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Alkali metal ion batteries, and in particular Li–ion batteries, have become a key technology for
current and future energy storage, already nowadays powering many devices of our daily lives. Due to
the inherent complexity of batteries and their components, the use of computational approaches on
all length and time scales has been largely evolving within recent years. Gaining insight in complex
processes or predicting new materials for specific applications are two of the main perspectives
computational studies can offer, making them a indispensable tool of modern material science and
hence battery research. After a short introduction to battery technology, this review will first focus
on the theoretical concepts that underlie the functioning of Li– and post–Li–ion batteries. This will
be followed by a discussion of the most prominent computational methods and their applications,
currently available for the investigation of battery materials on an atomistic scale.

I. INTRODUCTION

Already today our society is facing enormous chal-
lenges with respect to global warming and its conse-
quences. Stopping or at least slowing down climate
change, however, means that we have to change the way
we are producing and consuming energy. While renew-
able energies are an indispensable part to achieve a zero
emission society, their intermittent character calls for ad-
vanced energy storage concepts. Therefore, apart from
their use in electronic devices and for e–mobility, bat-
teries have become one of the key technologies for our
near future [1, 2]. Currently the battery market is dom-
inated by Li-ion technology, however, for applications
such as stationary storage post Li–ion technologies are re-
cently gaining significantly more interest, as e.g. sodium
is much cheaper and more easily available than lithium.
This is likely to become an important factor with respect
to the increasing demand for energy storage in our soci-
ety [3–5]. Hence, it is no exaggeration to emphasize the
importance of battery technology and the further devel-
opment of the different aspects of a functioning battery.
Indeed, since the commercialization of the first Li–ion
batteries (LIBs) in 1991 [6], there has been a tremendous
improvement in battery performance, which, on the other
hand, results in steadily increasing requirements that
batteries have to fulfill [2, 7–11]. Different kinds of appli-
cations call for higher volumetric and gravimetric energy
density, high rate capability, long cycle life, safety and
of course low cost [12]. In the quest for batteries with a
better performance, theoretical studies addressing struc-
tures and processes in batteries on an atomic level play
an increasingly important role [13–20]. In this review,
we will describe the theoretical and numerical methods
employed in the evaluation of battery properties and also
highlight the insights gained from such studies. This re-
view starts with a short discussion of state of the art
battery technology and introduces some of the standard
battery terminology, typically using LIBs as prototypical
example. In the next chapters, the underlying theoreti-
cal concepts of a battery will be derived, before the most

prominent computational approaches that are currently
used in battery research will be discussed. While we are
often referring to specific materials when discussing par-
ticular numerical methods, this review has its focus on
theoretical concepts and computational approaches, thus
not meaning to give a comprehensive overview over re-
cent developments in the battery field. Note also that
many aspects of the approaches that are presented here
can be generalized to all types of batteries, the focus of
this work, however, lies on Li– and post–Li–ion systems
and their specific challenges.

A. State of the art

In a prototypical Li–ion cell that is nowadays in use,
a likely setup consists of a graphitic anode and a NMC
(Ni–Mn–Co oxide) type cathode, which are separated by
a membrane soaked with electrolyte that shuttles the

FIG. 1. Schematic of the functioning of a rocking chair type
Li–ion battery with a graphite anode and a TM–oxide cath-
ode. During discharge, Li–ions are de–intercalated at the an-
ode and intercalated at the cathode, while the electrolyte is
responsible for shuttling the ions between the electrodes.
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FIG. 2. Typical discharge curves for state of the art cath-
ode materials in LIBs. The areas below the curves yield the
corresponding energy densities. From Chen et al. [21]. With
permission from Elsevier.

Li–ions between anode and cathode (see Fig. 1). Dur-
ing discharge of such a rocking chair type LIB positively
charged ions are deintercalated at the anode and shut-
tle to the cathode, where they intercalate in-between the
layers of the NMC. The corresponding electrons take the
path through the external electric circuit, thus allowing
for the exploitation of the energy gain of the underly-
ing reaction – often also expressed as difference in the
Li chemical potential between anode and cathode as will
be demonstrated below – for e.g., powering a electronic
device.

For battery applications, the amount of energy that
can be stored is the crucial variable, as it for instance de-
termines how far an electric vehicle can drive. The ability
to store energy is quantified by the energy density which
is either given as energy per unit weight (gravimetric or
specific energy density, in Wh/kg) or per unit volume
(volumetric energy density, in Wh/l). With respect to
improving the energy density, the cathode is the most
decisive factor, resulting in large research efforts aiming
at improved and new cathode materials. The energy den-
sity of a cathode is determined by its storage capacity and
its operating voltage. While the capacity determines the
number of ions (and electrons) that can be stored in an
electrode per unit weight (gravimetric or specific capac-
ity in mAh/g) or per unit volume (volumetric capacity
in mAh/l), the operating voltage states the potential of
the cathode with respect to a chosen reference (typically
the respective alkali metal).

In Fig. 2 the voltage profile of typical cathode materials
is depicted as a function of the capacity. The energy
density of these cathode materials is obtained from the
integral in Eq. (2) and corresponds to the area below the

FIG. 3. Cell voltage and capacity with respect to different
anode/cathode combinations for LIBs. From Landi et al. [24].
With permission of the Royal Society of Chemistry.

voltage profile:

E =

∫
U(q)dq, (1)

with U(q) the voltage as a function of the capacity.
Clearly, significant progress has been achieved during
the last decades. The originally introduced layered
LiCoO2 electrodes have further evolved and cobalt has
partially been replaced by more environmentally benign
materials such as manganese and nickel. This resulted
in the development of the so—called NMC cathodes
(LixNiyMnzCo1−y−zO2) [22], which are typically named
with respect to the atomic ratio of the transition met-
als (e.g., NMC532, NMC622, NMC811, etc.). A next
step for achieving higher energy densities was to aim at
an increase of the Li—content in these layered cathode
materials, which resulted in the development of Li-–rich
NMCs [22]. These achieve capacities beyond 250 mAh/g
and reach energy densities of up to ≈1000 Wh/kg. More-
over, other compounds such as spinel phases and polyan-
ionic compounds have been developed.

In fact, while most efforts aim on improving cathode
materials, the energy density nevertheless is determined
by capacity and voltage (potential) of both electrodes,
as can be inferred from Fig. 3. In general, the ideal bat-
tery anode lies at low potential and offers high capacity,
whereas the ideal cathode offers a high voltage also com-
bined with a high capacity. Indeed, in the case of LIBs
Li–metal would be the ideal anode, however, safety issues
related to the growth of dendrites have so far hindered
the use of Li–metal as anode material in rechargeable
LIBs [23].

When discussing energy densities, one has to be care-
ful which numbers are actually to be compared. The
above discussed cathode energy densities are obtained on
a material level, i.e. only the active material is consid-
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FIG. 4. Interrelation of the energy density on material level
to that on pack level and final application. From Placke et
al. [28]. Reprinted with permission from this reference with
permission from Springer Nature.

ered. However, batteries are complex many–component
systems, meaning that further parts such as current col-
lectors, binders and other additives are also involved, re-
sulting in additional weight, going along with a highly
complex interplay of these components [25–28]. Conse-
quently, the energy density of a working electrode is also
influenced by these components, thus reducing its ac-
tual energy density, as schematically depicted in Fig. 4.
Finally, when the performance of a full battery is as-
sessed, it still makes a difference if one is referring to cell
level, module level or even pack level (see Fig. 4). Hence,
while the above discussed active materials reach energy
densities in the order of 1000 Wh/kg, the best commer-
cially available Li–ion batteries currently reach about 260
Wh/kg on cell level [29].

The complexity of a battery – i.e. the different compo-
nents and their interplay – and the almost infinite num-
ber of possibilities for combining these components point
to the importance of knowledge–based design strategies
for next generation battery systems. Consequently, a first
crucial step is the detailed investigation of the main com-
ponents, where all attempts for understanding the whole
battery system with the underlying mechanisms have to
set in. Therefore, the typical approach, also on the ex-
perimental side, is the separate search for novel and im-
proved anode, cathode and electrolyte materials. Yet, it
has to be kept in mind that it is not only the single com-
ponents but their interplay which makes a battery work,
such that full cell studies are always needed. From a the-
oretical point of view, the simulation of a full battery on
an atomistic scale is anyway still far from what currently
can be achieved, such that the properties of anode, cath-
ode and electrolyte have to be studied independently, or
simplified model systems have to be addressed, where,
e.g., only the interaction of electrolyte molecules with
the electrode surface is investigated [30, 31].

II. ELECTROCHEMICAL ENERGY STORAGE

When Li–ion and post–Li-ion batteries – with alkali
metal ions shuttling back and forth between anode and
cathode – are discussed, one of the big advantages that
facilitates the computational treatment is the fact that
the ion leaving on the anode side is of the same type as
the ion entering at the cathode side. This represents an
important difference to classical battery types such as,
e.g., the Daniell element. In fact, during the discharge
of a Daniell element, at the anode Zn2+ ions go in solu-
tion, while at the cathode side Cu is deposited. Hence,
the differences in the respective solvation energies also
contribute to the overall reaction and, therefore, to the
voltage of the battery.

A. The general case

While the fact that solvation free energies do not need
to be accounted for make the computational treatment
of standard Li– and post–Li–ion systems much easier, we
nevertheless first derive the battery voltage from a formal
thermodynamic approach. By expressing the change in
Gibbs free energy in terms of the thermodynamic vari-
ables, one obtains:

dG = −SdT + V dp +
∑
i

µidni, (2)

with S the entropy, T the temperature and V and p rep-
resenting volume and pressure. Finally, µi denotes the
chemical potential of component i, while dni refers to
the corresponding change in the number of particles. Yet,
in an electrochemical environment, we are dealing with
charged species and therefore, here the electrochemical
potential µ̃i = ∂G

∂ni
has to be considered. The latter one

can simply be expressed as the sum of chemical poten-
tial µi and electrostatic potential ϕi multiplied by the
corresponding charge zie:

µ̃i = µi + zieϕi = µ0
i + kBT ln(ai) + zieϕi, (3)

where in the last step, the chemical potential of an ideal
solution is introduced, which comprises the activity coef-
ficients ai and the standard chemical potential µ0

i . Now,
we first consider a half cell (consisting of electrode and
electrolyte) for which equilibrium conditions require that
dG = 0. Hence, under the assumption of constant tem-
perature and constant pressure, the following equation
needs to be fulfilled for the half cell in equilibrium:

dG =
∑
i

µ̃idni = 0 (4)

In this formulation, dni accounts for the change in par-
ticle number of the respective species involved. Consider-
ing a typical half cell reaction, such as M 
Mz+ + ze−,
this then translates into:
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dG = µ0
M + kBT ln(aM )

−µ0
Mz+ − kBT ln(aMz+) − zeϕsol

−neµ0
e− − nekBT ln(ae−) + neeϕel

= 0 (5)

In the above expression ϕel and ϕsol correspond to the
electrostatic potential in the electrode and the solution,
respectively. Moreover, it has to be noted that in this
formulation z and ne are identical by definition. How-
ever, for clarity, at this point z is used for the charge of
the oxidized metal and ne for the number of electrons.
Next, introducing the change in Gibbs free energy at the
standard state ∆G0 (with ∆G0 = µ0

M − µ0
Mz+ − neµ0

e−),
followed by a subsequent regrouping, yields:

∆G0 + kBT ln
aM

aMz+ + ane

e−
+ nee(ϕel−ϕsol) = 0 (6)

It has to be noted that ∆G0 is directly related to the

standard electrode potential (E0 = −∆G0

nee
) and in prin-

ciple still contains a temperature dependence. In other
words, the usually applied standard electrode potential
is strictly speaking only valid at standard conditions and

actually decreases with temperature (∂E
0

∂T is typically of
the order of 1 mV/K). Furthermore, by identifying the
potential difference ϕel−ϕsol with ∆ϕ, finally the Nernst
equation for the corresponding half cell is obtained:

∆ϕ = E0 − kBT

nee
ln

aM
aMz+ ane

e−
= −∆GR

nee
(7)

In the last step, ∆GR represents the Gibbs free energy
of reaction for the electrode. The above derived Nernst
equation for a half cell can now easily be extended to
a general formulation for the full cell. Clearly, the open
circuit voltage (OCV) of any battery is determined by the
respective half–cell reactions on the anode and cathode
side and thus by the resulting overall change in Gibbs
free energy during the electrochemical reactions in the
full cell, thus yielding:

UOCV = ∆ϕcathode − ∆ϕanode

= ∆E0
cell −

kBT

nee
ln
∏
i

avii (8)

In practice, at low concentration the activity coeffi-
cients ai can usually be replaced by the concentration
of the respective element. As will be discussed in the
next paragraph, a computational treatment of a half cell
is possible by making use of the computational hydro-
gen electrode concept. Afterwards, this formal thermo-
dynamic treatment will be applied to the case of Li– and
post–Li–ion type batteries, resulting in a significant sim-
plification of the above equation.

