Reversible vs Standard Hydrogen Electrode Scale in Interfacial Electrochemistry from a Theoretician’s Atomistic Point of View

Axel Groß*

ABSTRACT: It is a general notion in interfacial electrochemistry that the stability of adsorbate phases that only contain hydrogen atoms should be independent of the pH value of the electrolyte on the scale of the reversible hydrogen electrode, whereas the stability of adsorbate phases that do not contain any hydrogen should be independent of the pH value on the scale of the standard hydrogen electrode. In this Perspective, it will be argued on the basis of a grand-canonical approach that such a Nernstian behavior can only be reproduced if the free energy of the adsorbate phase is independent of the electrochemical control parameters. In general, this should not be true, so that the Nernstian behavior should be the exception rather than the rule. Still, structural and chemical factors will be discussed that might lead to a Nernstian behavior. This requires an analysis of the electrochemical electrolyte/electrode interface on the atomistic level. At the same time, this analysis also provides a guideline for the validity of grand-canonical simulations using the concept of the computational hydrogen electrode in which the dependence of the energy of adsorbate phases on pH and electrode potential is neglected.

1. INTRODUCTION

Electrochemical energy storage and conversion is of critical importance for our future sustainable, environmentally friendly energy supply.1,2 Due to this importance, significant research and development efforts are undertaken worldwide in order to improve our understanding of electrochemical processes at electrolyte/electrode interfaces and to develop more efficient electrochemical devices such as electrocatalysts, fuel cells, and batteries. Electrochemistry as a research field can be traced back to the end of the 18th century with the experiments of Galvani and Volta.3 Here I focus on interfacial electrochemistry, which is concerned with “structures and processes at the interface between an electronic conductor (the electrode) and an ionic conductor (the electrolyte) or at the interface between two electrolytes”.3 In particular, I will consider structures at electrochemical electrolyte/electrode interfaces in thermodynamical equilibrium. At such interfaces, usually the existence of an electric double layer (EDL) is proposed based on the assumption that excess charges form on the two sides of the interfaces.3

In fact, the concepts to understand the structure of an electric double layer had been developed more than 100 years ago,4−7 and in principle, our understanding of such interfaces is still influenced by these concepts, which are based to a large extent on a continuum description of electrochemical interfaces. Although there have been attempts to establish an atomistic view of electrochemistry,8,9 electrochemistry still appears to be a field whose perception and understanding is based on thermodynamical concepts. These thermodynamical concepts are the consequence of deep insights into the basic rules governing electrochemistry.3 Still, thermodynamics is a field that deals with measurable macroscopic physical quantities, but a full understanding of the nature of these quantities requires a connection to microscopic properties via statistical mechanics. I will illustrate this using the dependence of adsorbate phases on the pH value and the electrode potential.

In electrochemistry, the concept of potentials is of central importance.10 For a newcomer in electrochemistry, the subtleties between various different potential definitions might cause some confusion. Some potentials depend on position, such as the inner or Galvani potential,3 and some are rather intensive properties such as the electrode potential. Both these potentials are measured in units of a voltage, but for example, the electrochemical potential, which also is an intensive property, is measured in units of an energy. It is also important to stress that structures and processes at electrochemical electrolyte/electrode interfaces...
electrode interfaces are typically rather complex. Together with the wealth of electrochemical concepts, this sometimes leads to misconceptions (see, e.g., the “HOMO—LUMO misconception” about the electrochemical stability window of battery electrolytes[11]), which, on the other hand, turn electrochemistry into a very vivid field of scientific discussions.

