S/Pd(100) for (a)
the Pd bridge site and (b) the fourfold hollow site. Insets:
geometry of the dissociation pathways.

Pd(100) surface but adding one higher order term for
the azimuthal dependency. In analogy to the analytical
PES we employed reaction path coordinates in the (Zd)
plane. Furthermore, we did not employ the distance of
the hydrogen molecule from the surface as an input to
the NN, but rather an exponential decay of that coor-
dinate. In reaction path coordinates this translated to
the term e(−s/2), where s is the coordinate along the re-
action path. The transformation reflects that far away
from the surface the molecule is in the gas phase and any
dependency on the distance from the substrate should
vanish. Moreover, in the gas phase the potential-energy
is isotropic. Only the bond length of the two hydrogen
atoms should play a role, and therefore we weighted all
other terms with the same factor e(−s/2).

The new set of nine coordinates, i.e. the inputs to the
NN, are:

X1= d,

X2= d2,

X3= e(−s/2),

X4= sin2(θ) cos(2φ) [cos(GXc)− cos(GYc)] e(−s/2),

X5= sin2(θ) cos(2φ) [cos(2GXc)− cos(2GYc)] e(−s/2),

X6= cos2(θ)e(−s/2),

X7= [cos(GXc) + cos(GYc)] e(−s/2),

X8= [cos(2GXc) + cos(2GYc)] e(−s/2),

X9= sin4(θ) cos(4φ) [cos(2GXc) + cos(2GYc)] e(−s/2).

C. NN-PES

On the clean Pd(100) surface it was necessary to use
a high number of training points along with a high num-
ber of parameters to represent the detailed PES with
activated and non-activated paths towards dissociation.
Correspondingly, the first test of a NN approximation of
the analytical PES for the sulfur covered Pd(100) will be
based on a dense grid of points.
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FIG. 8: Sticking probability versus kinetic energy for H2/(2×
2)S/Pd(100) for a {9−50−50−1 tl} NN. The data sampling from
the analytical PES is based on a dense mesh of configurations
in all six degrees of freedom of the H2 molecule. Parameter:
λ(0)=0.98, λ0 =0.99906, ath =0.6.

1. NN-fit based on a dense grid of configurations

We fitted 43, 928 data points from the analytical PES
on a dense grid of configurations in all six degrees of
freedom of the hydrogen molecule. The network consists
of two hidden layers with fifty nodes in each of them
{9−50−50−1 tl}. For the test of the accuracy of the
interpolation we used 5, 891 energies. After 40 epochs
the training and test error were 0.033 eV and 0.043 eV.
The NN-PES has subsequently been used in molecular
dynamics calculations to determine the sticking proba-
bility. Figure 8 displays these results. The NN sticking
curve agrees very well with the analytical sticking coeffi-
cient, their values differ by less than 3%. In comparison,
for a good fit on the clean surface a number of examples
twice as large was required.

Furthermore, for the sulfur poisoned surface the num-
ber of weights in the approximation can be greatly re-
duced without loosing much of the networks perfor-
mance. The sticking probability for a {9−20−20−1 tl} net-
work differs from the value based on the analytical PES
by less than 5%. The training and test error (0.068 eV
and 0.081 eV) were slightly higher than for the network
with 3101 parameters, but still within the desired ab ini-
tio accuracy. The training time with such a high number
of examples but only 641 weights reduces to seven hours
on an IBM-SP2 node in comparison to several days for
the 3101 parameter case.

On the clean surface a NN with such a small number
of parameters was not able to describe the correct co-
existence of activated and non-activated pathways. We
conclude, with respect to the number of training points
and the complexity of the appropriate NN, that fitting a
strictly activated PES is a profoundly easier task.