1. Computational hydrogen electrode (CHE)

Before continuing with the case of Li–ion type batter-
ies, we focus on the above derived general case and line
out how the reactions at the respective electrodes can be
described computationally. For this purpose, we again
take the expression of the Nernst equation for the half
cell as given in Eq. (7). As already introduced above,
this formalism contains the electrochemical potentials of
the solvated ions in the respective half cell. Therefore, a
direct computation would be extremely expensive, as a
proper modelling of solvation free energies in principle ne-
cessitates explicit ensemble averages and thermodynamic
integration schemes [32]. Fortunately, a very elegant con-
cept to circumvent this issue, which is frequently used in
surface science, does exist: The computational hydrogen
electrode (CHE). Indeed, the CHE allows to investigate
half cells within a grand–canonical approach, yet, with-
out increased computational cost [33, 34].

The CHE concept makes use of the fact that at stan-
dard conditions, which define the standard hydrogen elec-
trode (SHE), hydrogen in the gas phase and protons in
solution are in equilibrium, meaning µ̃H+

(aq)
+ µ̃e− =

1
2µH2 . Furthermore, the dependence of the SHE on the
electrode potential and pH value (or concentration) is
well–known. As a consequence, instead of addressing the
solvated proton, the computationally accessible hydrogen
molecule in the gas phase can be used as a reference [33–
35]. Applying this approach for the case of hydrogen,
one arrives at the following expression with respect to
the electrochemical potential of proton and electron in
solution:

µ̃H+
(aq)

+ µ̃e− =
1

2
µH2 − eUSHE − kBT ln(10)pH (9)

Here, USHE stands for the electrode potential with re-
spect to the standard hydrogen electrode potential. An
analogous extension of this concept to other redox cou-
ples is then easily possible [35, 36]:

µ̃Mez+
(aq)

+ zµ̃e− = µMe − ze(USHE − U0)

− kBT ln(aMez+) (10)

with U0 the reduction potential of the Me/Mez+ couple
with respect to the SHE scale and the pH replaced by the
activity. With these expressions for the electrochemical
potentials of the charged ions in solution, the half–cell
reaction in Eq. (7) can be determined without explicit
calculation of the solvated species.

In practice, this grand–canonical approach is often ap-
plied to determine phase diagrams as a function of the
electrochemical environment – again, this is in particular
used in surface science to investigate the most stable sur-
face coverage for given conditions [37]. For this purpose,
the dependence of the electrochemical potential on tem-
perature, concentration and applied potential can for-
mally be combined to a single term ∆µ̃, which is obtained
by subtracting the total energy of the bulk phase from the
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FIG. 5. Schematic representation of a surface phase diagram
with respect to the normalized electrochemical potential for
the co–adsorption of chlorine and hydrogen on a Pt (111) sur-
face. Reprinted from Gossenberger et al. [35] with permission
from Elsevier.

electrochemical potential of solvated proton and electron.
This normalization step corresponds to the assumption
that the bulk phase free energy is independent of tem-
perature and electrochemical environment and hence can
be approximated by the total energy, which for instance
is directly accessible by density functional theory (DFT)
calculations. For the proton this then results in the fol-
lowing equation:

∆µ̃H+(T, p, U) = µ̃H+
(aq)

(T, p, U) + µ̃e− −
1

2
EH2

≈ −eUSHE − kBT ln(10)pH
(11)

For the case of metal species the same line of thought
yields:

∆µ̃Mez+(T, p, U) = µ̃Mez+
(aq)

(T, p, U) + zµ̃e− − EMe

≈ −ze(USHE − U0) − kBT ln(aMez+)
(12)

This approach is well–known for accessing the phase
diagrams of electrode surfaces [35, 38–40], where the
change in Gibbs free energy, ∆G, due to the adsorption
of a certain species on an electrode surface is typically ex-
pressed as a function of the normalized electrochemical
potential ∆µ̃ of the involved species:

∆G ≈ Eads −
∑
i

ni∆µ̃i(T, p, U) (13)

Here, Eads corresponds to the energy difference between
the surface with adsorbed species on the one hand and
the clean surface and the bulk phase of the adsorbates
on the other. Note that for the discussion of electrode

surfaces the change in Gibbs free energy is typically ad-
ditionally normalized to the surface area (∆γ = ∆G/A).
The most stable phase for given conditions is then the
one with the lowest ∆γ, thus translating in a phase dia-
gram [35] as depicted in Fig. 5.

This formalism can now easily be transferred to investi-
gate the stability of intercalation compounds – obviously
there is a close analogy between the case of adsorption on
a surface and an intercalation process – under given elec-
trochemical conditions. For this purpose, the adsorption
energy simply has to be replaced by the insertion energy,
which analogously becomes the energy of formation of
the intercalation phase with respect to the pristine elec-
trode material and the bulk phase of the charge carrier.
This now allows to evaluate the stable bulk phases at
given electrochemical conditions, exactly as in the case
of a surface. Moreover, for a given electrode reaction the
CHE approach can then also be used to determine the
corresponding voltage of the half cell with respect to the
SHE.

B. Alkali metal ion batteries

The expression for the respective half cell potentials as
derived in Eq. (7) is fairly complicated and would, with-
out the work-around introduced in the previous para-
graph, be highly demanding to access computationally.
However, in case of alkali metal ion batteries such as
LIBs, we are even in a more fortunate situation as only
one species is involved in the overall process. In fact,
the effective thermodynamic process that occurs during
discharge is the transfer of a Li atom from anode to cath-
ode, such that the actual solvation (desolvation) process
of Li+ ions at the anode (cathode) and its energy gain
(cost) do not have to be considered in the total energy
balance. In other words, for determining the energy gain
per transferred electron (i.e. the voltage) of a LIB, the
half–cell reactions do not have to be explicitly consid-
ered. The corresponding open circuit voltage can instead
directly be obtained in terms of the overall change in
Gibbs free energy between the respective states of anode
and cathode material:

UOCV = −∆G

nee
(14)

In Eq. (14), ∆G corresponds to the change in the Gibbs
energy, whereas UOCV is the resulting open circuit volt-
age. ne is the number of electrons that is transferred
between anode and cathode, while e denotes the elemen-
tary charge. When ∆G is expressed in eV, then UOCV
in volts can be very conveniently determined by just di-
viding this value by the number of transfered electrons
ne. If the Gibbs free energy and the charge transfer are
given per mole, Eq. (14) transforms into the frequently
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used form:

UOCV = −∆G

zF
, (15)

where F corresponds to the Faraday constant, whereas
z denotes the valency of the charge carrier, i.e. 1 in the
case of alkali metal atoms and 2 in the case of alkaline
earth atoms.

In the following, the determination of the OCV for an
archetype LIB with a graphite intercalation compound
(GIC) as anode and a transition metal (TM) oxide cath-
ode will be exemplified. For this purpose, the following
full cell reaction has to be considered:

Lix1+∆xC6 + Lix2
TMO2 → Lix2+∆xTMO2 + Lix1

C6

(16)
Here, ∆x > 0 is assumed, such that the reaction di-

rection represents the discharge of the battery, i.e., Li
deintercalates at the GIC anode and is transferred to
the TM oxide cathode. As discussed above, the OCV for
this cell reaction is then obtained from the corresponding
overall difference in Gibbs free energy:

∆G = G(Lix2+∆xTMO2) + G(Lix1C6)

− [G(Lix2TMO2) + G(Lix1+∆xC6)] (17)

As already pointed out before, this simply means that
we consider the free energy gain for moving a Li atom
from the anode side to the cathode side. In practice, the
free energy expressions are typically approximated by the
total energies, which in turn can easily be obtained from
DFT calculations, thus yielding:

∆G ≈ ∆E = Etot(Lix2+∆xTMO2) + Etot(Lix1
C6)

− [Etot(Lix2TMO2) + Etot(Lix1+∆xC6)] (18)

This assumption is justified by the fact that the total
energy is the dominant contribution to the Gibbs free
energy, while e.g., pV (for a solid) as well as vibrational
and configurational entropy are typically rather small. In
fact, the configurational entropy of a binary solid solution
amounts to less than ∼ 20 meV/atom at room tempera-
ture, whereas vibrational entropy typically lies roughly in
the same range. Moreover, only the entropy differences
between the different states are actually of importance,
which means that a large part of the entropic contribu-
tion typically cancels out, thus resulting in overall errors
in the order of 0.01 V [41, 42]. Finally, the voltage at a
given state of charge (i.e., between x1 + ∆x and x1) can
be directly obtained via:

U(x1 + ∆x, x1) = − ∆E

e(∆x)
(19)

Remember that the discharge process formally corre-
sponds to the transfer of neutral Li atoms from anode

FIG. 6. Gibbs free energy of two different cathode mate-
rials and the corresponding voltage profiles with respect to
the chemical composition (LixM) for the prototypical cases of
solid solution behavior (left) and phase separation into two
phase α and β (right). The straight yellow line corresponds
to the common tangent construction (see reference [43] for
similar discussion).

to cathode. Under the assumption of constant temper-
ature and pressure, the change in Gibbs free energy can
also be expressed by the respective Li chemical potential,

µLi =
(
∂GLi

∂nLi

)
P,T

:

UOCV = −∆G

nee
= −µ

cathode
Li − µanodeLi

e
, (20)

with µcathodeLi and µanodeLi the Li chemical potential at the
cathode and the anode side, respectively.

1. Thermodynamic interpretation of charge/discharge
curves

An experimental standard method for characterizing
the performance of anode and cathode materials is the
determination of the charge–discharge profile, i.e., the
evolution of the voltage with respect to the state of
charge. While the resulting voltage profiles are frequently
used to qualitatively describe the respective materials,
the direct relation of the charge–discharge curve to the
underlying phase diagram is not always considered. To
clarify this point, the Gibbs energy and the correspond-
ing voltage profile for two prototypical cases, namely
phase separation and solid solution behavior, are de-
picted in Fig. 6.

Indeed, the voltage profile of a cathode material is di-
rectly related to the Gibbs free energy of the (meta–)
stable phases (with different Li concentrations) the sys-
tem passes through during discharge (or charge). Hence,
the phase diagram determines which phases have to be
considered and where phase transition are to be expected.
As derived in Eq. (20), the voltage profile of a cathode
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FIG. 7. Voltage profile for solid solution and phase sepa-
ration behavior for several characteristic cathode materials.
Reprinted from Liu et al. [44]. With permission from Else-
vier.

material with respect to a given anode can then be ob-
tained from their difference in chemical potential. For
a Li–metal anode the corresponding Li chemical poten-
tial µanodeLi is constant, while the Li chemical potential at
the cathode is obtained from the derivative of its Gibbs
free energy with respect to the concentration. Hence, as
is evident from Eq. (20), this derivative directly deter-
mines the shape of the resulting voltage profile. From
Fig. 6 it becomes clear that a slopy potential is the sig-
nature of a solid solution process, whereas a plateau in
the charge–discharge curve is directly related to a phase
separation [43]. The solid solution process, as depicted
in the left panel of Fig. 6, means that the system can
accommodate each Li concentration without significant
structural changes (phase transition). In the right panel
of Fig. 6, on the other hand, the phase separation into
the two phases α and β is depicted. The common tangent
construction in the top panel (yellow line), shows that be-
tween the two limiting concentrations, indicated by the
dashed lines, the coexistence of the α and the β phase,
with Li concentrations xα and xβ , will always be the
energetically most favorable situation. Hence, a phase
separation occurs, which results in a voltage plateau in
the charge–discharge curve, as depicted in the bottom
panel.

In Fig. 7, experimentally determined discharge curves
for several different cathode materials are depicted [44].
The voltage profiles of LixCoO2 and the different layered
NMCs are prototypical examples for a solid solution be-
havior, whereas the spinel and olivine type compounds
show the characteristic step profile with a pronounced
plateau that indicates different phases and thus phase
separation. Finally, it has to be pointed out that for real
electrodes discharge and charge profile do not fall on top
of each other but are separated by a certain offset, fre-
quently referred to as polarization. This is a consequence

of kinetic limitations due to, for instance, increased dif-
fusion barriers.

2. Further insights into the electrochemical potential

As already introduced in Eq. (20), for the transfer of
a Li–ion (and the corresponding electron) from anode to
cathode the OCV is fully determined by the difference in
the respective Li chemical potential on the cathode and
the anode side.