In this Perspective, I will discuss the difference between electrode potentials measured with respect to the standard hydrogen electrode (SHE) and the reversible hydrogen electrode (RHE). In contrast to the SHE, electrode potentials vs RHE change with the pH value of the electrolyte.[12] As far as equilibrium structures of electrochemical electrolyte/electrode interfaces are concerned, I will particularly address the question what it means if the stability of an interface structure does not change as a function of the electrode potential vs RHE for different pH values. Admittedly, it appears to me as if there is some confusion about the interpretation of such findings in the literature, which baffled me for a long time. Typically, it is assumed that hydrogen evolution and oxidation at electrochemical interfaces should follow the Nernst equation. This means that hydrogen equilibrium interface structure should be pH-dependent, even on the RHE scale, and structures not containing any hydrogen should be pH-dependent on the SHE scale. Thus, the anomalous behavior should be the rule rather than the exception. Still, I will also give arguments why often these shifts should be rather small.

2. MOTIVATION

The study of processes at electrochemical interfaces involving hydrogen adsorption and desorption is of considerable interest, both from a fundamental and from a technological point of view due to its importance in electrochemical energy conversion. In fact, whenever aqueous electrolytes are involved, then naturally hydrogen adsorption can occur due to the fact that there is always a nonzero concentration of protons in the electrolyte. As an illustration of such a system, I have picked a recent experimental study of bromide adsorption on Pt(111), which had also been studied theoretically by first-principles calculations.[21,22] At electrochemical interfaces between an aqueous electrolyte and in particular metal electrodes, at low electrode potentials at which the electrode is assumed to be more negatively charged, cation adsorption is more favorable (here proton adsorption), whereas at higher potentials at which the electrode is more positively charged, anions such as halides adsorb preferentially. In fact, experimentally a competitive adsorption of hydrogen and halides on Pt(111) has been observed at low pH values,[23,24] i.e., upon increasing the electrode potential adsorbed hydrogen is replaced by chloride or bromide, respectively, which has also been confirmed in first-principles calculations.[21,22]

Figure 1 shows cyclic voltammograms of Pt(111) in the presence of 10−2 M KBr for different pH values both on the RHE (panel A) and the SHE (panel B) scale. First of all it can be seen that the voltammograms are rather symmetric, indicating that the peaks correspond to reversible processes. There are two prominent peaks in each scan. First, there is a large broad peak at 0.18 V vs RHE at pH = 1.2 which shifts to higher voltages for increasing pH values and splits to a certain extent. This peak is associated with hydrogen adsorption/desorption and bromide adsorption/desorption,[20] which strongly overlap at low potentials indicating the competitive nature of hydrogen and bromide adsorption.[25] Whereas this peak shifts to higher voltages with increasing pH vs RHE, it shifts to lower voltages vs

Figure 1. Cyclic voltammograms for Pt(111) in different solutions with pH values ranging from 1.2 to 11.5 in the presence of 10−2 M KBr in the RHE scale (A) and in the SHE scale (B). Reprinted with permission from ref 20. Copyright 2018 American Chemical Society.
Select electrochemical interface if the free energy difference of the species present in the systems are constant throughout the whole means that the (electro-)chemical potentials of the species that there is thermal equilibrium throughout the system which electrolyte, and the interface region. Furthermore, we assume to subdivide the electrolyte/electrode interface into three regions that determines the thermodynamically stable interface structure but rather the free energy of adsorption per surface area A_S.

$$\Delta \gamma(T, U, a_i, N_i) = \Delta G^{\text{ads}}(T, U, a_i, N_i)/A_S$$

From now on we implicitly assume that there is a periodic adsorbate structure and that A_S is the surface area of the unit cell with N_i adsorbed species.

