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Preface

More than five years have passed since the first edition of this book was
published. Surface science is still a very active field of research, and the fact
that the Nobel Prize 2007 in chemistry was awarded to Gerhard Ertl “for his

studies of chemical processes on solid surfaces” reflects the recognition that
surface science has received in recent years. Nevertheless, the traditional sur-
face science approach of studying low-index surfaces and simple adsorbates is
no longer the focus topic of the research in this field. Instead, the interest has
been shifted to the study of more and more complex structures that are also
relevant for nanotechnology and even life sciences. The growing complexity
of the studied systems makes a close collaboration between theory and ex-
periment actually more essential in order to gain deeper insights into these
systems. In fact, there has also been substantial progress in the theoretical
treatment of structures and processes on surfaces. Therefore it was time to
revise and update this textbook.

First of all, in this second edition there is a new chapter on Surface Mag-

netism which reflects the growing interest in low-dimensional magnetic struc-
tures on surfaces for, e.g., the magnetic storage of data. In addition, all other
chapters have been updated in order to take into account novel developments
in theoretical surface science. This is reflected in the fact that there are now
more than one hundred new references. For example, one of the “hot” topics in
surface science is the structure and function of thin oxide films, so-called sur-
face oxides; therefore a discussion of their appropriate theoretical description
including some examples was added. Furthermore, the short section about
STM theory was expanded, and recent ab initio based molecular dynam-
ics simulations of molecular adsorption on surfaces are addressed. All other
topics were carefully reviewed and new important results were incorporated.

As far as the chapter on perspectives is concerned, I decided to leave
the list of topics unchanged. It is true that in every subject covered in this
final chapter there has been significant progress in the last years, which is
reflected in the new version of the chapter. However, all these fields have in
my opinion not sufficiently matured yet so that it is still justified to consider
them as promising subjects that deserve further consideration.

For the new parts of this textbook I am in particular indebted to my col-
leagues Stefan Blügel, George Kresse, Karsten Reuter and Werner Hofer for
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sharing their insights with me. Besides, I want to thank the PostDocs and
graduate students of my new research group in Ulm, Benjamin Berberich,
Christian Carbogno, Arezoo Dianat, Yoshihiro Gohda, Jan Kucera, Daniela
Künzel, Thomas Markert, Christian Mosch, Sung Sakong, Armin Sauter, Se-
bastian Schnur, Katrin Tonigold. Doing research and teaching together with
them provided a most stimulating background for the completion of this sec-
ond edition. I also would like to acknowledge the continuing support of Claus
Ascheron from the Springer-Verlag who initiated the completion of this sec-
ond edition.

Finally I want to thank my wife Daniella and my children Noah and
Samira for their encouragement and for reminding me from time to time
that there are also other things beyond theoretical surface science.

Ulm, December 2007 Axel Groß



Preface to the First edition

Recent years have seen tremendous progress in the theoretical treatment of
surface structures and processes. While a decade ago most theoretical stud-
ies tried to describe surfaces either on a qualitative level using empirical
parameters or invoked rather severe approximative models, there is now a
large class of surface system that can be addressed quantitatively based on
first-principles electronic structure methods. This progress is mainly due to
advances in the computer power as well as to the development of efficient
electronic structure algorithms. However, ab initio studies have not only been
devoted to microscopic aspects. Instead, starting from a description of the
electronic structure and total energies of surfaces, a hierarchy of methods is
employed that allows the theoretical treatment of surfaces from the micro-
scopic length and time scales up to the macroscopic regime. This development
has led to a very fruitful cooperation between theory and experiment which
is reflected in the large number of research papers that result from a close
collaboration between experimental and theoretical groups.

Still, in my opinion, this progress had not been reflected in the avail-
able surface science textbooks. I felt that there was a need for an advanced
textbook on theoretical surface science. Rather than following a macroscopic
thermodynamic approach, the textbook should be based on a microscopic
point of view, so-to-say in a bottom-up approach. This provided the motiva-
tion to start the project this book resulted from. The text is based on a class
on theoretical surface science held at the Technical University in Munich.
The class and the manuscript evolved simultaneously, taking into account
the feedback from the students attending the class.

I have tried to give a comprehensive overview of most fields of modern
surface science. However, instead of listing many different data I have rather
picked up some benchmark systems whose description allows the presentation
and illustration of fundamental concepts and techniques in theoretical surface
science. The theoretical results are compared to experiments where possible,
but experimental techniques are not introduced. Still this book is not only
meant for students and researchers in theoretical surface science, but also for
experimentalists who either are interested in the basic concepts underlying
the phenomena at surfaces or want to get an introduction into the methods
their theoretical colleagues are using. Of course not every aspect of surface
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science could have been covered, for example surface magnetism is hardly
touched upon.