Starting from this expression, additional electrochem-
ical considerations can be made. In fact, the Li chemical
potential can be denoted as the sum of the electrochem-
ical potentials of a Li+ ion and the corresponding elec-
tron, as already briefly introduced in the thermodynamic
derivation of the Nernst equation:

µLi = µ̃Li+ + µ̃e− (21)

Now, to gain further insight, the exemplary case of two
electrodes in vacuum that are not connected will be dis-
cussed. For this situation, the respective potentials have
to be determined relative to the vacuum level, as depicted
in Fig. 8. Next, it is assumed that this anode and cath-
ode configuration is immersed in an electrolyte. Keeping
in mind that the electrolyte is able to shuttle Li+ ions
between the electrodes to establish an equilibrium distri-
bution, the Li+ electrochemical potential in the anode,
cathode and electrolyte have to be identical. To put it
differently, if µ̃Li+ in electrode and electrolyte was differ-
ent, the Li+ ions in the electrolyte would compensate the
differences by adapting their concentration profile until
µ̃Li+ becomes constant throughout the system [32]. Inter-
estingly, the fact that under these equilibrium conditions
µ̃Li+ is the same for anode and cathode (and electrolyte)
means that, for the electrolyte containing system, the dif-
ference in electron electrochemical potential at the anode
and cathode side actually determines UOCV :

UOCV = −µ
cathode
Li − µanodeLi

e
= −

µ̃cathodee− − µ̃anodee−

e
(22)

The relationship between µLi, µ̃Li+ and µ̃e− at the an-
ode and cathode side in vacuum and in presence of the
electrolyte are schematically depicted in Fig 8. Consid-
ering the full battery cell with immersed electrodes – un-
der open circuit conditions – this also means that the
electronic levels have to adjust as compared to the situ-
ation in vacuum. As just derived, this must happen in
such a way that the difference in the electron electro-
chemical potential corresponds to the OCV [32], which
can be inferred by comparing the schematic drawings in
Fig. 8. Of course, now the question arises how this ad-
justment can be understood on a microscopic scale. In
fact, a convincing explanation relies on interpreting the
level alignment in terms of the electric double layer for-
mation at the anode and cathode side in the presence of
an electrolyte. Within the double layers, electric fields
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FIG. 8. Chemical potential of Li as well as electrochemical potentials of Li+ and e− for anode and cathode material a) before
and b) after introduction of an electrolyte under open circuit conditions. For the electrode immersed in electrolyte, it has to
be noted that µ̃Li+ is equal in anode, cathode and electrolyte. The dashed lines in the case of µ̃Li+ and µ̃e− are just a guide
for the eye and should not be understood as realistic potential curves. Partially redrawn from [32].

are created, which equate the electrochemical potentials
of the Li+ ions. Similarly, the electrons are subject to
the same field, but due to their opposite charge their
electron electrochemical potentials in cathode and anode
shift in such a way that the final difference amounts to the
open–circuit voltage. Consequently, with regard to their
respective positions for the single electrodes in vacuum,
the electrochemical potential of Li+ ions and electrons
would shift in opposite directions [32].

Moreover, it should be noted that in equilibrium, the
potential ϕ and hence also the chemical potential µLi+ of
the Li+ ions is constant throughout the bulk electrolyte.
For further clarification, the relations between the dif-
ferent chemical and electrochemical potentials and their
spatial dependence are again schematically depicted in
Fig. 9. Hence, for open circuit condition there are nei-
ther electric fields in the bulk of the electrodes nor in
the bulk electrolyte. Electric fields have to be present,
yet, are limited to the interfaces and result from changes

FIG. 9. Potential curves between anode and cathode for a bat-
tery with liquid electrolyte at open circuit conditions. While
the linear potential changes in the light gray areas represent
the electric double layer, it has to be noted that the indicated
potential drop/increase is a very crude approximation and
only serves for illustrative purposes. In particular, it should
be kept in mind that in the bulk of anode, cathode and elec-
trolyte the potentials are constant. Potential changes and
hence electric fields are restricted to the double layer.

in the electrostatic potential. These changes are quali-
tatively indicated by a slope in Fig. 9, which, however,
has to be understood as a schematic illustration. The
real evolution of the double layer potential takes a more
complex form that goes even far beyond frequently used
descriptions like the Stern model [32, 45].

3. Redox concepts

As already discussed in the introduction, the voltage
of a battery is determined by both anode and cathode
material (see Fig. 3). In fact, in an ideal battery the
chemical potential of Li in the anode should lie as close
as possible to the potential of the Li/Li+ couple i.e.,
close to the chemical potential of Li metal as this cor-
responds to the thermodynamical stable form of solid
Li. However, for Li metal anodes, Li plating can oc-
cur, going along with the risk of dendrite growth and
battery failure [23, 46]. Hence, Li metal is nowadays
only considered for solid state batteries, while standard
LIBs usually rely on graphite based anodes. In a simpli-
fied picture, the chemical potential of the cathode on the
other hand is predominantly determined by the active
redox couple in the respective compound. This means
that e.g., in a LiCoO2 cathode the observed potential
profile is a consequence of the formal change in oxida-
tion state of the Co3+/Co4+ redox couple under delithi-
ation/lithiation (charging/discharging) of the electrode:

LiCo+3O2 
 Li + Co4+O2 (23)

It should be noted that Eq. (23) assumes full delithia-
tion, a scenario which is rarely possible for realistic cath-
ode materials. In fact, for the case of layered oxides such
as LiCoO2, the repulsion between the transition metal
oxide layers is getting strongly increased under delithia-
tion and finally results in a collapse of the structure. The
exemplary case of LiCoO2 actually allows only for about
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FIG. 10. Qualitative picture of redox processes, exemplified
with respect to the electronic density of states (DOS) in a
LiCoO2 cathode under operation [48–50]. The anode Fermi
level of the Li metal anode is unchanged (left), while the
cathode Fermi level shifts down during charging (delithiation)
as indicated by the red arrow between the two dashed lines
(right).

half of its theoretical capacity to be exploited (i.e., 0.5
Li/f.u.), before the structural integrity is affected [47].

In Fig. 10, a schematic diagram of the electronic struc-
ture of a LiCoO2 cathode in combination with a Li–metal
anode is depicted, corresponding to the microscopic pic-
ture of the macroscopic situation discussed in Fig. 8,
with the OCV determined by the difference in the elec-
tron electrochemical potential. For this particular case,
the Co 3d states are located above the oxygen 2p states
and are hence the states that are involved in the redox
process. Thus, when the battery is charged (delithiated),
Co is oxidized from 3+ to 4+ and consequently electrons
are removed from the 3d states.

As already mentioned above, this oxidation state pic-

FIG. 11. Electronic density of states (DOS) for LiCoO2, as
obtained from DFT calculations that have been performed
for this review, applying the SCAN Meta–GGA exchange–
correlation functional. The partial DOS for oxygen p– and
Co d–states are depicted in red and cyan, the total DOS is
shown in black.

FIG. 12. Oxo to peroxo transformation upon delithiation of
Li2RuO3 (2O2−/(O2)n−). The computed COOPs for Ru–O
and O–O bonds are depicted. The increasing O–O COOP
amplitude indicates O–O bond formation under oxidation
of Li2−xRuO3. The corresponding electron densities of the
bands with the strongest anti-bonding O–O bonds show a
polarization of the O 2p–orbitals which results in the forma-
tion of σ-type O–O bonds [15]. With permission of the Royal
Society of Chemistry.

ture, however, corresponds to a simplified view. In fact,
the description of the redox process as adding (removing)
electrons to (from) unaltered Co 3d states holds only for
a so–called rigid band model, which in our case assumes
that both the electronic and the crystal structure of the
LiCoO2 cathode are unaltered by the insertion/removal
of a Li atom [42]. While this description allows to gain
an intuitive and qualitatively correct picture of the un-
derlying redox process, it is of limited validity [42, 49].
This becomes evident when comparing the schematic fig-
ure and the DFT calculated density of states in Figs. 10
and 11. The DFT calculations yield a qualitatively sim-
ilar picture as the schematic drawing in Fig. 10, yet, the
details are different. In fact, the partial DOS indicates
that indeed the Co 3d states are dominant below the
Fermi level, however, there is also some hybridization
with the oxygen 2p states. Hence, the delithiation will
also affect the oxygen states as opposed to the simpli-
fied redox picture discussed above. Furthermore, the re-
moval of Li atoms will also affect the details of the crystal
structure, which in turn will also have an impact on the
electronic structure.

Obviously, in non–ideal redox systems it comes not as a
surprise that species other than the transition metals may
participate in a redox process. In this regard, anionic re-
dox is an often discussed scenario, offering new pathways
for increasing the capacity of cathode materials [17, 51].
In transition metal oxides, the case of anionic redox typ-
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FIG. 13. Electron localization function (ELF), as obtained
from DFT calculations on Na2/3Mg1/3Mn2/3O2, showing one
O 2s and one O 2p oxygen lone pair per oxygen. For the case
of Na4/7Mn6/7O2, one and two oxygen lone pairs per oxygen
occur in the Mn-rich (orange) and Mn-poor (red) oxygen en-
vironments, respectively [17]. Reprinted from this reference
with permission from Springer Nature.

ically occurs when the TM 3d states are located below a
larger fraction of the oxygen 2p states. In this case the
anion p–band will also be strongly involved in the redox
process, which in turn may have negative consequences
such as the formation and release of oxygen gas, hence
resulting in the degradation of the electrode [49, 52, 53].
On the other hand, if reversible anionic redox is possible
without deteriorating the electrode stability, it allows for
further Li extraction and therefore gives access to addi-
tional capacity [15, 17, 54, 55]. Thus, an understanding
of anionic redox and how to exploit it is a highly inter-
esting question with respect to improving the capacity of
cathode materials.

For several oxide cathode materials it has been sug-
gested that reversible anionic redox is only possible when
the created peroxo–like (O2)n− species interact with the
transition metals through a reductive coupling mecha-
nism. Such a scenario was recently demonstrated by
DFT studies on the oxidation of Li2RuO3 [15, 55]. In
fact, the investigation of changes in the charge distri-
bution during delithiation in combination with a crys-
tal orbital overlap population (COOP) analysis of the
oxygen–oxygen bonding characteristics allowed to show
a reductive coupling between peroxo–like (O2)n− species
and the transition metal (see Fig. 12). Extending these
studies, more recently a unified picture of anionic re-
dox was proposed [17]. In this work, oxygen lone pairs
have been detected by evaluating the electron localization
function (ELF), finally resulting in suggesting the num-
ber of created holes per oxygen as the crucial parameter
to quantify the reversibility of anionic redox, with a crit-
ical maximum value of 1/3 holes per oxygen atom (see
Fig. 13) [17].

C. The electrochemical stability window

Before closing this first part of the review, a still ex-
isting misconception with respect to electrolyte stabil-
ity has to be discussed. Frequently, stability criteria for
electrolytes are deduced by analyzing their HOMO and

FIG. 14. Schematic representation of the electrolyte stability
window with respect to the chemical potential of an electron.
HOMO and LUMO levels are shown for clarification (redrawn
from [56]).

LUMO levels with respect to the Fermi level of anode and
cathode, which is, however, a misleading concept [56]. As
will become clear immediately, it is not correct to identify
the HOMO/LUMO gap with the stability window of the
electrolyte. Instead, the stability of the electrolyte has to
be determined with respect to the oxidation and reduc-
tion potential (i.e. the thermodynamic stability), as in-
dicated in Fig. 14 [56]. One of the most prominent exam-
ples, which makes it very clear that the HOMO/LUMO
gap does not directly describe the stability window is cer-
tainly water. Whereas the HOMO/LUMO gap in water
can be computed to extend to almost 9 eV [57], in reason-
able agreement with experimental data [58, 59], the elec-
trochemical stability window of water is tremendously
smaller and amounts to the well–known 1.23 V. There-
fore, it has to be pointed out once more that it is the sta-
bility with respect to oxidation and reduction reactions
that determines the stability window of an electrolyte.
Nevertheless, the HOMO/LUMO gap may possibly be
interpreted as a kind of descriptor for the electrolyte sta-
bility by applying appropriate scaling relations [60, 61].

III. COMPUTATIONAL METHODS

In the last decades density functional theory (DFT)
has certainly evolved to one of the most widely used tools
in computational material science. The increasing com-
puter power in combination with the efficiency of DFT
calculations allows for the accurate simulation of materi-
als and processes on the atomic scale. While DFT calcu-
lations are typically performed for systems with a few 10
to 100 atoms, even simulations with 1000s of atoms are
nowadays feasible with massively parallel codes running
on supercomputers. On the other hand, if processes on
much larger length scales or for long time scales are of
interest, usually more coarse grained models such as clas-
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sical molecular dynamics, kinetic Monte Carlo (kMC) or
cluster expansion based Monte Carlo approaches are the
method of choice. However, often these coarse graining
schemes are also based on data from DFT calculations,
such that it seems justified to discuss the underlying prin-
ciples of DFT in some detail.