One critical problem in calculating the adsorption free energy ΔG^{ads} according to eq 1 is due to the fact that the determination of the electrochemical potential $\bar{\mu}(T, U, a_i)$ typically requires the evaluation of solvation energies which is computationally rather demanding. However, this evaluation can be avoided by relating the electrochemical potential of the solvated species to the chemical potential of corresponding gas-phase species via the redox potential which is the basis of the concept of the computational hydrogen electrode (CHE) proposed by Nørskov et al. For hydrogen adsorption, this means that the electrochemical potential of hydrogen can be expressed as

$$\bar{\mu}_H = \bar{\mu}_H^{(\text{aq})} + \mu_e = \frac{1}{2} \mu_{H_2(g)} - eU_{\text{SHE}} - k_bT \ln(10) \text{pH}$$

This equation requires some clarification. First of all I have written the electrochemical potential of hydrogen as the sum of the electrochemical potentials of the proton and the electron. Note that, in eq 1, the energy for the adsorption of N_i particles of species i is considered. Note furthermore that in thermal equilibrium electrochemical electrolyte/electrode interface have to be overall charge neutral because otherwise there would be a net electric field which would attract or repel charged particles with respect to the interface. So the presence of a proton close to the interface requires the presence of a corresponding countercharge, which usually means for metallic electrodes that there is an additional electron at the Fermi level in the electrode. Hence the adsorption of a proton at this electrified interface leads effectively to the adsorption of a hydrogen atom on the electrode, and therefore, we have to take the electrochemical potential $\bar{\mu}_H^{(\text{aq})} + \mu_e$ of a solvated hydrogen atom as a reference.

Furthermore, eq 3 also demonstrates that it does not matter whether the electrode potential is given on the SHE or the RHE scale (or any other potential scale), the electrochemical potential has to be independent of the choice of the reference for the electrode potential. Hence the CHE is neither a "RHE concept" nor a "SHE concept"; it is just a grand-canonical concept. Consequently, also the adsorption energy cannot not depend on the particular choice of the electrode potential scale. Hence the free energy of hydrogen adsorption per surface area at electrochemical interfaces as a function of the electrochemical control parameters can for example be expressed as

$$\Delta \gamma_H(T, U, \text{pH}, N_H) = \frac{N_H}{A_S}(\Delta G^{\text{ads}}(T, U, \text{pH}) + eU_{\text{SHE}}$$

$$+ k_bT \ln(10) \text{pH})$$

where
\[\Delta G_{\text{H}}^{\text{ads}}(T, U, \text{pH}) = \frac{1}{N_{\text{H}}} (G_{\text{H}_2}^{\text{interf}}(T, U, \text{pH}, N_{\text{H}})) - G_{A_{\text{H}_2}}^{\text{interf}}(T, U, \text{pH}, 0) - \frac{1}{2} \mu_{\text{H}_2}(g) \]

(5)
corresponds to the free adsorption energy per hydrogen atom in the structure with \(N_{\text{H}} \) adsorbed hydrogen atoms per surface area \(A_{\text{H}} \) with respect to the hydrogen molecule in the gas phase. This concept can also be used for the adsorption of, e.g., halides \(A^- \) with \(\Lambda = F, Cl, Br, I \), where typically the redox couple is given by \(\frac{1}{2} A_{\text{H}} + e^- \leftrightarrow A^- \) yielding an electrochemical potential of \(\mu_{\text{A}_{\text{aq}}} - \mu(e^-) \)

\[= \frac{1}{2} \mu_{\text{A}_2}(g) + e(U_{\text{SHE}} - U^0) + k_B T \ln \alpha_A \]

(6)

where \(U^0 \) is the reduction potential of the halide vs \(U_{\text{SHE}} \) and \(\alpha_A \) its activity coefficient. Furthermore, also any mixed adsorbate phase can be addressed using this approach.

4. DISCUSSION

In the previous section, I described the grand-canonical approach to determine the thermodynamically stable adsorbate phases at electrochemical electrolyte/electrode interfaces. In order to avoid the evaluation of solvation energies of solvated species, the concept of the computational hydrogen electrode \(5,27 \) has been employed. It is important to note that up to here all expressions are exact, as far as the description of structures in thermodynamic equilibrium is concerned. However, the evaluation of the corresponding expressions requires the determination of free energies which is typically numerically rather demanding as it necessitates performing, e.g., thermodynamic integration schemes.