I have tried to present derivations for most of the theoretical methods
presented in this book. However, I did not intend to overburden this book
with lengthy calculations. A detailed list of references is provided for the
reader who wants to get more detailed information on specific methods or
systems. In particular, I have tried to select excellent comprehensive review
papers that can serve as a basis for further reading. For that reason, the
reference list does not necessarily reflect the scientific priority, but rather the
usefulness for the reader. In this context I would also like to apologize to
all colleagues who feel that their own work is not properly presented in this
book. It is important to note that in fact I am not the first to use a bottom-
up approach in the presentation of first-principles calculations. This concept
was developed by Matthias Scheffler for his class on theoretical solid-state
physics at the Technical University in Berlin, and in using this concept for
the present textbook I am deeply indebted to him.

Such a book would indeed not be possible without interaction with col-
leagues. I am grateful to my students Arezoo Dianat, Christian Bach, Markus
Lischka, Thomas Markert, Christian Mosch, Ataollah Roudgar and Sung
Sakong for stimulating discussions in the course of the preparation of this
book and for their careful proofreading of the manuscript. Special thanks go
to my colleagues and friends Wilhelm Brenig, Peter Kratzer, Eckhard Pehlke
and again Matthias Scheffler for their careful and competent reading of the
manuscript and their helpful suggestions in order to further improve the book.

This book is also a product of the insight gained in the discussions
and collaborations with numerous colleagues, in particular Steve Erwin,
Bjørk Hammer, Ulrich Höfer, Dimitrios Papaconstantopoulos, Helmar Teich-
ler, Steffen Wilke, Martin Wolf, and Helmut Zacharias. In addition, I am
indebted to Claus Ascheron from Springer-Verlag who supported this book
project from the early stages on.

Finally I would like to thank my wife Daniella Koopmann, my son Noah
and my yet unborn daughter for their patience and understanding for all the
time that I devoted to writing this book instead of taking care of them.

München, April 2002 Axel Groß
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1. Introduction

It has always been the goal of theoretical surface science to understand the
fundamental principles that govern the geometric and electronic structure of
surfaces and the processes occuring on these surfaces like gas-surface scatter-
ing, reactions at surfaces or growth of surface layers. Processes on surfaces
play an enormously important technological role. We are all surrounded by
the effects of these processes in our daily life. Some are rather obvious to
us like rust and corrosion. These are reactions that we would rather like to
avoid. Less obvious are surface reactions that are indeed very advantageous.
Many chemical reactions are promoted tremendously if they take place on
a surface that acts as a catalyst. Actually most reactions employed in the
chemical industry are performed in the presence of a catalyst. Catalysts are
not only used to increase the output of a chemical reaction but also to convert
hazardous waste into less harmful products. The most prominent example is
the car exhaust catalyst.

The field of modern surface science is characterized by a wealth of micro-
scopic experimental information. The positions of both substrate and adsor-
bate atoms on surfaces can be determined by scanning microscopes, the initial
quantum states of molecular beams hitting a surface can be well-controlled,
and desorbing reaction products can be analyzed state-specifically. This pro-
vides an ideal field to establish a microscopic theoretical description that can
either explain experimental findings or in the case of theoretical predictions
can be verified by experiment.

And indeed, recent years have seen a tremendous progress in the micro-
scopic theoretical treatment of surfaces and processes on surfaces. While some
decades ago a phenomenological thermodynamic approach was prevalent, now
microscopic concepts are dominant in the analysis of surface processes. A va-
riety of surface properties can be described from first principles, i.e. without
invoking any empirical parameters.

In fact, the field of theoretical surface science is no longer limited to
explanatory purposes only. It has reached such a level of sophistication and
accuracy that reliable predictions for certain surface science problems have
become possible. Hence both experiment and theory can contribute on an
equal footing to the scientific progress. In particular, computational surface
science may act as a virtual chemistry and physics lab at surfaces. Computer
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Fig. 1.1. The virtual chemistry and physics lab at surfaces: simulation of surface
structures and processes at surfaces on the computer

experiments can thus add relevant information to the research process. Such
a computer experiment in the virtual lab is illustrated in Fig. 1.1.

In this book the theoretical concepts and computational tools necessary
and relevant for theoretical surface science will be introduced. I will present a
microscopic approach towards the theoretical description of surface science.
Based on the fundamental theoretical entity, the Hamiltonian, a hierarchy of
theoretical methods will be introduced in order to describe surface processes.
But even for the largest time and length scales I will develop a statistical
rather than a thermodynamic approach, i.e., all necessary parameters will be
derived from microscopic properties.