A. Density functional theory

Most quantum mechanical descriptions of non–
relativistic systems are simply based on the time–
independent many–body Schrödinger equation:

H Φ({~R}, {~r}) = E Φ({~R}, {~r}) (24)

Solving this eigenvalue problem allows to determine
the ground state energy E and the corresponding wave
function Φ. However, the many–body wave function Φ
depends on the electron and core coordinates (~r and
~R), thus making numerical solutions quite challenging
already for small system sizes. In fact, due to the high
computational effort a joint quantum mechanical solu-
tion for both electronic and nuclear degrees of freedom
is quickly intractable. Fortunately, electrons and nuclei
move on distinctly different time scales, such that the
electronic and nuclear degrees of freedom can be decou-
pled, resulting in the famous Born–Oppenheimer approx-
imation [62]. This decoupling makes the nuclear coor-

dinates {~R} enter the remaining electronic Schrödinger
equation as a set of parameters, resulting in the following
expression for the electronic Schrödinger equation:

Hel({~R})Ψ({~r}) = {Te + Vnn + Vne + Vee}Ψ({~r})

=

− ~2

2m
∇2 +

1

2

∑
i,j

e2

‖~ri − ~rj‖
−
∑
i,J

ZJe
2

‖~ri − ~RJ‖

+
1

2

∑
I,J

ZIZJe
2

‖~RI − ~RJ‖

Ψ({~r}), (25)

with the kinetic energy Te and the potential energy
terms, corresponding to the electrostatic interaction of
the involved species, i.e., electron–electron interaction
(Vee)), electron–nuclei interaction (Vne) and nuclei–nuclei
interaction (Vnn).

Although the Born–Oppenheimer approximation in-
deed is a very successful approach, it should be noted
that cases may exist for which its validity is not granted.
While the remaining problem now has reduced to solving
the electronic Schrödinger equation, this unfortunately
still amounts to a non–trivial task, only being exactly
solvable for the simplest situations. Consequently, al-
ready for treating small system sizes, further approxima-
tions are inevitable and this is where DFT sets in. The
underlying principle of DFT is the Hohenberg–Kohn the-
orem [64], which states that the ground state of a system

can uniquely be described by its electron density. At a
first glance, this seems surprising, however, when look-
ing at the electron density of a given system this cor-
respondence agrees with our intuition. As exemplified
in Fig. 15, the electron density of a molecule immedi-
ately allows to state where the nuclei are located. In
addition, the derivative of the electron density contains
information on the charge of a nucleus. Yet, only with
the Hohenberg–Kohn theorem the formal and very ele-
gant proof of such a correspondence was provided. As
a consequence, it is possible to express the Hamiltonian
in Eq. (25) as a functional of the electron density, which
drastically reduces the dimensions and thus the complex-
ity of the problem. Now, instead of determining the com-
plex many–body wave function, only the electron density,
being a function of the three spatial coordinates, needs
to be considered. In principle, this problem could then
be solved by determining the ground state energy using
a variational approach with respect to the electron den-
sity, which would correspond to the so–called orbital–free
DFT. Yet, due to its complicated and strongly non–local
character, broadly applicable approximations to the ki-
netic energy functional Te[n] have, even up to now, re-
mained elusive [65]. Hence an alternative approach has
evolved. For the latter one, the ground state electron
density is determined by mapping the Hamiltonian on a
system of non–interacting electrons, which is designed in
such a way that it exhibits the same ground state electron
density as the original Hamiltonian. In this formulation,
the electron density is then simply obtained from the sin-
gle particle states of the non–interacting system ψi(~r) via

n(~r) =
∑N
i=1 |ψi(~r)|2.

Now, the expectation value E[n] of the Hamiltonian is
minimized with respect to the single particle states un-
der normalization constraint, finally yielding the Kohn–
Sham equations [66]:{

− ~2

2m
∇2 + vext(~r) + vH(~r) + vxc(~r)

}
ψi(~r)

= εi ψi(~r) (26)

In the above expression, vH(~r) represents the Hartree
potential corresponding to the classical electrostatic in-

FIG. 15. Electron density of a C2H4 molecule. From the max-
ima in the electron density it is easy to extract the position of
the carbon and hydrogen atoms. Reprinted from [63]. With
permission from Elsevier.
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teraction within an electron cloud, whereas vext(~r) stands
for the external potential that is determined by the nu-
clei. Finally, the so–called exchange–correlation poten-
tial, vxc(~r), then accounts for all quantum–mechanical
many–body effects. The Kohn–Sham equations actu-
ally correspond to eigenvalue equations that need to
be solved self–consistently, as the solutions also (re–
)enter the Hamiltonian via the Hartree and the exchange-
correlation potential. The total energy of the electronic
Hamiltonian is then finally obtained from the following
expression:

E =

N∑
i=1

εi + Exc[n] −
∫

vxc(~r)n(~r) d~r− VH[n] (27)

At this point it is interesting to note that neglecting
the exchange–correlation functional Exc[n] and its func-
tional derivative vxc[n] would simply result in the Hartree
approximation, i.e., the energy of a system without any
quantum-mechanical many-body effects. Note further-
more that the eigenvalues of the Kohn–Sham equation εi
are typically interpreted as single particle energies, which
has proven to be a valid approximation. However, in
principle, the physical meaning of the εi is not a priori
clear, as they originally correspond the Lagrangian mul-
tipliers in the variational approach used to determine the
ground state energy of the Hamiltonian.

Indeed, as can be inferred from Eq.(27), the exchange–
correlation term crucially contributes to the total energy
of the system. As already stated above, it contains all
quantum-mechanical many-body effects, and only a suit-
able approximation of this unknown term allows for real-
istic modelling. With the advent of DFT, the exchange–
correlation was originally described within the so–called
local density approximation (LDA), which is based on
the electron density and the corresponding exchange–
correlation energy of the homogeneous electron gas [66].
This means that within a LDA calculation only the local
electron density is taken into account, which makes LDA
a local functional:

ELDA
xc [n] =

∫
d3~r n(~r) εLDA

xc (n(~r)) (28)

The standard approach in material science is based on
the generalized gradient approximation (GGA) [67–69],
for which the Perdew-Burke-Ernzerhof (PBE) functional
is the by far most frequently used implementation [70].
The GGA formalism describes the exchange–correlation
as functional of the local electron density and the gra-
dient of the latter one, meaning that εLDA

xc is replaced
by εGGA

xc (n(~r), |∇n(~r)|). This type of functional is called
semi–local, as the consideration of the density gradient
indirectly accounts for the nearby electron density. While
GGA calculations certainly have yielded satisfactory re-
sults in many applications, there remain shortcomings of
this approximations, which may become rather severe,
depending on the system. In particular the treatment of
systems with localized electrons, such as the d–electrons

in transition metals, is prone to errors in GGA based
calculations since this functional tends to unrealistically
smear out the electron density [71]. This is a consequence
of the so–called self–interaction error that can be shown
to result in an artificial delocalization of electrons for
semi–local functionals. Going along with this fact, GGA
calculations are not able to correctly reproduce the band
gaps of semi–conductors and insulators.

However, these shortcomings can be corrected in a sim-
ple and efficient way by applying the GGA+U approach.
Indeed, this means that the more localized character of
electrons can simply be accounted for by a Hubbard–
model like correction [72]. Here, often the rotationally
invariant form as introduced by Dudarev is applied [73].
While GGA+U in principle is simple and efficient, it re-
lies on a parameter (the U parameter) that has to be
supplied to the calculation either as an empirical value
or can be obtained via a linear response calculation for
the given system. In practice, often empirical U param-
eters are used, which, however, in a way makes the cal-
culations lose their predictive power. For Li–ion batter-
ies, benchmark studies have been conducted that were
able to predict a reliable set of U parameters in par-
ticular for the treatment of oxide materials [74]. Still,
the search for improved descriptions of the exchange–
correlation has been an ongoing task and methods be-
yond GGA and GGA+U have been developed. The con-
ceptually next step is to include not only the gradient
of the electron density but also higher order terms, such
as the Laplacian or the kinetic energy density, for the
description of the exchange correlation [75–77]. Again,
there exist different implementations of these so–called
meta–GGA functionals. Here, the rather recently devel-
oped SCAN functional seems to be a highly promising
variant which describes many situations correctly at the
expense of much lower computational cost than calcula-
tions for instance based on hybrid functionals [78]. The
latter ones are constructed by including a specific amount
of exact exchange, meaning that a certain portion of the
wave–function based Hartree–Fock exchange is consid-
ered, making this type of calculations significantly more
expensive. Again there exist different implementations
such as HSE, B3LYP or PBE0, which mostly differ by
the amount of exact–exchange that is considered [79–82].

Finally, it has to be pointed out that most function-
als are error–prone with respect to systems with strong
van der Waals interactions, which for instance is crucial
for the adsorption of molecules or the interlayer inter-
action in graphite. Hence, the correct modelling of van
der Waals interactions may indeed also be of importance
for certain systems in battery research. There exist vari-
ous approaches to include dispersion forces, one of them
being the Grimme D3 method [83]. It provides a sim-
ple correction scheme that is computationally essentially
free of cost. Indeed, the D3 correction simply uses a set
of parameters that has been determined for particular
molecules to describe the van der Waals interaction. De-
spite the conceptually simple approach, there are many
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FIG. 16. Jacobs ladder schematically picturing the evolution
of exchange–correlation functionals to reach an increasing ac-
curacy [89]. The blue dashed lines indicate van der Waals
type corrections for the respective levels.

cases, where this scheme has proven to be quite accu-
rate [84]. For surfaces, additional improvement has been
obtained when in combination with the dispersion cor-
rection the modified RPBE functional is used, which is
an adapted version of the PBE functional [85, 86]. A
different way to treat van der Waals interactions is by
taking the non–local nature of van der Waals forces into
account, applying a non–local functional. While this ap-
proach has also been successfully applied for battery ma-
terials, it comes at somewhat increased computational
cost [87].

A further functional alternative that has to be men-
tioned in this context is the BEEF–vdW functional
(Bayesian Error Estimation Functional). It is a semi–
local functional that includes a non–local correction
term and was designed as a general purpose exchange–
correlation functional. The BEEF functional is obtained
from a machine learning inspired approach and has to be
understood as a compromise to best describe the different
kinds of physical and chemical interactions, particularly
suited for catalysis and surface science [88]. Moreover,
the BEEF functional allows for an uncertainty quantifi-
cation at minimal computational cost by determining the
total energy for an ensemble of functionals (with a de-
fined distribution of different model parameters) [88].

Finally, the search for an improved description of the
exchange–correlation functional is still an ongoing task,
ideally striving for achieving chemical accuracy, which
is typically defined as ≈ 0.04 eV per atom (1kcal/mol).
When referring to the development of more accurate
functionals that are able to describe different types of
problems, often the picture of the Jacob’s ladder as intro-
duced by Perdew is evoked [89]. This ladder simply sym-
bolizes that a more accurate description of the exchange–
correlation functional, meaning amongst others the ful-
fillment of more mathematical constraints, is desirable
and also accessible with increasing computer power (see

FIG. 17. Insertion voltages for LixCoO2 as obtained by ap-
plying different exchange–correlation functionals as function
of the U parameter. Reprinted with permission from Isaacs
et al. [91]. Copyright (2020) American Physical Society.

Fig. 16). However, it has to be pointed out that there
is no straight-forward and systematic way of improve-
ment, which is maybe a bit misleadingly suggested by
this picture of a ladder. In fact, for a particular prob-
lem it may be possible that a simple description in terms
of the most widely used PBE functional is more success-
ful than a highly expensive hybrid functional calculation.
This is for instance true for metals, where the inclusion
of exact exchange may lead to artifacts in the density of
states [90].

To exemplify the quantitative impact of different
exchange–correlation functionals, the calculated inser-
tion voltages in LixCoO2 is depicted for selected function-
als and as a function of the U parameter (see Fig. 17).
While the results clearly show quantitative differences,
it has to be pointed out that qualitative trends are of-
ten the same. Hence, it should be emphasized that the
best suited functional indeed depends on the exact prob-
lem and therefore has to be chosen with care, both with
respect to a suitable description of the system under in-
vestigation and reasonable computational cost.

In practice, any DFT approach starts with the struc-
tural optimization of the investigated compound. After
determining the minimum energy configuration, the con-
ceptually next step is to determine the properties one
is interested in. Apart from energetic stability with re-
spect to competing phases, the electronic band structure,
optical, mechanical, vibrational and many more material
properties can be obtained. This means that DFT on the
one hand has a high predictive power and on the other
is a versatile tool to interpret experimental results by a
full analysis of the structure–property relationships of a
given compound.

1. Electronic Structure

As discussed above, the eigenvalues of the Kohn–Sham
equations correspond to the eigenenergies of the respec-
tive single electron wave functions. While it is not obvi-
ous that these eigenenergies have a physical meaning, in
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FIG. 18. Density of states for LiTMO2 (TM = Ni, Co, Mn), as
obtained from DFT calculation applying the PBE, PBE+U,
or SCAN functionals. From Chakraborty et al. [93]. This
article is licensed under a Creative Commons Attribution 4.0
International License.

practice these single electron states are used to determine
the band structure and the electronic density of states
(DOS) of compounds under investigation. The such ob-
tained band structure and DOS are usually successfully
interpreted as physical quantities and may be used to
gain insight into bonding character and electronic sta-
bility of the investigated material. This can be justified
by the fact that in many cases the one-particle energies
determined by more advanced schemes such as the GW
approximation only differ by an approximately constant
shift from the Kohn-Sham eigenvalues [92] so that the
shape of the band structure is hardly affected except for
the band gap.