Hence typically in the application of the CHE, the free energy difference appearing in eq 5 is replaced according to

\[G_{A_{\text{aq}}}^{\text{interf}}(T, U, \text{pH}, N_{\text{H}}) - G_{A_{\text{aq}}}^{\text{interf}}(T, U, \text{pH}, 0) \approx E_{A_{\text{aq}}}^{\text{interf}}(N_{\text{H}}) - E_{A_{\text{aq}}}^{\text{interf}}(0) \]

(7)

which means that the difference in the free energies is replaced by the difference in total energies, and in the evaluation of the total energies, the electrochemical control parameters are neglected; i.e., the interface energies are assumed to be independent of the electrode potential and proton concentration. Often the electrochemical environment is entirely neglected; i.e., the total energies are calculated at the vacuum/electrode interface instead of the electrolyte/electrode interface.\(^{21,31} \) Thus, for example, the capacitive charging of the diffuse double layer is not captured at all which has been identified as a critical factor in interfacial electrochemistry.\(^{32} \) Still it is important to emphasize that this is not an approximation that is inherent to the CHE, as is often assumed, but rather a typical approximation applied when employing the in principle exact concept of the CHE.\(^{26} \)

I will now discuss a typical example presented in Figure 3 where the approximations just mentioned have all been invoked. This figure displays a Pourbaix diagram, i.e., a phase diagram as a function of pH and the electrode potential, calculated within the concept of the CHE.\(^{22} \) This Pourbaix diagram addresses exactly the same system as covered in Figure 1, namely the coadsorption of hydrogen and bromide on Pt(111) in the presence of an aqueous electrolyte. In these calculations, a fixed bromide concentration corresponding to an activity of \(a = 0.1 \) has been assumed that might be somewhat larger than the concentration of \(10^{-2} \) M KBr used in the experiments.\(^{20} \)

The greenish phases in Figure 3 correspond to pure hydrogen adsorbate phases and the bluish ones to pure bromide adsorbate phases. Furthermore, there is a small pocket of mixed hydrogen-bromide adsorption phases at intermediate pH values. However, at low pH values, the DFT calculations nicely reproduce the competitive adsorption of hydrogen and bromide observed in the experiment;\(^{20,24} \) i.e., the adsorbed hydrogen is replaced by adsorbed bromide upon increasing the electrode potential.

Replacing the free energies in eq 5 by total energies according to eq 7 means that the dependence of the stability of the pure hydrogen adsorbate phase on pH only enters through the term \(k_B T \ln(10) \) pH appearing in the electrochemical potential of the solvated protons. Also the electrode potential does not affect the difference in the interface energies. And sure enough, the boundaries between the pure hydrogen adsorption phases all exhibit a slope of \(59 \) mV/pH; i.e., they exhibit a perfect Nernstian behavior.\(^{20} \) Now this Nernstian behavior has not been observed in the experiment;\(^{20} \) with respect to the hydrogen adsorption/desorption and bromide adsorption/desorption or, instead, the competitive replacement of adsorbed hydrogen by bromide and vice versa. Interestingly, the calculated phase boundary between the purely hydrogen-adsorbate phases and the purely bromide adsorption phase at pH values below 7 in Figure 3 exhibits a slope that is smaller than \(59 \) mV/pH. Upon changing pH from 1.2 to 5.4, the corresponding peak in the CV shown in Figure 1B shifts by roughly 120 mV, whereas the corresponding shift in Figure 3 is about \(140 \) mV. Thus, a seemingly non-Nernstian behavior is in fact reproduced in calculations in which the free energy difference \(\Delta G_{\text{H}}^{\text{ads}}(T, U, \text{pH}) \) expressed in eq 5 does
not depend on pH and electrode potential \(U \). The solution of this surprising result rests in the competitive nature of hydrogen and bromide adsorption at this phase boundary. Neglecting the pH and \(U \) dependence of \(\Delta G^{\text{ads}}(T,U,pH) \) leads to purely Nernstian behavior of the stability of the hydrogen adsorbate phases, but at the same time, it makes the stability of the bromide phases pH-independent. The competition between a phase that depends on pH and a phase that does not depend on pH makes the phase transition pH-dependent with a slope that is lower than 59 mV/pH which depends on the coverage of both phases.21