2. NN-fit based on eleven elbow plots

Usually, a dense grid of energies as presented in the pre-
vious section will not be available due to the high numeri-
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FIG. 9: Eleven adsorption configurations of the system
H2/(2×2)S/Pd(100). The corresponding elbow plots are used
for the NN-fit.
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FIG. 10: Sticking probability versus kinetic energy for the
system H2/(2×2)S/Pd(100): Analytical PES and a NN-
PES based on the eleven configurations in Fig. 9. NN:
{9−20−20−1 tl}. Parameter: λ(0)=0.98, λ0 =0.99906,
ath =0.3.

cal costs of ab initio calculations. Commonly, DFT stud-
ies of PESs concentrate on 2D cuts through the configura-
tion space with the molecule above high-symmetric sites.
In Fig. 9 we plotted eleven such configurations which
have been used for the system H2/(2×2)S/Pd(100). The
molecule approaches the surface above the fourfold hol-
low site, the palladium bridge site, the sulfur bridge site,
on-top of a palladium atom and on-top of a sulfur atom.
The orientation of the molecule is either parallel or per-
pendicular to the surface.

We performed a {9−20−20−1 tl} NN interpolation
based on 1, 189 training and 471 test energies obtained
from the analytical PES in the configurations of Fig. 9.
The test and training error after 100 epochs measured
0.078 eV and 0.096 eV, respectively. The resulting neural
sticking coefficient in Fig. 10 exhibits the same increase
in the sticking probability with kinetic energy as the cor-
responding analytical curve but its value is strongly re-
duced. A NN fit based on 1778 training examples from
the same cuts resulted in a description of the PES which
was too reactive at high kinetic energies (see Fig. 10).

3. NN-fit based on eleven elbow plots and corrugation

In order to get a reliable description of dynamical prop-
erties for dissociation processes with NNs it is not suffi-
cient to follow the usual approach of restricting the calcu-
lations to 2D-cuts above high-symmetric sites. We need
to add information about the PES, which is not present
in the elbow plots. Numerical calculations based on the
analytical PES revealed that the steering effect is not
only present on the clean Pd(100) surface, but also on
the sulfur covered sample [24]. Molecules approaching
the surface above sites with a high barrier to dissociation
can be reoriented by the forces to more favorable adsorp-
tion configurations. We showed in the discussion of the
first test problem that the distribution of the barriers
within the unit cell is important for the reproduction of
the steering effect and we have therefore tested how the
incorporation of the energetic corrugation improves the
interpolations.

The H2 molecule dissociates with its axis oriented par-
allel to the surface; the minimum path is located above
the fourfold hollow site. Figure 11 (a) and (b) display
the variation of the energy barriers the H2 molecule
experiences during adsorption for two angular orienta-
tions above different lateral positions. In Fig. 11(a) the
molecule is oriented parallel to the surface above the sul-
fur bridge site with the H2 atoms pointing towards the
fourfold hollow site. In order to scan the barriers we
fixed the (Zc, d, θ, φ) configuration for two different bond
lengths d and heights Zc and moved the molecule from
the sulfur bridge site to the fourfold hollow site. The
same is done in Fig. 11(b) but now the H-atoms point
initially in the direction of the sulfur atoms.

The configuration of the H2 molecule for the solid lines
in Fig. 11 correspond to the position of the maximum
barrier in the entrance channel above the fourfold hollow
site. In Fig. 11(a) the energy barrier decreases monoton-
ically from a value of 0.3 eV above the sulfur bridge site
at (Xc, Yc)=(0 a, 0.5 a) to 0.1 eV above the fourfold hol-
low site at (0.5 a, 0.5 a), where a defines the length of the
(2×2) unit cell. The monotonic decrease of the energy
barriers enables the molecule to be redirected to the most
favorable dissociation configuration above the hollow site
even when it approaches the surface above, say, the pal-
ladium bridge site at (Xc, Yc)=(0.25 a, 0.5 a). If we fur-
ther stretch the bond length of the hydrogen molecule
and decrease the distance to the surface we obtain again
a monotonic decrease of the energy (see the dashed line
in Fig. 11(a)). However, the energy barrier at the sulfur
bridge site has significantly increased due to the shorter
distance to the repulsive sulfur atoms. Above the four-
fold hollow site the energy is now negative, the molecule
has started to dissociate. Note, that the energy zero re-
lates to the situation where the molecule is located far
away from the surface (Zc > 5 Å) having its equilibrium
bond length. If we let the bond length stretch further
and allow the atoms to approach the surface the energy
at the fourfold hollow site would further decrease reflect-
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FIG. 11: (a) H2 bond axis parallel to Xc, (b) H2 bond axis perpendicular to Xc, and (c) Sticking probability. (a) and
(b): Corrugation of the energy barriers for the system H2/(2×2)S/Pd(100) with H2 in two different orientations and its axis
parallel to the surface. The energies are calculated for two different heights and bond lengths of the molecule. In both plots
the molecule is moved from the sulfur bridge site to the fourfold hollow site. (c) Sticking probability versus kinetic energy
for H2/(2×2)S/Pd(100) calculated from the analytical PES and two NN-PESs. The neural PESs are based on the eleven
configurations in Fig. 9 and the corrugation in (a) and (b).