A projection of the eigenstates on atom–centered or-
bitals furthermore allows a detailed analysis of the bond-
ing situation with respect to s–, p–, d– and f– type fea-
tures. In Fig. 18 the DOS of different Li–intercalated
layered oxides and the projections on oxygen 2p– and
TM 3d– states is depicted, emphasizing differences origi-
nating from the selected TM species, but also illustrating
once more the impact of the applied exchange–correlation
functional. In addition, advanced analysis schemes to
distinguish e.g., bonding from non–bonding and anti–
bonding contributions do exist, such as the crystal over-
lap orbital population (COOP) and electron localization
function (ELF)[94, 95]. These quantities have already
been briefly introduced during the discussion of anionic
redox processes (see Figs. 12 and 13).

Moreover, the charge density, especially when visual-
ized as a charge density difference plot, can also provide
viable information on the bonding situation in a given
material. With respect to redox concepts it is, on the
other hand, often desirable to assign a certain charge to
a given atom. For this purpose different charge parti-
tioning schemes are available, such as Mulliken charges,

Bader charges or the density derived electrostatic and
chemical (DDEC) approach [96–98]. These methods use
certain criteria to assign the charge distribution between
the atoms to one atom or the other. While these ap-
proaches usually yield the same trends, the absolute num-
bers may differ strongly. In particular, these methods will
typically not yield integer numbers such that there is no
one to one correspondence between the DFT computed
charge and the assigned oxidation state. Nevertheless,
these charge partitioning schemes are extremely useful
to track down changes in the charge distribution – e.g.,
under de–/lithiation of a compound.

2. Lattice Dynamics

Determining phase diagrams of solids with respect to
temperature in principle means that the free energy has
to be evaluated. However, in most cases temperature de-
pendent contributions are neglected and hence phase di-
agrams often are determined without taking vibrational
degrees of freedom into account. This is mostly due to
the fact that these contributions are rather small and that
accessing vibrational properties results in additional com-
putational costs. On the other hand, for a detailed in-
vestigation of a compound the vibrational properties may
be of great interest, as they contain viable information
and can, moreover, be an extremely sensitive measure
for the accuracy of the model description. Experimen-
tally, Raman spectroscopy and in particular operando
Raman studies on electrodes, have become an important
lab scale tool for the analysis of battery materials. The
fact that Raman spectroscopy is a local probe makes it
a complementary technique to standard characterization
tools such as X–ray diffraction. In principle, a Raman
measurement simply gives access to the atomic vibra-
tions or phonons at the Γ–point, which are directly ac-
cessible by means of DFT calculations and can there-
fore be used to characterize the occurring phases during
charge/discharge. Computationally, this means that the
phonon modes at Γ–point have to be determined, which
then can be classified as Raman active depending on their
underlying symmetry. By means of perturbation theory,
it is then also possible to obtain the Raman intensity of
a given mode. In general, phonons are calculated within
the harmonic approximation, assuming that the associ-
ated vibrations correspond to small displacements of the
atoms out of their equilibrium. For this case, the energy
landscape can be approximated by a harmonic potential.

From a generalized point of view, the theoretical treat-
ment starts from the following Hamiltonian:

H = Tnucl + VBO({~RI}) (29)

This formulation corresponds to describing the lattice vi-
brations as atomic motions on the Born–Oppenheimer
potential energy surface. Expressing the displacement

out of the equilibrium position ~R0
I by a displacement vec-

tor ~uI(~R
0
I), the potential energy can be expanded in a
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Taylor series with respect to the equilibrium, thus yield-
ing:

VBO({~RI}) = Eel({~R0
I}) +

1

2

∑
I,J

∑
µ,ν

∂2Eel({~R0
I})

∂uµI ∂u
ν
J

uµI u
ν
J + ... (30)

As the Taylor expansion is constructed around the equi-
librium positions, there are no forces acting on the atoms
and therefore the terms containing the first derivatives
have to disappear. Treating the kinetic energy as clas-
sical quantity, one finally obtains an expression for the
system Hamiltonian that corresponds to a set of coupled
harmonic oscillators:

H =
∑
I

MI

2
~̇u2
I + Eel({~R0

I})

+
1

2

∑
I,J

∑
µ,ν

Φµν(~R0
I , ~R

0
J)uµI u

ν
J , (31)

with the harmonic force constants

Φµν(~R0
I ,
~R0
J) =

∂2Eel({~R0
I})

∂uµI ∂u
ν
J

, (32)

as obtained from the Taylor expansion in Eq. (30). The
corresponding equation of motion can be solved by im-
posing periodic boundary conditions and using a plane
wave ansatz for the displacements, which finally reduces
to the eigenvalue equation

∑
J,ν

Dµν
IJ (~q)ενJ(~q) = ω2 εµJ(~q), (33)

with the dynamical matrix Dµν
IJ :

Dµν
IJ =

1√
MIMJ

∑
n

ΦµνIJ (~Rn)ei~q·
~RnI (34)

By solving this eigenvalue problem for a distinct wave
vector ~q, the corresponding phonon frequencies can di-
rectly be obtained. Hence, the main task is indeed to
determine the dynamical matrix, which can be achieved
by different approaches. First, there are density func-
tional perturbation theory (DFPT) [99] calculations and
second there is the finite displacement approach, which is
often referred to as direct method [100, 101]. The first ap-
proach has the advantage that it can be performed on the
unit cell of the system, however, the DFPT calculation
then has to be conducted for each desired ~q–point, sepa-
rately. The direct method typically uses finite displace-
ments of symmetry–non–equivalent atoms to determine
the force constants. Here, a supercell has to be used, to
make sure that the dynamics of the system is captured
correctly, since otherwise spurious self–interactions may
occur. However, usually a supercell size below 8–10 Å
has proven to be sufficient.

FIG. 19. Phonon dispersion curves for LiC6 and NaC6, pro-
jected to the reciprocal lattice of graphite. The yellow circle
at Γ–point indicates the position of the Raman active G–
band [102, 103].

As the vibrational frequencies depend on the specific
wave vector for which the dynamical matrix is solved,
one typically determines solutions along a certain path
in reciprocal space. This yields the phonon dispersion
curves, which are conceptually closely related to the elec-
tronic band structure. In Fig. 19, the dispersion curves
for LiC6 and NaC6 are depicted [102, 103], clearly show-
ing that differences between Li– and Na– intercalation
compounds are imprinted in their vibrational spectra.
The yellow circle indicates the so–called G–band – a
characteristic Raman signature of graphitic compounds
– which is observed to shift towards lower frequencies
under Li/Na–insertion. This has lead to identifying the
shifting G–band position as signature of the intercalation
process [102, 103]. On the other hand, instead of investi-
gating distinct directions, a sampling of reciprocal space
may be of interest. This gives access to the vibrational
density of states, which actually determines quantities
such as for instance the specific heat.

An important side note with respect to the computa-
tional treatment of lattice vibrations is, moreover, that
in polar materials a non–analytical correction has to be
considered to correctly account for the LO/TO splitting
at the zone center. For this purpose, the additional term

Dµν,NA
IJ =

1√
MIMJ

4πe2

NΩ

(~q · Z∗µ)I(~q · Z∗ν )J

~q · ε∞ · ~q
×
∑
n

ei~q·
~Rn ,

(35)
with ε∞ and Z∗µ being the dielectric and the Born ef-
fective charge tensor, has to be added to the dynamical
matrix [99, 104, 105]. However, the quantities contained
in Eq. (35) can in principle easily be determined by den-
sity functional perturbation theory [104, 106].

Before concluding this paragraph, it has once more to
be pointed out that, apart from being a sensitive probe
for gaining insight into structure and dynamics of a ma-
terial, phonons are contributing to the free energy of
a compound. Indeed, with respect to free energy cal-
culations, the theoretical treatment rarely goes beyond
the limits of the just introduced harmonic approxima-
tion, meaning that anharmonic effects are typically ne-
glected. Nevertheless, anharmonicities – i.e., deviations
of the potential landscape from a quadratic form – may
become important, in particular with increasing temper-
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ature. They are, apart from resulting in frequency shifts
and a broadening of the vibrational spectra, also of in-
terest for macroscopic properties, as anharmonicities are
for instance responsible for the finite lattice thermal con-
ductivity or the thermal expansion of solids. In prin-
ciple, there are different ways of handling the anhar-
monic contributions to the free energy with respect to
temperature and volume. The first, rather obvious and
computationally least expensive way is the frequently ap-
plied quasiharmonic approximation (QHA). For this ap-
proach, harmonic calculations are performed at different
cell volumes, thus allowing to assess the quasiharmonic
contribution to the free energy Fqha(V,T). Yet, exten-
sions beyond the QHA exist that are based on the de-
termination and perturbative treatment of higher order
force constants, thus giving access to temperature depen-
dent frequency renormalizations. Such frequency renor-
malizations can be achieved within the self–consistent
phonon (SCP) theory or its extension, the improved self–
consistent (ISC) theory [107–109]. In principle, ab inito
MD may also be applied to determine dispersion curves
or the phonon density of states through the use of the
Fourier transform of the velocity autocorrelation func-
tion [110]. This approach implicitly accounts for anhar-
monic effects, however, means long simulation runs and
rather large supercells to obtain suitable resolution in en-
ergy and reciprocal space. Finally, there exist advanced
methods to determine the anharmonic corrections to the
free energy without explicit consideration of higher or-
der force constants, one of them being thermodynamic
integration [111–113].

3. Disorder

Despite the fact that the computer power has been
largely increased, the treatment of disorder still easily
exceeds the feasibility of DFT standard calculations, as
they rely on relatively small periodically repeated unit
cells. A computationally less expensive way of handling
disorder in lattice based materials is the use of cluster ex-
pansion methods that describe the interaction in solids
in terms of adjusted one–particle and truncated many–
particle interactions. This in turn enables to project the
disorder on large and hence rather realistic simulation
cells. On the other hand, developing a cluster expansion
for a given compound is also a non–trivial task and may
come with the drawback of describing certain situations
less accurate than in a DFT calculation. To bridge this
gap, a different and rather elegant way to handle disorder
was introduced by Zunger [115]. This so–called special
quasirandom structure (SQS) approach, allows to create
rather small supercells, which aim at fulfilling the math-
ematical constraints characteristic for a random alloy. In
fact, the underlying idea is to alter the occupation of the
lattice sites that exhibit disorder until the resulting mul-
tisite correlation functions (pairs, triplets etc.) match
those in the random limit as close as possible. Hence,

FIG. 20. Predicted tendency to form a disordered rocksalt
compound as determined from comparison between fully or-
dered and SQS structures of LiA0.5B0.5O2 stoichiometry. The
size of the circle represents the ordering strength (small cir-
cles indicate strong ordering tendencies, whereas large ones
indicate compounds that are likely to be disordered). The
color of the circles quantifies the thermodynamic stability
with respect to competing phases (bright colors represent an
increased stability). Used with permission from Urban et
al. [114]. Copyright (2016) Wiley–VCH.

the disorder can be mimicked with comparatively small
cell sizes by matching these correlations. Mathemati-
cally, this simply means that the corresponding correla-
tion functions Π̄k,m have to be calculated. Here k and m
define geometric figures, which have k vertices and extend
up to the mth nearest neighbour, i.e., single sites, pairs,
triplets and so on are considered. Then, similar to the
below discussed cluster expansion approach, pseudo spin
variables are assigned to the respective atom types [116].
Finally, the product of these pseudo spin variables for all
sites of a figure is calculated, and subsequently the aver-
age over equivalent figures is taken, finally yielding the
correlation functions Π̄k,m [116]. In the SQS approach a
Monte Carlo algorithm is then applied to match the ana-
lytical value of the correlation function of a random alloy
as close as possible, i.e., (Π̄k,m)

SQS
∼= 〈Π̄k,m〉R [116]. In-

deed, this methodology has been shown to work reliably
for various types of systems [114, 117–119]. The great ad-
vantage of this approach is the fact that it allows a quick
construction of representative, moderate sized random
structures that can be evaluated by DFT as for instance
exploited in a screening study by Urban et al. [120]. In
this work the energy difference between SQS structures
and the most stable ordered arrangements has been used
for the assessment of disordering tendencies in Li–TM ox-
ides with LiA0.5B0.5O2 stoichiometry (see Fig. 20). How-
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ever, while a cluster expansion approach will also be able
to detect local ordering, the SQS approach is based on
the assumption of a complete random alloy and is hence
not suited to treat systems that show short–range order-
ing. Therefore, if short–range order is to be investigated
or e.g., order–disorder phase transitions are of interest,
cluster expansion methods are indeed the way to go.