Following this approach, theoretical methods used to describe static prop-
erties such as surface structures and dynamical processes such as reactions
on surfaces will be presented. An equally important aspect of the theoreti-
cal treatment, however, is the proper analysis of the results that leads to an
understanding of the underlying microscopic mechanisms. A large portion of
the book will be devoted to the establishment of theoretical concepts that can
be used to categorize the seemingly immense variety of structures and pro-
cesses at surfaces. The discussion will be rounded up by the presentation of
case studies that are exemplary for a certain class of properties. Thus I will
address subjects like surface and adsorbate structures, surface magnetism,
reactivity concepts, dynamics and kinetics of processes on surfaces and elec-
tronically nonadiabatic effects. All chapters are supplemented by exercises in
which the reader is invited either to reproduce some important derivations
or to determine typical properties of surfaces.
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The theoretical tools employed for surface science problems are not exclu-
sively used for these particular problems. In fact, surface science is a research
field at the border between chemistry and solid state physics. Consequently,
most of the theoretical methods have been derived either from quantum chem-
istry or from condensed matter physics. It is outside of the scope of this book
to derive all these methods in every detail. However, most of the methods
used commonly in theoretical surface science will be addressed and discussed.
Hence this book can be used as a reference source for theoretical methods.
It is not only meant for graduate students doing research in theoretical sur-
face science but also for experimentalists who want to get an idea about the
methods their theoretical colleagues are using.

However, it is fair to say that for a certain class of systems theoretical
surface science is still not accurate enough for a reliable description. These
problems will be mentioned throughout the book. The open problems and
challenges will be presented, but also the opportunities will be illustrated
that open up once the problems are solved.

In detail, this book is structured as follows. In the next chapter we first
introduce the basic Hamiltonian appropriate for surface science problems. We
will consider general properties of this Hamiltonian that are important for
solving the Schrödinger equation. At the same time the terminology necessary
to describe surface structures will be introduced.

A large part will be devoted to the introduction of electronic structure
methods because they are the foundation of any ab initio treatment of sur-
face science problems. Both wave-function and electron-density based meth-
ods will be discussed. In addition, the most important techniques used in
implementations of electronic structure methods will be addressed.

The structure and energetics of metal, semiconductor and insulators sur-
face are the subject of the following chapter. Using some specific substrates
as examples, the different microscopic principles determining the structure of
these surfaces will be introduced. In this context, the theoretical treatment
of surface phonons is also covered. In the succeeding chapter, the theoretical
description of surfaces will be extended to atomic and molecular adsorption
systems. Reactivity concepts will be discussed which provide insight into the
chemical trends observed in adsorption on clean, precovered and structured
surfaces. These concepts are also applied to simple reactions on surfaces.

Magnetic properties of low-dimensional systems can be quite different
from those of three-dimensional solids. This is of particular interest due to
the tremendous technological importance of the magnetic storage of data.
The effects of the dimensionality will be discussed in the chapter on surface
magnetism where also the theoretical methods to treat magnetic systems will
be briefly introduced.

Dynamics of scattering, adsorption and desorption at surfaces is the sub-
ject of the next chapter. Classical and quantum methods to determine the
time evolution of processes on surfaces will be introduced. The determina-
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tion of reaction probabilities and distributions in gas-surface dynamics will
be illustrated. For processes such as diffusion, growth or complex reactions
at surfaces, a microscopic dynamical simulation is no longer possible. A the-
oretical treatment of such processes based on ab initio calculations is still
possible using a kinetic approach, as will be shown in the next chapter.

While most of the processes presented in this book are assumed to occur
in the electronic ground state, there is an important class of electronically
nonadiabatic processes at surfaces. The theoretical description of nonadia-
batic phenomena has not reached the same level of maturity as the treatment
of electronic ground-state properties, as the following chapter illustrates, but
there are promising approaches. Finally, I will sketch future research direc-
tions in surface science where theory can still contribute significantly to en-
hance the understanding, and I will give examples of first successful applica-
tions.



2. The Hamiltonian

Any theoretical description has to start with the definition of the system un-
der consideration and a determination of the fundamental interactions present
in the system. This information is all contained in the Hamiltonian which is
the central quantity for any theoretical treatment. All physical and chemical
properties of any system can be derived from its Hamiltonian. Since we are
concerned with microscopic particles like electrons and atoms in surface sci-
ence, the proper description is given by the laws of quantum mechanics. This
requires the solution of the Schrödinger equation.

In this chapter we will first describe the Hamiltonian entering the Schrö-
dinger equation appropriate for surface science problems. One general approx-
imation that makes the solution of the full Schrödinger equation tractable is
the decoupling of the electronic and nuclear motion which is called the Born–
Oppenheimer or adiabatic approximation. We will then have a closer look at
the specific form of the Hamiltonian describing surfaces. We will discuss the
symmetries present at surfaces. Taking advantage of symmetries can greatly
reduce the computational cost in theoretical treatments. Finally, we will in-
troduce and illustrate the nomenclature to describe the structure of surfaces.