Another interesting feature of the cyclic voltammograms shown in Figure 1 is the observation that the peak related to the change in the bromide structure does not depend on pH on the SHE scale. Interestingly enough, in the calculations presented in Figure 3, also a structural change in the bromide adlayer from a \((\sqrt{7} \times \sqrt{7} R19.1\%) -3\text{Br} \) to a \((3 \times 3) -4\text{Br} \) structure has been found. This is not exactly the same transition as the one attributed to the corresponding peak by Mello et al.20 where a \((4\times 4)-7\text{Br} \) has been assumed at lower electrode potentials, however, the coverage change upon this transition is almost the same. It is also gratifying to see that the calculations at least qualitatively reproduce the experimental observation20 that toward alkaline conditions the bromide adsorption peak separates from the hydrogen desorption peak. Note, however, that OH adsorption is not considered in the calculations which might replace bromide adsorption under very alkaline conditions.20

With respect to the fact that this transition between two different bromide adsorption phases is pH independent, both theory and experiment thus agree. But again, there is no fundamental reason to presuppose that the free energy difference \(\Delta G^{\text{ads}}(T,U,pH) \) with regard to bromide adsorption should be independent of any changes in pH. For example, recently a pH dependence has been found in the calculated activity of the oxygen evolution reaction \(\beta-\text{NiOOH}(0001) \) on the RHE scale,33 in agreement with the experiment.34 This pH dependence has been mediated by the explicit consideration of a pH-dependent electric double layer structure in the calculations. Note, furthermore, that in experiments changing the pH value typically also requires to use electrolytes with different counterions, in particular if a wide range of pH values from acidic to alkaline conditions is scanned.20 Again, the particular choice of the counterions can significantly modify the properties of the electric double layer, causing, e.g., an apparent pH dependence of hydrogen adsorption on a stepped Pt electrode on the RHE scale35 or a strong dependence of the Pt(111) double-layer capacitance on the particular choice of the electrolyte.36

However, there are good arguments why this free adsorption energy in particular of small ions such as protons or halides at electrochemical interfaces between an aqueous electrolyte and a metal electrode should be rather independent of pH and electrode potential. Note that, at \(pH = 0 \), there is one proton per \(5\text{5} \) water molecules. Already at \(pH = 2 \), there are \(5\text{50} \) water molecules per one proton. Although the proton concentration close to the electrochemical interface might be larger than in the bulk electrolyte, it is rather unlikely that such a minute concentration of protons should change the hydrogen adsorption energies. Furthermore, electric field effects directly at metal electrodes are very effectively shielded due to the fact that an electric field cannot penetrate into an ideal conductor.37 This provides an explanation why changes in the electrode potential might hardly affect the adsorption energies of small atomic adsorbates such as hydrogen and halides. And, last but not least, even the presence of water hardly modifies adsorption energies of atoms at metal surfaces due to the relatively weak interaction of water with metal surfaces and the comparable large distance of the water molecules from the surface.25,38,39