4. Defects

Structural defects are an inherent material property
and every realistic material contains a certain amount
thereof, such as vacancies, interstitials or anti–site de-
fects, already simply for entropic reasons. While crys-
tals have to be charge–neutral on a macroscopic scale,
these microscopic defects can be positively or negatively
charged. To assess the respective stability of charged and
uncharged defects, the defect formation energies have to
be determined. At this point, it is important to note that
periodic calculations are only able to treat charge neu-
tral systems, which means that charged defects have to
be compensated within the unit cell in periodic DFT cal-
culations. This can be achieved by introducing a uniform
background charge, which in turn results in a certain er-
ror that has to be accounted for in the expression for the
defect formation energy [121]:

Ef [Xq] = Etot[X
q] − Etot[bulk] −

∑
i

niµi

qEF + Ecorr (36)

Here, Etot[bulk] and Etot[X
q] correspond to the DFT to-

tal energies of the defect free case and a defect containing
supercell. The charge of the defect is denoted by q, while
µi and ni are chemical potential and number of species
i. EF corresponds to the Fermi level and is given with
respect to the valence band maximum. Finally, the cor-
rection term Ecorr is added, accounting for the error due
to the uniform background charge.

While charged defects are an important topic by them-
selves and extensive reviews on their theoretical treat-
ment exist [121], they may also be crucial when bat-
tery materials are investigated. In particular, solid elec-
trolytes need to be bad electronic conductors, meaning
that charged defects may become important for the ion
conduction in these materials. Such a scenario is dis-
cussed for the case of ZnF2, a compound which recently
has been suggested as coating material for Zn metal an-
odes [122] and therefore needs to allow for Zn–ion dif-
fusion. Interestingly, the insertion of Zn metal into the
empty channels of the ZnF2 structure is energetically un-
favorable, such that neutral Zn atoms cannot be expected
to enter these channels. However, the calculated defect
formation energies show that the formation of Zn2+ in-
terstitials is favorable for a broad range of Fermi energies
(see Fig. 21 [123]). Hence, under certain electrochemical
conditions interstitial Zn2+ ions can exist in the empty

FIG. 21. Unit cell of ZnF2, highlighting the available diffusion
channels along the c–axis (left). Defect formation energy as
a function of the Fermi energy for different types of defects
such as vacancies, interstitials and anti–site defects (right).
Reprinted with permission from Han et al. [123]. Copyright
(2021) American Chemical Society.

channels of ZnF2, whereas neutral Zn atoms are thermo-
dynamically largely unstable in the ZnF2 matrix. Indeed,
this type of considerations may be of particular interest
when solid electrolytes are considered. To discuss the
possibility of a certain conduction mechanism, it is im-
portant to investigate the stability also with respect to
the insertion of charged ions. As already stated above,
macroscopically a crystal needs to be charge neutral, con-
sequently indicating that the insertion of a positive ion
in a solid electrolyte will have to be balanced in the elec-
trode/electrolyte interface region.

5. Diffusion

To enable fast charging of a battery, good kinetics is of
particular importance. On an atomistic scale this means
that fast migration of the diffusing ions from one lat-
tice site to the other has to be possible. The activa-
tion barriers that have to be overcome for such a migra-
tion process correspond to free energy differences. With
some basic knowledge about the diffusion mechanism –
often intuitive and based on geometrical reasoning – in-
dividual diffusion events can be investigated. To connect
atomistic diffusion barriers to a macroscopic diffusivity,
transition state theory (TST) [124] is often used. Fol-
lowing a non–rigorous thermodynamic quasi–equilibrium
approach, the rate constant of a migration process can
be related to the difference in Gibbs free energy between
the initial state and the transition state, as expressed in
the frequently applied Eyring equation [125, 126]:

kTST =
κkBT

h
e

−∆G
kBT (37)

In a more general theoretical treatment, Vineyard was
able to derive the rate constants by using a phase space
approach [127]. Under the assumption of classical dy-
namics, the rate at which a certain event takes place
then finally depends on the probability of reaching the
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transition state multiplied by the rate of crossing the lat-
ter one. The probability of reaching the transition state
is obtained from the ratio of the configurational parti-
tion functions of initial and transition state, while the
rate of crossing is obtained from the average velocity for
crossing the transition state, yielding the following ex-
pression [127]:

kTST =

√
kBT

2π

∫
S
e−Φ/kBT dS∫

V
e−Φ/kBT dV

(38)

Here, Φ denotes the potential energy as a function of
generalized coordinates, while the integrals enclose the
phase space volume V surrounding the initial state and
the dividing surface S, which passes through a saddle
point and has to be crossed to reach the final state con-
figurations. A frequently used formulation of TST is the
harmonic transition state theory (HTST), which addi-
tionally assumes a harmonic shape of the potential en-
ergy surface in the vicinity of the initial and the transition
state. After expanding the potential energy Φ in Eq. (38)
into a Taylor series up to second order, the harmonic
terms can be expressed with respect to the vibrational
normal modes of energy hν. These assumptions are jus-
tified for hν � kBT , finally resulting in the following
equation for the rate constant [127]:

kHTST =

3N∏
i=1

νi

3N−1∏
i=1

νTSi

e−∆EA/kBT = ν∗e−∆EA/kBT (39)

∆EA corresponds to the activation energy and refers
to the energy difference between initial and transition
state. The term in front of the exponential corresponds
to the product of the 3N normal mode frequencies of
the initial state divided by the 3N − 1 normal mode fre-
quencies at the transition state and is usually expressed
as an effective frequency ν∗. Note that the transition
state corresponds to a saddle point in the potential en-
ergy landscape, such that along the reaction coordinate a
vibrational mode with imaginary frequency would be ob-
served. Consequently, there are only 3N−1 normal mode
frequencies to be considered for the transition state. In
practice, ν∗ is typically referred to as pre–exponential
factor or attempt frequency. Notably, this frequency
term does not correspond to a simple vibrational fre-
quency of the system – a claim which is often falsely
made. In fact, only if the vibrational spectra are essen-
tially unaffected (i.e., they differ only in the additional
mode present in the initial state) such an assumption is
valid. By comparing Eq. (37) and (39) their similarity is
evident and it can indeed be shown that they are essen-
tially equivalent.

On the macroscopic scale, diffusion processes are typ-
ically described by Fick’s law:

~J = −D∇c, (40)

FIG. 22. Tracer diffusion (D∗), jump diffusion (DJ) and
chemical diffusion (D) coefficients of layered LixTiS2 with re-
spect to the Li content, as obtained from kinetic Monte Carlo
simulations. Reprinted with permission from van der Ven et
al. [131]. Copyright (2021) American Chemical Society.

which relates the particle flux ~J to the concentration gra-
dient ∇c via the chemical diffusion coefficient D. In
fact, the latter is closely related to the jump diffusion
coefficient DJ , which can be expressed with respect to
the displacements of the diffusing particles throughout
time [43, 128]:

D = θDJ = lim
n→∞

θ
1

2d

〈[
1
N

N∑
I=1

~RI(t) − ~RI(0)
]2〉

t
,

(41)
with d the dimensionality of the diffusion process and
~RI(t) the position of particle I at time t. While DJ cor-
responds to the jump diffusion coefficient, the additional
prefactor θ accounts for the fact that strictly speaking
the driving force for diffusion is the gradient in chemical
potential and not in concentration [43, 128–130].

Assuming no cross–correlations between displacements
of different particles, the time average in Eq. (41) sim-
plifies to the mean square displacement of the individ-
ual particles. Moreover, in the dilute limit the chemi-
cal potential can be assumed to correspond to that one
of an ideal solution, thus resulting in θ being equal to
one [43, 128]. The remaining expression then corresponds
to the well–known case of tracer diffusion:

D∗ = lim
n→∞

1

2d

〈
1
N

N∑
i=1

[~RI(t) − ~RI(0)]2
〉

t
(42)

Hence, in the dilute limit (θ ≈ 1) and for vanishing
cross–correlations D and D∗ are identical. To emphasize
this point, the concentration dependence of tracer diffu-
sion (D∗), jump diffusion (DJ) and chemical diffusion (D)
coefficient for the case of Li diffusion in LixTiS2 are de-
picted in Fig. 22. While all three show the qualitatively
same behavior, only for vanishing Li–concentration, i.e.,
in the dilute limit, the same value is approached. Fi-
nally, under the assumption of a random walk on a given
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lattice, the diffusivity of dilute charge carriers can di-
rectly be related to the above discussed rate constants,
via [128, 132]:

D = α2gfxDν
∗e
−∆EA

kBT (43)

Here, α is the hop distance, g the geometry factor,
which is related to the underlying lattice, and f a corre-
lation factor (for Markovian motion f is equal to 1). Fi-
nally, xD is the diffusion mediating defect concentration.
These prefactors have to be multiplied by the above de-
rived rate constant, consisting of attempt frequency times
rate of success. Often, the pre–exponential factor ν∗ can
be assumed to be constant with respect to temperature,
which makes the diffusivity obey an Arrhenius law. In
practice, the pre–exponential factor is often crudely ap-
proximated to be of the order of 1013 s−1.

While in the case of tracer diffusion the relation-
ship between diffusivity and rate constant is given by
Eq. (43), for more complicated situations that include
cross–correlations, non–dilute concentrations or locally
varying diffusion barriers, these quantities can be linked
by performing kinetic Monte Carlo (kMC) simulations.

Now, to gain insight into the diffusion kinetics of a
given material via transition state theory, Eq. (39) has
to be evaluated. For this purpose, the activation energy
∆EA, i.e. the energy difference between transition and
initial state, has to be determined. One way to achieve
this in the framework of DFT is the application of the
nudged elastic band (NEB) method. The NEB approach
determines the diffusion path with the lowest energy cost
and gives access to the corresponding migration barrier.
For this purpose, the initial and the final state of a dif-
fusion process must be known. Hence, one must already
have some idea about the occurring migration processes.
For the determination of the minimum energy path, the
initial and final state are then simply connected by a
number of linearly interpolated intermediate configura-
tions, so-called images that are formally connected by
virtual springs (see Fig. 23). This initial chain of images
is then optimized [133, 134] involving force projections
of both the true forces and the spring forces, such that
ideally the path with the lowest energy cost, connecting
initial and final state is obtained, as schematically de-
picted for the curved line in Fig. 23. However, it needs
to be emphasized that the NEB method does not guar-
antee that the lowest diffusion barrier will be found.

At this stage, it has to be noted that for percolating
diffusion pathways in crystalline materials ion migration
between non–equivalent sites is rather likely to occur. For
such a scenario, it may be of use to separate the barrier
in kinetic and static contribution as is achieved by intro-
ducing so–called kinetically resolved diffusion barriers

EKRA = ETS −
1

2
|Efinal − Einitial| . (44)

Here ETS is the transition state energy, while Efinal and
Einitial are the initial and final state energies of the dif-

FIG. 23. Schematic representation of a NEB chain of so-called
images on the corresponding potential energy surface (left).
The minimum energy path (MEP), red curved trajectory, is
obtained by a constrained optimization of the initial chain
that corresponds to a linear interpolation between initial and
final state. Kinetically resolved diffusion barrier (EKRA) and
its construction from initial, final and transition state energy
(right). Reprinted from Euchner et al. [135]. Published by
The Royal Society of Chemistry.

fusion path. This is exemplified in Fig. 23 [128], where
initial and final state have different site energies, e.g.,
due to differing local environments. Hence, the barrier
actually depends on the direction in which it is to be
overcome. The resulting kinetically resolved barriers can
be understood as direction independent barriers that de-
scribe the kinetics of the diffusion process. Apart from
quantifying the kinetic contributions, the kinetically re-
solved barriers may be used in stochastic approaches to
systems that show a distribution of site energies (see e.g.,
the cluster expansion study of van der Ven et al. [131]).

A different way to computationally access diffusion
properties of a given material by DFT relies on ab initio
molecular dynamics (AIMD). Here, the most prominent
approach is to solve the classical equation of motion for
the nuclei, while ab initio forces are acting on the latter
ones. In short, for a given configuration the forces are
determined by solving the electronic Hamiltonian mak-
ing use of the Hellmann–Feynman theorem. With these
forces and an appropriate time step (typically in the order
of one fs) the classical equations of motion are solved and
the atoms are moved accordingly, as in the case of a clas-
sical MD simulation (see below). From the resulting MD
trajectories dynamical quantities can be determined. As
already discussed above, the diffusivity can be extracted
by analyzing the atomic displacements. The correspond-
ing activation barriers can then be derived from the diffu-
sivities obtained at different temperatures, by assuming
an Arrhenius type behavior with a diffusion mechanism
that is independent of temperature [136].