2.1 The Schrödinger Equation

In solid state physics as well as in chemistry, the only fundamental interaction
we are concerned with is the electrostatic interaction. Furthermore, relativis-
tic effects are usually negligible if only the valence electrons are considered.
To start with, we treat core and valence electrons on the same footing and
neglect any magnetic effects. Then a system of nuclei and electrons is de-
scribed by the nonrelativistic Schrödinger equation with a Hamiltonian of a
well-defined form,

H = Tnucl + Tel + Vnucl−nucl + Vnucl−el + Vel−el . (2.1)

Tnucl and Tel are the kinetic energy of the nuclei and the electrons, respec-
tively. The other terms describe the electrostatic interaction between the
positively charged nuclei and the electrons. As long as it is not necessary, we
will not take the spin into account for the sake of clarity of the equations.
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Consequently, neglecting spin the single terms entering the Hamiltonian are
explicitly given by

Tnucl =

L
∑

I=1

P 2
I

2MI
, (2.2)

Tel =

N
∑

i=1

p2
i

2m
, (2.3)

Vnucl−nucl =
1

2

∑

I 6=J

ZIZJe
2

|RI −RJ |
, (2.4)

Vnucl−el = −
∑

i,I

ZIe
2

|ri −RI |
, (2.5)

and

Vel−el =
1

2

∑

i6=j

e2

|ri − rj |
. (2.6)

Throughout this book we will use CGS-Gaussian units as it is common prac-
tice in theoretical physics textbooks. Atoms will usually be numbered by
capital letter indices. Thus, ZI stands for the charge of the I-th nuclei. The
factor 1

2 in the expressions for Vnucl−nucl and Vel−el ensures that the interac-
tion between the same pair of particles is not counted twice.

In principle we could stop here because all what is left to do is to solve
the many-body Schrödinger equation using the Hamiltonian (2.1)

HΦ(R, r) = EΦ(R, r) . (2.7)

The whole physical information except for the symmetry of the wave functions
is contained in the Hamiltonian. In solving the Schrödinger equation (2.7),
we just have to take into account the appropriate quantum statistics such as
the Pauli principle for the electrons which are fermions. The nuclei are either
bosons or fermions, but usually their symmetry does not play an important
role in surface science. Often relativistic effects can also be neglected. Only
if heavier elements with very localized wave functions for the core electron
are considered, relativistic effects might be important since the localization
leads to high kinetic energies of these electrons.

Note that only the kinetic and electrostatic energies are directly present
in the Hamiltonian. We will later see that the proper consideration of the
quantum statistics leads to contributions of the so-called exchange-correlation

energy in the effective Hamiltonians. However, it is important to realize that
the energy gain or cost according to additional effective terms has to be
derived from the energy gain or cost in kinetic and electrostatic energy that
is caused by the quantum statistics.
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Unfortunately, the solution of the Schrödinger equation in closed form
is not possible. Even approximative solutions are far from being trivial. In
the rest of the book we will therefore be concerned with a hierarchy of ap-
proximations that will make possible the solution of (2.7) at least within
reasonable accuracy. The first step in this hierarchy will be the so-called
Born–Oppenheimer approximation.

2.2 Born–Oppenheimer Approximation

The central idea underlying the Born–Oppenheimer [1] or adiabatic approx-
imation is the separation in the time scale of processes involving electrons
and atoms. Except for hydrogen and helium, atoms have a mass that is 104

to 105 times larger than the mass of an electron. Consequently, at the same
kinetic energy electrons are 102 to 103 times faster than the nuclei. Hence
one supposes that the electrons follow the motion of the nuclei almost in-
stantaneously. Most often one simply assumes that the electrons stay in their
ground state for any configuration of the nuclei. The electron distribution
then determines the potential in which the nuclei moves.