One can now turn the argumentation around with respect to the validity of the approximations often entering applications of the concept of the computational hydrogen electrode. Recent theoretical studies have correctly emphasized that it is important to take the electrochemical environment adequately into account in the modeling of electrolyte/electrode interfaces.40-43 However, for those electrochemical interfacial systems in which hydrogen adsorbate phases exhibit a Nernstian behavior or in which the stability of non-hydrogen adsorption phases does not depend on pH, it can in principle safely be assumed that the free energy difference \(\Delta G^{\text{ads}}(T,U,pH) \) does not depend on the electrochemical control parameters, so that this difference can be replaced by the difference in the respective total energies. For example, the fact that the peak in the cyclic voltammograms related to the change in the bromide structure in Figure 3 does not depend on pH on the SHE scale, in spite of the fact that different electrolytes have been used at low and high pH values, indicates that the presence of the electrolyte either hardly influences the stability of the bromide adsorbate phases or just leads to a constant shift independent of the particular structure of the EDL. Hence the presence of the EDL can be safely neglected in the evaluation of the relative stability of the bromide adsorption phases. This also provides an explanation why the typical approximation applied when doing calculations of electrochemical interfaces using the concept of the computational hydrogen electrode, namely to neglect the influence of electrode potential and pH when calculating the energy of the adsorbate phases, has often yielded results that agree rather nicely with the experiment.29,44-49

To wrap up this discussion of the difference between the reversible and the standard hydrogen electrode, I will present another example of a Pourbaix diagram produced using the concept of the CHE neglecting the pH and electrode potential dependence in the adsorption energy with respect to the free \(H_2 \) molecule. This example is concerned with the adsorption of sulfate and hydrogen on Pt(111) and Au(111).45 Note that similar results for Au(111) as presented in ref.44 have also been found in a recent joint experimental-theoretical work.50 Here, however, I will concentrate on sulfate adsorption on Pt(111). On this surface, sulfate adsorbs at potentials of about 0.5 V in a row-like \(\sqrt{3} \times \sqrt{7} \) structure51 whereas the corresponding structure appears on Au(111) at potentials of about 1 V.52,53 Still, DFT calculations neglecting the explicit presence of water molecules on these surfaces fail to reproduce the presence of any stable row-like sulfate structures at the experimentally observed conditions.44 Also the inclusion of water within an implicit solvent model53 could not heal this discrepancy between experiment and theory.

However, using a combination of the implicit solvent model with explicitly considered water molecules, a very satisfactory agreement with the experiment has been obtained. This is demonstrated in Figure 4 where a Pourbaix diagram for the coadsorption of sulfate and hydrogen on Pt(111) is shown. At low electrode potentials, Pt(111) is hydrogen-covered, and at about 0.4 V the so-called double layer region starts, in which Pt(111) is not covered by any adsorbate, followed by the onset of sulfate adsorption. The structure of the stable row-like
The sulfate row-like structure becomes strongly stabilized by the presence of two explicit water molecules per sulfate anion linking the sulfate rows. These water molecules are strongly bound with a binding energy that is much higher than the water cohesive energy\(^44,50\) so that they become an integral immobile element of the sulfate adsorbate structure. This example shows that the presence of water can indeed have a significant influence on the stability of adsorbate phases at interfaces between aqueous electrolytes and electrodes, even without the explicit consideration of pH and the electrode potential. However, in the case of sulfate adsorption on Pt(111) and Au(111) the combination of frozen water rows together with an implicit solvent was sufficient to yield a qualitative and semiquantitative agreement with experiment.\(^44,50\) In general, the liquid nature of water has to be appropriately taken into account in order to faithfully model water/electrode interfaces. Unfortunately, considering the explicit presence of water molecules requires one to perform time-consuming averages, for example, based on \textit{ab initio} molecular dynamics (AIMD) simulations.\(^34\text{–}57\) As a computationally attractive alternative, the explicit description of water molecules might be replaced by using implicit solvent models in which the solvent is described by a dielectric continuum just characterized by its dielectric constant.\(^41,42\) Unfortunately, benchmark calculations found substantial deviations between AIMD and implicit solvent approaches,\(^38\) as far as the influence of solvation on adsorption energies is concerned. Hence it appears fair to say that further work is required to obtain a reliable and at the same time computationally attractive approach to model interfaces between aqueous electrolytes and electrodes.