Before concluding this paragraph, an example that
compares the NEB and the AIMD approach for the case
of Li diffusion in Li3YBr6 (LYB) will be discussed. In
Fig. 24, the diffusion pathway connecting two octahe-
dral sites through a tetrahedral site (O–T–O) is depicted,
with the corresponding NEB barriers shown in panel b).
In panel d), results of the corresponding AIMD simu-
lations are shown, with the diffusivity as a function of
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FIG. 24. a) Crystal structures and c) Li–ion migration path-
ways in Li3YBr6 (LYB), with the red and blue polyhedrons
representing octahedral and tetrahedral interstitial. b) shows
the NEB migration barriers for a single Li–ion in the fixed
fcc anion lattice of LYB, whereas d) shows an Arrhenius plot
of the Li+ diffusivity in LYB as obtained from AIMD sim-
ulations. Adapted with permission from Wang et al. [137].
Copyright (2015) Wiley–VCH.

temperature, depicted in logarithmic scale. In this rep-
resentation it is nicely visible that the diffusivity follows
an Arrhenius type behavior, such that the corresponding
diffusion barrier can directly be extracted. The agree-
ment between both approaches is excellent, however, it
should be noted that deviations may be observed. This
might for instance be due to a slight temperature depen-
dence of the diffusion barriers.

AIMD calculations are computationally rather expen-
sive, however, they can be accelerated by conducting sim-
ulations at elevated temperatures. This results in more
frequently occurring diffusion events and better statistics,
therefore, allowing for shorter simulation times. As com-
pared to a NEB calculation, AIMD simulations are more
computationally demanding and are therefore rather ap-
plied if complex mechanism are at play that cannot easily
be projected on a NEB trajectory (e.g., concerted motion
of several atoms).

B. Classical Molecular Dynamics

If large systems are to be investigated, classical molec-
ular dynamics (MD) is a viable alternative to the above
discussed DFT and AIMD approaches. In a classical
MD simulation atoms are treated as point-like particles
that interact via an effective interaction potential or force
field. For these particles, Newtons equation of motion is
iteratively solved, meaning that from the knowledge of
positions, forces and velocities at a certain time t0 these
quantities can be obtained at a later time t0 + dt. The
exact way of integrating the equation of motion is deter-
mined by the chosen algorithm (e.g. the frequently used

FIG. 25. Discharge profile for a Li–S battery as obtained from
experiment and from calculations using a reactive force field.
Reprinted from Islam et al. [143]. Published by The Royal
Society of Chemistry.

velocity Verlet algorithm [138]).
The numerical integration of the equation of motion

allows for the extraction of the respective particle tra-
jectories throughout time [138]. Obviously, a classical
MD simulation cannot provide information on the elec-
tronic structure, but still offers access to many material
properties such as phase stability, lattice dynamics or
diffusion constants. These quantities can often be de-
termined by evaluating correlation functions, as already
discussed for the case of diffusion. This approach al-
lows to explicitly investigate temperature effects such
as, for instance, temperature dependent diffusion con-
stants or anharmonicity induced changes in vibrational
frequencies. Classical MD simulations can be conducted
for much larger system sizes (106 particles and beyond
are easily possible), such that realistic microstructures
can be addressed. However, the main factor that decides
about the validity of a MD simulation is the quality of
the effective interaction potential. If this potential cap-
tures the essential features of the interatomic interaction,
an accurate simulation will be possible. Here, as in the
case of the exchange–correlation functional in DFT, a
plethora of different realizations of physically motivated
potentials have been developed. As far as metals are con-
cerned, pair potentials have often proven to be sufficient,
starting from as simple potential forms as the Lennard–
Jones potential, over oscillating pair potentials to more
elaborate embedded atom method (EAM) and modified
embedded atom method (MEAM) potentials [139–142].

For the description of covalent bonds, three–body in-
teractions are important and therefore real three–body
potentials like the Tersoff potential or pseudo three–body
interactions like angular dependent potentials (ADP)
have been successfully applied in the past [144, 145]. On
the other hand, bond breaking and bond creating pro-
cesses are particularly difficult to describe, thus resulting
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in the emergence of reactive force fields (ReaxFF), which
have also been successfully applied in the field of batter-
ies [146]. These potentials correspond to bond-order type
potentials that are particularly trained to describe bond-
breaking and bond-making events as they occur during
chemical reactions. An example for a reactive force field
study is depicted in Fig. 25, where phase evolution and
discharge profile for a Li–S cathode have been studied.
The MD approach allows here to investigate large sys-
tem sizes with varying composition and is indeed able to
yield excellent agreement with experimental data. Fur-
thermore, there exists a variety of force fields that are
especially trained and used for organic molecules, for in-
stance CHARMM, AMBER or GROMOS [147–149]. All
just described potential types have in common that they
are based on physical and chemical insights in the materi-
als that shall be investigated, which typically goes along
with limited flexibility as far as the description of a broad
class of materials is concerned.

Recently, with the advent of machine learning tech-
niques, a new class of potentials has evolved that are
not built on physical models but instead rely on complex
functions to describe the potential energy landscape, in
principle allowing to even reach DFT accuracy [150, 151].
The basic idea of machine learning (ML) potentials is to
represent the input data, i.e. the atomic environments
in a certain compound, by so–called descriptors. On the
basis of these descriptors the ML potential can be cre-
ated by applying one of the available models to repre-
sent the potential energy surface. For the mathemati-
cal description of these potential models, artificial neu-
ral network potentials (ANN), Gaussian approximated
potentials (GAP) or spectral neighbour analysis poten-
tials (SNAP) are popular representatives [151]. ANNs
are based on neural networks with two or more hidden
layers, often using atom centered symmetry functions
(ACSFs) as underlying descriptor of the atomic struc-
ture. GAPs rely on a Gaussian process kernel, where the
kernel may be seen as a similarity measure of atomic en-
vironments. As descriptor of these atomic environments,
bispectrum components or smoothly overlapping atomic
positions (SOAP) are often used to encode the informa-
tion on the local atomic structure. SNAP potentials, on
the other hand, use a linear fitting of the bispectrum
components and can in principle be understood as linear
version of the GAP model [151–154].

In Fig. 26, a schematic representation of the underly-
ing idea and a graphical representation of the just men-
tioned potential types is depicted. Clearly, the efficient
description of atomistic interactions by ML potentials en-
ables highly accurate investigations on larger length and
time scales. This is exemplified in Fig. 27 for the case
of the Li–C system. The ML derived GAP potential is
able to accurately reproduce DFT data such as adsorp-
tion energies and diffusion barriers. Moreover, the distri-
bution of interatomic distances during a GAP MD run
also matches almost perfectly with results from AIMD.
Hence, this potential allows to study complex geometries

FIG. 26. Schematic picture of the creation of a machine learn-
ing potential (top) and characteristic features of three widely
used families of machine learning potentials (bottom): (Artifi-
cial) neural networks (NN), non–linear kernel function based
methods such as Gaussian approximation potentials (GAP)
and linearized spectral neighbor analysis potentials (SNAP).
Reprinted from Deringer et al. [155]. This article is licensed
under a Creative Commons Attribution 4.0 International Li-
cense.

– such as for instance those observed in hard carbon
anodes – and may be used to access the impact of the
nano– and micro–structure with almost DFT accuracy.
The training of such potentials typically needs huge data
sets (thousands of DFT calculations), making it a time
and resource consuming task [150]. On the other hand,
schemes have evolved for e.g. doing an on the fly creation
of machine learning potentials during AIMD runs, which
thus enables accelerated simulations with high accuracy
for smaller system sizes [156] . Generally speaking, MD
studies with machine learning potentials are a strongly
growing field of research that is also of great interest for
the investigation of the complex processes in battery ma-
terials. In fact, it seems likely that ML derived potentials
will soon dominate newly emerging MD studies, while
in many areas of battery research they may even com-
pete with standard DFT approaches. Still, they can not
fully replace quantum chemical simulations as ML poten-
tials do not yield information on the underlying electronic
structure which is often critical for a deeper understand-
ing of the materials properties.

C. Cluster expansion

As already stated at several occasions throughout this
review, the method of choice to reliably study battery
materials from a theoretical point of view is in princi-
ple DFT, whenever this is possible. However, there ex-
ist many situations where for instance large system sizes
or statistical sampling are of interest, which even ex-
ceeds the capabilities of MD. For such situations, a coarse
graining of the system under investigation may be bene-
ficial, as it can largely reduce the computational cost. In
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FIG. 27. Comparison of DFT and GAP based results for
the Li–C system. Panels a) and b) show a comparison for
Li adsorption and Li diffusion on graphene. Panel c) depicts
the GAP MD trajectory of Li in a graphitic network at a
temperature of 1000 K (Li atoms are shown in purple and
are repeatedly plotted throughout time, while only the ini-
tial framework configuration is shown). Finally, the radial
distribution as obtained from AIMD and from machine learn-
ing based MD are compared in panel d). Reproduced from
Fujikake et al. [157], with the permission of AIP Publishing.

this context, a frequently applied solution are cluster ex-
pansion schemes in combination with Monte Carlo meth-
ods. For a cluster expansion, the atoms in a system are
assumed to occupy a grid of lattice sites with fixed topol-
ogy, while the species on the respective lattice sites are
subject to variations and can be represented by pseudo–
spin variables σi. In the case of a binary system (for
instance the Li–vacancy arrangement in a layered oxide)
σi may be described by -1 or 1, while for the ternary case
(e.g. the arrangement of Ni, Mn and Co on the transition
metal sublattice of a NMC) σi could be chosen as -1, 0
or 1 etc. Hence, a certain configuration can simply be
described by the corresponding vector ~σ = {σ1, ..., σn}.

To describe the energetics of such a system, the way
how the different species interact with each other needs
to be determined. For instance, one might ask if a certain
atom prefers to have its own kind or a different atom type
as a nearest neighbour, next nearest neighbour and so on.
The underlying interactions can then be formulated with
respect to structural motives or clusters (points, pairs,
triplets, ...), thus allowing to cast the quantum mechan-
ical problem into an effective Hamiltonian. For this pur-
pose, single site basis functions θn(σi) have to be selected
[158–160]. In practice, often Chebyshev polynomials are
used for this purpose as they form a complete orthogo-
nal basis. With this basis the so–called cluster functions
Φα(~σ) =

∏
i θni

(σi) can be constructed for each cluster
motive, finally yielding the following effective Hamilto-

nian [158, 161, 162]:

E =
∑
α

VαΦα(~σ) (45)

The coefficients Vα parameterize the effective cluster
interactions (ECI) for the different structural motives.
Typically, such an expansion is stopped at a triple or
quadruple level, where it has to be noted that often not
all interactions are important and hence some of them
can be disregarded.

For the case of the above mentioned Li–vacancy bi-
nary system, the single site basis functions correspond
to θ0(σi) = 1 and θ1(σi) = σi, such that cluster func-
tions reduce to products of the pseudo spin variables,
σi, σiσj , σiσjσk, ..., with the indices i, j, k, ... running over
all lattice sites. The cluster expansion Hamiltonian can
then be formulated as:

E = V0 +
∑
i

Viσi +
∑
ij

Vijσiσj

+
∑
ijk

Vijkσiσjσk + ..., (46)

with the expansion coefficients Vi, Vij , Vijk, ... represent-
ing the ECIs. Note that V0 is a configuration indepen-
dent term that represents an empty cluster.

The ECIs as a set of parameters are then usually de-
termined by ordinary least square (OLS) fitting – often
amended by a regularization term to prevent overfitting –
to a set of reference data [160]. Typically, these reference
data are obtained from DFT calculations. In general, the
choice of the structural motives that are included is cru-
cial for the quality of the cluster expansion. Indeed, too
few motives will yield an inaccurate description of the
system, whereas too many may result in overfitting and
noise. A way to find the best compromise is the min-
imization of the so–called cross validation (CV) score.
The CV score allows to select the important motives that
are significant for the description of the system and can
be understood as an unbiased measure to determine the
quality of the cluster expansion with respect to its pre-
dictive power towards unknown structures [163].

With such a cluster expansion scheme at hand, the de-
termination of the energy of a given configuration can
easily be achieved for large system sizes. In general,
thermodynamic properties of a system are determined
by the respective microstates through an average thereof.
While a cluster expansion enables fast access to the en-
ergy of a given configuration, completely accounting for
all microstates becomes intractable already for rather
small systems. Therefore, in a Monte Carlo simulation
the phase space has to be sampled, typically applying
so–called importance sampling techniques. In practice,
frequently the well–known Metropolis algorithm is in-
voked [164], following a general scheme that samples
states according to the underlying thermostatistic dis-
tribution function, usually corresponding to a canonical
or grand canonical ensemble.
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FIG. 28. 3–D representation of different types of structural
motives that can be used for constructing a cluster expansion
for a bcc lattice. Reprinted from Chang et al. [160]. This
article is licensed under a Creative Commons Attribution 3.0
International License.©IOP Publishing.