In practice, one splits up the full Hamiltonian and defines the electronic
Hamiltonian Hel for fixed nuclear coordinates {R} as follows

Hel({R}) = Tel + Vnucl−nucl + Vnucl−el + Vel−el . (2.8)

In (2.8) the nuclear coordinates {R} do not act as variables but as param-
eters defining the electronic Hamiltonian. The Schrödinger equation for the
electrons for a given fixed configuration of the nuclei is then

Hel({R})Ψ(r, {R}) = Eel({R})Ψ(r, {R}) . (2.9)

Again, in (2.9) the nuclear coordinates {R} are not meant to be variables
but parameters. In the Born–Oppenheimer or adiabatic approximation the
eigenenergy Eel({R}) of the electronic Schrödinger equation is taken to be
the potential for the nuclear motion. Eel({R}) is therefore called the Born–
Oppenheimer energy surface. The nuclei are assumed to move according to
the atomic Schrödinger equation

{Tnucl + Eel(R)} Λ(R) = EnuclΛ(R) . (2.10)

Often the quantum effects in the atomic motion are neglected and the classical
equation of motion are solved for the atomic motion:

MI
∂2

∂t2
RI = − ∂

∂RI
Eel({R}) . (2.11)

The force acting on the atoms can be conveniently evaluated using the
Hellmann–Feynman theorem [2,3]

FI = − ∂

∂RI
Eel({R}) = 〈Ψ(r, {R})| ∂

∂RI
Hel({R})|Ψ(r, {R})〉 . (2.12)
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In principle, in the Born–Oppenheimer approximation electronic transi-
tions due to the motion of the nuclei are neglected. One can work out the
Born–Oppenheimer approximation in much more detail (see, e.g., [4]), how-
ever, what it comes down to is that the small parameter m/M is central
for the validity of the adiabatic approximation (see Exercise 2.1). In fact,
the Born–Oppenheimer approximation is very successful in the theoretical
description of processes at surfaces. Still its true validity is hard to prove be-
cause it is very difficult to correctly describe processes that involve electronic
transition (see Chap. 9).

If it takes a finite amount of energy to excite electronic states, i.e., if
the adiabatic electronic states are well-separated, then it can be shown that
electronically nonadiabatic transitions are rather improbable (see, e.g., [5]).
In surface science this applies to insulator and semiconductor surfaces with
a large band gap. At metal surfaces no fundamental band gap exists so that
electronic transitions with arbitrarily small excitations energies can occur.
Still, the strong coupling of the electronic states in the broad conduction
band leads to short lifetimes of excited states and thus to a fast quenching of
these states [6] so that their influence on surface processes is often limited.

On the other hand, there are very interesting processes in which electronic
nonadiabatic processes are induced, as we will see in Chap. 9. The theoret-
ical treatment of these systems requires special techniques that will also be
discussed later in this book.

2.3 Structure of the Hamiltonian

Employing the Born–Oppenheimer approximation means first to solve the
electronic structure problem for fixed atomic coordinates. The atomic po-
sitions determine the external electrostatic potential in which the electrons
move. Furthermore, they determine the symmetry properties of the Hamil-
tonian.

Surface science studies are concerned with the structure and dynamics of
surfaces and the interaction of atoms and molecules with surfaces. If not just
ordered surface structures are considered, then the theoretical surface scien-
tists has to deal with a system with only few degrees of freedom, the atom
or molecule, interacting with a system, the surface or semi-infinite substrate,
that has in principle an infinite number of degrees of freedom. Thus the sub-
strate exhibits a quasi-continuum of states. One faces now the problem that
usually different methods are used to treat the single subsystems: molecules
are treated by quantum chemistry methods while surfaces are handled by
solid-state methods.

To deal with both subsystems on an equal footing represents a real chal-
lenge for any theoretical treatment, but it also makes up the special attraction
of theoretical surface science. We will focus on this issue in more detail in
the next chapter. But before considering a strategy to solve the Schrödinger
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and Total Energies

In this chapter, we will discuss electronic structure methods for the determi-
nation of total energies of surface systems. The evaluation of total energies
is a prerequisite for the theoretical treatment of many properties and pro-
cesses at surfaces. There are two main techniques, wave-function and electron-
density based methods that originate from quantum chemistry and solid-state
physics, respectively. Both types of methods will be introduced and discussed
in some detail. Special attention will be paid to the discussion of electronic
exchange and correlation effects.

Electronic structure calculations for surface science problems are domi-
nated by density functional theory (DFT) methods. Therefore we will have
a closer look at some specific implementations of electronic structure algo-
rithms based on DFT. This chapter will be concluded by an introduction to
the tight-binding method which is well-suited for a qualitative discussion of
band structure effects.