Note that the calculations presented in Figure 4 also reproduce the experimentally observed displacement of sulfate adsorption to higher potentials for decreasing pH, in particular for pH \(\geq 2\),\(^59\) resulting in a curved phase boundary between clean Pt and the sulfate adsorption phase. This is interesting as the pH value does not directly enter the electrochemical potential of sulfate\(^44\) under equilibrium conditions. However, there is an acid/base equilibrium between protons, sulfate and bisulfate anions \(\text{HSO}_4^- = \text{SO}_4^{2-} + \text{H}^+\). Furthermore, for the calculation of the Pourbaix diagrams, the total concentration of anions \(c\) in the electrolyte has to be kept fixed which makes the molar fraction \(x\) of \(\text{SO}_4^{2-}\) pH-dependent according to\(^44\)

\[
x_{\text{SO}_4^{2-}} = \frac{1}{1 + 10^{-p\text{H}}/10^{-p\text{K}}}.
\]

Thus, it is the molar fraction of sulfate through which the onset of the sulfate adsorption phase becomes pH-dependent.

Figure 4. Calculated Pourbaix diagram showing the stable phases of coadsorbed sulfate and hydrogen on Pt(111) as a function of pH and electrode potential.\(^44\) The sulfate concentration corresponds to an activity of 0.1. Reprinted with permission from ref 26. Copyright 2021 Elsevier.
computational hydrogen electrode in which the influence of the electrochemical control parameters on the energy of the adsorbate phases are neglected. In general, however, this approximation should not be valid. Changing electrode potential and/or pH alters the structure of the electric double layer at the interface, which will also modify the local electric field close to the electrode. Hence there is no reason to assume that the free energy of electrified interfaces should be independent of electrode potential and pH. Therefore, the “normal” Nernstian behavior should be the exception rather than the rule. Consequently, the study of any adsorbate structure at electrochemical interfaces requires a careful analysis of the factors influencing its stability on the atomistic level.

■ AUTHOR INFORMATION

Corresponding Author
Axel Groß — Institute of Theoretical Chemistry, Ulm University, 89069 Ulm, Germany; Electrochemical Energy Storage, Helmholtz Institute Ulm (HIU), 89081 Ulm, Germany; orcid.org/0000-0003-4037-7331; Email: axel.gross@uni-ulm.de

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.jpcc.2c02734

Notes
The author declares no competing financial interest.

Biography

Axel Groß obtained his Diploma in Physics from the University of Göttingen in 1990 and his Ph.D. in 1993 in Theoretical Physics at the Technical University of Munich. After 5 years as a staff scientist in the Theory Department of the Fritz-Haber-Institute of the Max-Planck-Society in Berlin, he became Associate Professor in Theoretical Physics/Surface Physics at the Technical University of Munich. In 2004, he was appointed as a Full Professor in Theoretical Chemistry at Ulm University; furthermore, in 2011, he became PI at Helmholtz Institute Ulm (HIU) Electrochemical Energy Storage. His research interests focus on the first-principles modeling of atomistic structures and processes at surfaces and at solid–gas and electrochemical electrode–electrolyte interfaces in electrochemical energy conversion and storage, reactions in heterogeneous catalysis and electrocatalysis, and materials modeling related to properties of batteries.

Acknowledgments

This work contributes to the research performed at CELEST (Center for Electrochemical Energy Storage Ulm-Karlsruhe). Support by the German Research Foundation (DFG) through Contract GR 1503/39-1, the POLiS Cluster of Excellence, Project ID 390874152, and the Dr. Barbara Mez-Starck Foundation and discussions with Wolfgang Schmickler, Jürgen Behm, and Marc Koper are gratefully acknowledged.

■ REFERENCES

26) Groß, A. Grand-canonical approaches to understand structures and processes at electrochemical interfaces from an atomistic perspective. Curr. Opin. Electrochem. 2021, 27, 100684.

33) Huang, J.; Li, M.; Eslamibidgoli, M. J.; Eikerling, M.; Groß, A. Cation Overcrowding Effect on the Oxygen Evolution Reaction. JACS Au 2021, 1, 1752–1765.