In the case of a canonical ensemble, the Metropolis
algorithm formally starts with the determination of the
energy of a given configuration by evaluating Eq. (45).
As a next step a different configuration is created, e.g.,
by exchanging two particles. Now, if the energy of this
new configuration is lower than that of the previous one
it will always be accepted. On the other hand, if the
energy is higher than for the previous state, the new
configuration is only accepted by a certain probability.
For the Metropolis algorithm, this probability is then
given by e−(Enew−Eold)/kBT , such that the new config-
uration is accepted if this value is smaller than a random
number in the range (0,1]. In this way, a distribution
of states corresponding to the statistical distribution of
states of a canonical ensemble is created (i.e., a Boltz-
mann distribution). By including the chemical potential
in the acceptance probability, this approach can easily be
adapted for the grand canonical ensemble as well. While
the Metropolis algorithm certainly is the most famous
MC algorithm, it has to be noted that for a given prob-
lem better suited (faster) algorithms may exist. In par-
ticular, at low temperature the Metropolis algorithm is
characterized by a high rejection rate, such that different
algorithm may result in a considerable speed–up [165].

In practice, cluster expansion based MC simulations
can then be applied to determine structural peculiarities,
such as ordered superstructures or local short–range or-
dering [166–168], making this approach particularly valu-
able for the investigation of certain battery materials.
The question for the most favorable arrangement of al-
kali metal ions and vacancies in a layered oxide cathode
at a given state of charge may for instance be tackled
with such a setup. Moreover, the temperature depen-
dent stability of different configurations can be investi-
gated, thus among others enabling the determination of

FIG. 29. a) Energy and b) specific heat of LiCrO2 (orange)
and LiNiO2 (black) as obtained from cluster expansion based
MC simulations, with the dashed vertical lines yielding the
phase transition temperature from the layered to the DRS
phase. The arrows indicate the impact of short–range order
as compared to a fully random cation distribution. Used with
permission from Urban et al. [114]. Copyright (2016) Wiley–
VCH.

concentration–temperature phase diagrams [160, 168].

As already discussed, MC simulations allow for a cor-
rect thermodynamic sampling and hence are able to give
access to thermodynamic properties. While the evalua-
tion of Eq. (45) yields the internal energy of the system,
the configurational entropy can be obtained by deter-
mining the specific heat and integrating it with respect
to temperature. This then allows for the calculation of
the corresponding free energy. With the applied thermo-
dynamic sampling, an investigation of phase transitions
with respect to temperature becomes directly possible, as
exemplified in Fig. 29. There, the order/disorder transi-
tion of two different layered oxides to the corresponding
disordered rocksalt (DRS) oxides – a recently intensively
investigated class of promising cathode materials – is de-
picted. For the selected compounds – LiNiO2 and LiCrO2

– the cluster expansion based MC simulations nicely show
the signature of a first and a second order phase tran-
sition, clearly visible when plotting energy and specific
heat vs. temperature [114].

At this stage, it has to be pointed out that vibra-
tional entropy is usually not considered in cluster ex-
pansion based MC simulations, as the relative impact
for phases with the same stoichiometry can often be as-
sumed to be rather small [114, 163]. In fact, the con-
figurational entropy differences for order/disorder tran-
sitions of a binary alloys are less than kB ln 2 per atom
(≈ 0.7kB/atom), while typical values for the vibrational
entropy differences are of the order of ≈ 0.2 kB per
atom [169]. Of course, this nevertheless means that there
are cases for which the vibrational contribution indeed
becomes important. Furthermore, MC studies typically
also do not consider electronic contributions to the con-
figurational entropy, which may originate from localized
electrons. While this is usually justified, there exist cases
where this contribution can be crucial for the determi-
nation of the phase stability, as e.g., in the case of the
LixFePO4 phase diagram [170].
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D. Kinetic Monte Carlo

While the above discussed MC methods correspond to
a coarse graining of the system of interest and are able
to provide information on thermodynamic properties, the
underlying kinetics, i.e. its time evolution, is not consid-
ered. However, as outlined in detail before, often the
kinetics of a electrode material is of great interest and
coarse grained approaches to the diffusion properties –
in space and time – are desirable.

For systems that exhibit a dynamics that is too slow
to be captured by AIMD or even classical MD – meaning
that a huge number of time steps would be necessary to
capture the events of interest and to obtain a sufficiently
accurate statistics – such coarse graining schemes have
to be applied. In fact, for this purposes the so–called
kinetic Monte Carlo method has been developed. Con-
sidering systems with slow dynamics actually means that
one is dealing with what is called rare event dynamics.
In practice, such systems are assumed to typically oscil-
late for a long time span around a certain configuration
until finally such a rare event (e.g., a diffusion process)
takes place. This can then in principle be understood
as a separation of time scales of equilibrium oscillations
and actual diffusion event (see Fig. 30) [171]. For a dif-
fusing atom this in turn means that it is oscillating for
some time around a local minimum of the potential en-
ergy (or Born–Oppenheimer) surface, before moving to
an adjacent one.

A prerequisite for a possible mapping on a kMC sim-
ulation is that the investigated diffusion process is a
stochastic process with no correlation between successive
events. Formally, this means that the investigated pro-
cess is of Markovian type, such that the system has no
memory on how it arrived in a certain state. This is typ-
ically true for diffusion in solids, where a diffusing atom
usually vibrates around its equilibrium position until it
finally jumps to a neighbouring energy minimum. For
this situation the dynamics of the system is contained
in the corresponding rate constants. These rate con-
stants are then the kinetic parameters that determine
the kMC simulation and can be obtained from DFT cal-
culations. In particular, harmonic transition state theory
is frequently applied for the determination of rate con-
stants, as discussed earlier. To describe the dynamics of
a certain system, all processes for leaving (accessing) a
given configuration as well as the corresponding rates kij
need to be determined. The rate kij then corresponds
to the probability per unit time that the system moves
from a state i to state j. Now, a stochastic description
of the kinetics of the whole system in terms of the time
evolution of the probabilities is possible and results in
the so–called Master equation [171–173]:

dPi
dt

= −
∑
i 6=j

kijPi(t) +
∑
i 6=j

kjiPj(t) (47)

Here, the change in probability Pi of finding a certain
state i is determined by the probabilities of leaving that

FIG. 30. a) Potential energy surface (PES) with different
local minima and a MD trajectory on this surface. b) Repre-
sentation of the MD trajectory on a suited lattice. c) Trans-
formation of the MD trajectory in a series of discrete jumps
between local minima of the PES. Reprinted from Andersen
et al [173]. ©2019 Frontiers Media SA. All Rights Reserved.

state towards a new configuration j, as well as by the
probabilities that a state j ends up in configuration i.
Due to the typically large number of states an analytic
solution of the Master equation is usually not possible,
however, kMC provides an efficient stochastic approach
to quantify the kinetics of the system.

The above equation makes it obvious that the kinetics
is governed by the rate constants of the respective pro-
cesses. As long as these rate constants are accurately
determined and the processes are indeed not correlated,
diffusion constants that are determined from kMC simu-
lations in principle will yield the same result as a much
more demanding MD simulation. In a kMC simulation,
the trajectory of a particle then simply consists of a se-
ries of discrete hops from one local minimum to the next
(see Fig. 30). The random selection of a given hop and
the time span between the hops is governed by the prob-
abilities which have to obey the Master equation [171–
173]. Moreover, the detailed balance criterion is imposed
to ensure that the system is in thermodynamic equilib-
rium [174].

With the system not memorizing its configuration, the
probability of leaving a state in a certain time interval is
the same as in any previous time interval. This results
in the probability for the system having not yet escaped
from a given state corresponding to an exponential de-
cay [172] – the survival probability:

ps(t) = e−ktott (48)

With this expression, the probability p(t) of a hop oc-
curing at a certain time can easily be derived from the
time derivative of 1 − ps(t), actually corresponding to a
Poisson process with [171, 172, 174]:

p(t) = ktote
−ktott (49)

Typically a system can leave a state by different path-
ways – for a state i there will exist several states j the
system can move to – which are characterized by their in-
dividual rate constants kij and an analogous escape prob-
ability pij(t) = kije

−kijt, with the rates of the single pro-
cesses kij summing up to the total rate ktot =

∑
j

kij [172].

This agrees with the fact that an ensemble of indepen-
dent Poisson processes can be reformulated as one Pois-
son process (see Eq. (49)) [174]. Now, instead of using
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FIG. 31. Schematic representation of a kMC simulation. In
the top, the different options for the system to leave a given
state with the corresponding rates are depicted. Below, the
kMC algorithm is graphically illustrated. By random number
selection a value between 0 and ktot is generated, subsequently
determining which process is chosen.

the average time of escape of a process (τ =
∫
t pij(t)dt)

as kMC time step, a properly weighted stochastic escape
time ∆tescape has to be selected to guarantee a correct
time evolution of the system. This can be achieved by re-
verting Eq. (48) and replacing ps(t) by a random number
ρ ∈ (0, 1] [171–173]:

∆tescape = − ln(ρ)

ktot
(50)

To run a kMC simulation, one has to determine all N
processes that are possible for a given configuration of
the system with the corresponding rates. Subsequently
these rates are summed up to yield the overall rate ktot.
Next, to select the process that will be executed, we plot
the total escape rate as a bar of length ktot, consisting
of the bars representing the respective single rates (see
Fig. 31). By multiplying ktot with a random number ρ1,
lying in the range (0,1], we end up in a certain bar, which
then corresponds to the process that will be selected:

q∑
i=1

kp ≤ ρ1ktot <

q−1∑
i=1

kp (51)

Finally, the simulation time is updated, i.e., t = t+∆t.
For this purpose, the escape time ∆t = − ln(ρ2)/ktot is
obtained by choosing a second random number ρ2. As
discussed above, the choice of this time interval ensures a
proper stochastic weighting of the time steps. Then the
whole procedure restarts. This rejection free algorithm
is often referred to as N–fold way and was originally de-
signed to speed up Monte Carlo simulations, while it was
only later used for kMC [165, 176]. With such a kMC
approach, an efficient computational tool for the inves-
tigation of system dynamics is available. In particular,
complex dynamics can be understood with respect to the
underlying atomistic processes by applying kMC simula-
tions [177]. This is exemplified for a study on the mor-
phology evolution of different facets of Mg surfaces by

FIG. 32. a) Potential energy landscape of two different Mg
surfaces. Non-negligible interaction energies exist between
adatom A and an additional adatom marked with a number.
Red (pale pink) dotted lines represent hopping across lower
(higher) energy barriers. b) and c) show the initial random ar-
rangement and a quasi–relaxed configuration that is obtained
during a KMC simulation for Mg (0001) and the Mg (1011)
surface after the denoted simulation time. Reproduced from
Lautar et al. [175]. With permission of the Royal Society of
Chemistry

Lautar and co–workers [175]. While Li–metal anodes are
prone to shortcircuiting due to dendrite growth, this is
typically not observed in Mg–batteries [46]. Therefore,
studies on the factors that influence the metal deposi-
tion are of great interest. This study points out that it
is not sufficient to only investigate the most stable sur-
face of a metal anode, since this surface typically does
not account for the largest fraction of the overall surface
area of a crystallite. Moreover, their nucleation theory
based kMC studies show that different surfaces can in-
deed exhibit distinctly different growth modes. In Fig. 32
the evolution on the most stable surface and the surface
with the largest area fraction in the Wulff construction
are depicted, which correspond to the Mg (0001) and
Mg (1011) surface, respectively. The differences in their
growth behavior is nicely visible, with the Mg (0001)
surface showing island growth, whereas the formation of
lines is observed in case of the Mg (1011) surface.

IV. CONCLUSION

In the first part of this review, we have given an con-
cise overview on the basic concepts of a functioning bat-
tery, including the underlying electrochemical processes
in cathode, anode and electrolyte. The second part on
the other hand has focused on the most prominent com-
putational approaches that are available to model bat-
tery components on an atomistic scale. Here, a large
part of the review was spent on DFT, a method which
has become the work horse in many areas of material sci-
ence. As a significant part of today’s battery research
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is concerned with the search for improved materials, it
is evident that DFT is an important tool for battery
research. Combining high accuracy with efficient com-
putation make DFT well–suited for large scale screening
studies as well as for in depth investigations of particular
systems, such that the importance of DFT is likely to
even further increase. On the other hand, for thermody-
namic information DFT methods (including AIMD) are
often still not capable to treat the relevant length and
time scales. For such problems, the more coarse–grained
methods like cluster expansion based Monte Carlo or
kinetic Monte Carlo approaches have been discussed.
While these methods are built on different grounds, they
are usually also based on input data from DFT. Finally,
classical molecular dynamics simulations based on ma-
chine learning potentials have gained significance in re-
cent years. Such potentials, again based on DFT data,
will allow to study many problems that currently have
not yet been addressed in sufficient detail. For instance,

fundamental questions such as composition and forma-
tion of the famous solid electrolyte interface (SEI) may
be addressed by such an approach. Consequently, an
drastic increase of machine learning based molecular dy-
namics studies has to be expected, as a combination of
DFT and machine learning may be used to study a large
variety of otherwise intractable problems.
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