3.1 Hartree–Fock Theory

We start the sections about electronic structure methods with the so-called
Hartree and Hartree-Fock methods. This does not only follow the historical
development [15,16], but it also allows to introduce important concepts such
as self-consistency or electron exchange and correlation.1 In this whole chap-
ter we are concerned with ways of solving the time-independent electronic
Schrödinger equation

HelΨ(r) = EelΨ(r) . (3.1)

Here we have omitted the parametric dependence on the nuclear coordinates
(c.f. (2.9)) for the sake of convenience. As already stated, except for the sim-
plest cases there is no way to solve (3.1) in a close analytical form. Hence we
have to come up with some feasible numerical scheme to solve (3.1). Mathe-
matically, it corresponds to a second order partial differential equation. There

1 I thank Matthias Scheffler for providing me with his lecture notes on his theoret-
ical solid-state physics class held at the Technical University Berlin on which the
sections about Hartree-Fock and density functional theory are based to a large
extent.
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are methods to directly integrate partial differential equations (see, e.g., [17]).
However, if N is the number of electrons in the system, then we have to deal
with a partial differential equation in 3N unknowns with N commonly larger
than 100. This is completely intractable to solve. The way out is to expand
the electronic wave function in some suitable, but necessarily finite basis set
whose matrix elements derived from (3.1) can be conveniently determined.
This will then convert the partial differential equation into a set of algebraic
equations that are much easier to handle. Of course, we have to be aware
that by using a finite basis set we will only find an approximative solution
to the true many-body wave function. However, by increasing the size of the
basis set we have a means to check whether our results are converged with
respect to the basis set. Hence this corresponds to a controlled approxima-
tion because the accuracy of the calculations can be improved in a systematic
way.

Furthermore, for the moment we are mainly interested in the electronic
ground-state energy E0. There is an important quantum mechanical princi-
ple – the Rayleigh–Ritz variational principle [18] – that provides a route to
find approximative solutions for the ground state energy. It states that the
expectation value of the Hamiltonian in any state |Ψ〉 is always larger than
or equal to the ground state energy E0, i.e.

E0 ≤ 〈Ψ |H |Ψ〉
〈Ψ |Ψ〉 . (3.2)

Hence we can just pick some suitable guess for |Ψ〉. Then we know that
〈Ψ |H |Ψ〉/〈Ψ |Ψ〉 will always be an upper bound for the true ground state
energy. By improving our guesses for |Ψ〉, preferentially in a systematic way,
we will come closer to the true ground state energy.

Before we proceed, we note that the potential term Vnucl−el (2.5) acts as
an effective external one-particle potential for the electrons. Hence we define
the external potential for the electrons as

vext(r) = −
∑

I

ZIe
2

|r −RI|
. (3.3)

Now let us assume that the number of electrons in our system is N and
that we have already determined the N lowest eigenfunctions |ψi〉 of the
one-particle Schrödinger equation

{

− h̄2

2m
∇2 + vext(r)

}

ψi(r) = εo
iψi(r) . (3.4)

Here we have completely neglected the electron-electron interaction. Still, we
might simply consider the product wave function

ΨH(r1, . . . , rN) = ψ1(r1) · . . . · ψN(rN) , (3.5)

in which every one-particle state is only occupied once, as a first crude guess
for the true many-particle wave function. Then we can determine the expec-
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tation value of the electronic Hamiltonian (2.8) using the wave function (3.5).
Thus we obtain

〈ΨH|H |ΨH〉 =

N
∑

i=1

∫

d3rψ∗
i (r)

(

− h̄2

2m
∇2 + vext(r)

)

ψi(r)

+
1

2

N
∑

i,j=1

∫

d3rd3r′
e2

|r − r′| |ψi(r)|2|ψj(r
′)|2 + Vnucl−nucl . (3.6)

Now we would like to minimize the expectation value (3.6) with respect to
more suitable single-particle functions ψi(r) under the constraint that the
wave functions are normalized. This is a typical variational problem with the
constraint taken into account via Lagrange multipliers. If we consider the
wave functions ψi(r) and ψ∗

i (r) as independent, we can minimize (3.6) with
respect to the ψ∗

i under the constraint of normalization via

δ

δψ∗
i

[

〈ΨH|H |ΨH〉 −
N
∑

i=1

{εi(1 − 〈ψi|ψi〉)}
]

= 0 . (3.7)

The εi act as Lagrange multipliers ensuring the normalization of the eigen-
functions. This minimization leads to the so-called Hartree equations [15]:







− h̄2

2m
∇2 + vext(r) +

N
∑

j=1

∫

d3r′
e2

|r − r′| |ψj(r
′)|2






ψi(r) = εiψi(r) .

(3.8)

The Hartree equations correspond to a mean-field approximation. Equa-
tion (3.8) shows that an effective one-particle Schrödinger equation is solved
for an electron embedded in the electrostatic field of all electrons including

the particular electron itself. This causes the so-called self interaction which
is erroneously contained in the Hartree equations.