ing that the dissociation process on the sulfur covered
Pd(100) surface is exothermic.

In Fig. 11(b) the H2 molecule has been rotated by
90◦ in the azimuthal direction. For the configuration
corresponding to the solid line again the energy barri-
ers decreases monotonically as a function of the distance
from the sulfur atoms. With a stretched bond length of
d=0.9 Å and a distance from the surface of z=1.1 Å the
picture has changed. Now the barriers are at its highest
value above the Pd bridge site. This is due to the repul-
sive character of the palladium atoms which the H-atoms
point at in this configuration. At the fourfold hollow site
the potential-energy is again negative.

To improve the NN description we included the infor-
mation about the variation of the energy barriers within
the unit cell from Fig. 11 in the training examples. We
added 66 potential-energies related to the corrugation of
the barriers to the information governed from the previ-
ously discussed eleven 2D cuts. Namely, instead of op-
timizing the NN with 1, 189 and 1, 778 training exam-
ples based on the elbow plots only as shown previously
in Fig. 10, we now use 1, 255 and 1, 844 points, respec-
tively. The sticking probability for both training sets
in Fig. 11(c) agrees now semi-quantitatively with the un-
derlying analytical PES. Thus, incorporating only a small
number of additional information to the calculated elbow
plots can lead to significant improvement of the dynam-
ical result. Figure 11(c) demonstrates that the incorpo-
ration of available physical knowledge about the system
of investigation improves the interpolation considerably.
It is well known that steering in dissociation dynamics
is present and can be essential for the calculation of a
dynamical property like the sticking probability. It is
clear that the reorientation of the molecule is affected
by the distribution of the energy barriers on the surface.
Together with the knowledge about the favorable dissoci-
ation configuration of the studied molecule which can be
gained from DFT-calculations we were able to calculate
a small number of additional energies. With this new in-

formation the NN was able to reproduce the adsorption
coefficient with an error of less than 6%.

V. CONCLUSION

We have shown that NNs can represent ab initio PESs
of several degrees of freedom accurately. The computa-
tional cost of training a NN is small and just a fraction
of the costs of the DFT calculations. The resulting NN
output function, the potential-energy, and its derivatives,
the forces, are very efficient to evaluate and allow molec-
ular dynamics calculations with extensive statistics.

Concerning the amount of training data required to
obtain a reliable representation it is not sufficient to per-
form a NN fit based on the usually calculated top, bridge
and hollow sites only. Intermediated configurations need
to be considered. An equidistant sampling results in a
number of 104−105 total energies for an accurate inter-
polation. The required number of training energies for
dissociation processes can be further reduced by an effi-
cient sampling of the configurations.

Model calculations on the systems H2/Pd(100) and
H2/S(2×2)/Pd(100) revealed, that the form of the ener-
getic corrugation can significantly influence the dynam-
ical result. We therefore proposed a modification of the
usually applied sampling of total energies in DFT cal-
culations of dissociation processes. In addition to elbow
plots above high-symmetric sites we recommend to cal-
culate the corrugation of the barrier heights in more de-
tail by collecting information of the potential-energy as a
function of the lateral coordinates within the surface unit
cell. The modified sampling scheme allows to calculate
dynamical results with NNs based on 103−104 ab initio
energies. The costs for a description of dissociation re-
actions with NNs are orders of magnitude smaller than
those of ”on the fly” ab initio dynamics were up to 107

energies might be necessary.
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