Using the electron density

n(r) =
N
∑

i=1

|ψi(r)|2 , (3.9)

the Hartree potential vH can be defined:

vH(r) =

∫

d3r′n(r′)
e2

|r − r′| . (3.10)

It corresponds to the electrostatic potential of all electrons. With this defini-
tion the Hartree equations can be written in a more compact form as

{

− h̄2

2m
∇2 + vext(r) + vH(r)

}

ψi(r) = εiψi(r) . (3.11)
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Fig. 3.1. Flow-chart diagram of a self-consistent scheme to solve the Hartree equa-
tions

The Hartree equations have the form of one-particle Schrödinger equa-
tions. However, the solutions ψi(r) of the Hartree equations enter the effec-
tive one-particle Hamiltonian; hence the exact solutions are needed in order
to solve the equations. This dilemma can be resolved in an iterative fashion:
One starts with some initial guess for the wave functions which enter the ef-
fective one-particle Hamiltonian. The Hartree equations are then solved and
a new set of solutions is determined. This cycle is repeated so often until the
iterations no longer modify the solutions, i.e. until self-consistency is reached.
Methods such as the Hartree approximation that include a self-consistency
cycle are also known as self-consistent field (SCF) methods.

Such a self-consistent scheme is illustrated in a flow-chart diagram in
Fig. 3.1 where we have combined the external and the Hartree potential to an
effective potential veff(r) = vext(r)+vH(r). Furthermore, we have included a
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mixing scheme between the new effective potential and the one of the previous
step for the construction of the effective potential entering the next iteration
cycle. Usually a mixing scheme speeds up the convergence of the iteration
scheme significantly; sometimes convergence can even not be reached without
a mixing scheme. Note that the general self-consistency cycle depicted in
Fig. 3.1 is not only applicable for the solution of the Hartree scheme but for
any method that requires a self-consistent solution of one-particle equations.

The expectation value of the total energy in the Hartree approximation
EH can be written as

〈ΨH|H |ΨH〉 =

N
∑

i=1

εi −
1

2

∫

d3rd3r′
e2n(r)n(r′)

|r − r′| + Vnucl−nucl

=

N
∑

i=1

εi − VH + Vnucl−nucl = EH (3.12)

The integral in (3.12) is the so-called Hartree energy VH. It corresponds to
the classical (or mean-field) electrostatic energy of the electronic charge dis-
tribution. It is contained twice in the Hartree eigenvalue; in order to correct
for this double-counting it has to be subtracted in (3.12). In fact, the to-
tal energy in (3.12) would only be a sum over single-particle energies if the
particles were non-interacting (except for the term Vnucl−nucl, which in this
context for fixed nuclei just acts as an energy renormalization constant). If
we evaluate the total energy for interacting particles by self-consistently solv-
ing a set of effective single-particle equations, the total energy is not just a
sum over single-particle energies, but there will always be correction terms
reflecting the interaction between the particles.

The Hartree ansatz obeys the Pauli principle only to some extent by pop-
ulating each electronic state once. However, it does not take into account the
anti-symmetry of the wave function. The Pauli principle requires that the
sign of |Ψ〉 changes when two electrons are exchanged. The simplest ansatz
obeying the antisymmetry requirement is to replace the product wave func-
tion (3.5) by a single Slater determinant. In order to correctly incorporate the
Pauli principle we have to consider the spin degree of freedom in the follow-
ing, i.e. we write the single-particle wave functions as ψ(rσ), where σ denotes
the spin. The Slater determinant is then constructed from the single-particle
wave functions by

ΨHF(r1σ1, . . . , rNσN) =
1√
N !

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ψ1(r1σ1) ψ1(r2σ2) . . . ψ1(rNσN)

ψ2(r1σ1) ψ2(r2σ2) . . . ψ2(rNσN)

...
...

. . .
...

ψN(r1σ1) ψN(r2σ2) . . . ψN(rNσN)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.(3.13)

Now we follow the same procedure as for the Hartree ansatz; we start by
writing down the expectation value of the total energy:
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In the preceding chapter electronic structure methods were introduced which
allow the evaluation of the total energy of a particular system. At zero tem-
perature, the stable structure of a specific system is given by the structure
with the minimal total energy. Therefore total-energy calculations are so im-
portant for the structural determination of surfaces. As far as finite tempera-
ture effects are concerned, the minimum of the free energy is the appropriate
quantity. In the following sections, the electronic and geometric structure and
the energetics of clean surfaces and their determination by first-principles cal-
culations will be addressed. In addition, the underlying principles that lead
to a particular structure will be thoroughly discussed. Since the surface vi-
brational modes are strongly related to the structure of the surface, surface
phonons will also be addressed in this chapter.

4.1 Electronic Structure of Surfaces

Naturally, at the surface of a solid the electronic structure is strongly modified
compared to the bulk electronic structure. The three-dimensional periodicity
of an infinite crystal is broken so that the wave number kz of the Bloch
waves no longer is a good quantum number. Still the periodicity parallel to
the surface is conserved. As we will see, this can lead to electronic bands
localized at the surface. Here we will first introduce some basics about the
electronic structure at surfaces.

Some fundamental properties of the electronic structure of metal surfaces,
in particular simple metal surfaces, can be deduced from a very simple model
in which the positive ion charges are replaced by a uniform charge back-
ground. In this jellium model, which has already been introduced on p. 26,
the positive ion charges at a surface are simply represented by

n+(r) =

{

n̄, z ≤ 0

0, z > 0
. (4.1)

Here z denotes, as usual, the direction perpendicular to the surface. The
charge density in the jellium model is commonly specified by the correspond-
ing Wigner–Seitz radius in atomic units, i.e., in multiples of the Bohr radius.
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Fig. 4.1. Charge density as a function of the distance from the surface in Fermi
wavelengths determined within the jellium model for two different background den-
sities. (After [73])

The electronic charge distribution evaluated within the jellium model us-
ing density functional theory in the local density approximation [73] is plotted
in Fig. 4.1. Two different background densities have been chosen correspond-
ing to a high-density (rs = 2) and a low-density metal (rs = 5). The electron
distribution does not follow the sharp edge of the positive background. In-
stead, it decreases smoothly and the electrons spill out into the vacuum. In
fact this creates an electrostatic dipole layer at the surface because above the
surface there is now an excess negative charge density while directly below
the jellium edge there is an excess positive charge density. This dipole layer
is sometimes also called double layer [11].

Furthermore, the charge density profile exhibits a damped oscillatory
structure inside the jellium. These Friedel oscillations are a consequence of
the sharp edge of the background density in the jellium model. The electrons
try to screen out the positive background. Only electrons with wave vectors
up to the Fermi wave vector kF are available while in principle arbitrar-
ily large wave vectors are needed. Thus the screening is incomplete and the
Friedel oscillations with wavelength π/kF result. For the high-density case
(rs = 2), however, these oscillations are already rather small.

The work function Φ is defined as the minimum work that must be done to
remove an electron from a solid at 0K. Consider a neutral slab representing
the solid. Then the work function is given by

Φ = φ(∞) + EN−1 − EN . (4.2)

Here φ(∞) is the total electrostatic potential far from the surface and EM

is the ground-state energy of the slab with M electrons but with an un-
changed number of positive charges. As Fig. 4.1 indicates, the spilling out of
the electrons at a surface creates a dipole layer. In order to carry the electron
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Fig. 4.2. Schematic representation of the electrostatic potential φ(z), the chemical
potential µ̄, and the work function Φ

through the electric field of the dipole double layer at the surface, work has
to be done. The work function can therefore be expressed as [74]

Φ = ∆φ − µ̄

= φ(∞) − εF , (4.3)

where ∆φ is the change in the electrostatic potential across the dipole layer,
µ̄ is the intrinsic chemical potential of the electrons inside the bulk relative
to the mean electrostatic potential there (see Fig. 4.2), and εF is the Fermi
energy. It is important to note that there are two contributions to the work
function: an intrinsic one due to the binding of the electrons and the effect
of the dipole layer at the surface (see, e.g., the detailed discussion in [11]).

The jellium model has been used to evaluate the work function of sim-
ple and noble metals [74]. In order to estimate the variation of the work
function from one crystal face to another, the ions have been modeled by
pseudopotentials

vps(r) =







0, r ≤ rc

−Z
r
, r > rc

. (4.4)

These potentials have been added a posteori in this ion lattice model, i.e.,
the energies and work functions have been evaluated using the electron dis-
tribution determined self-consistently within the jellium model without the
pseudopotentials.

The calculated values of the work function are compared with experimen-
tal results for polycrystalline samples in Fig. 4.3. The plotted results of the
ion lattice model correspond to the mean value of the work function for the
(110), (100) and (111) surface for the cubic metals and to the (0001) surface
for the hcp metals Zn and Mg. For the simple metals there is a rather good
agreement between the jellium calculations and the experiment which is even
somewhat improved by taking into account the ion lattice contributions. The
variations in the work function between the different surface orientations is
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of the order of 10% of the mean work function [74]. In general, the lowest
work function is found for the least densely packed surface considered which
is the (110) face for the fcc metals and the (111) face for the bcc metals.

In addition to the simple metals, the work functions for the three noble
metals Cu, Au and Ag have been calculated. As Fig. 4.3 demonstrates, there
are already large quantitative differences between experiment and jellium
calculations for these metals. Although the rather crude jellium model is
able to reproduce certain features of the sp-bonded simple metals with rather
delocalized electron orbitals, the jellium approximation breaks down when it
comes to metals with d electrons which are much more localized. Thus, for
noble and transition metals, a more realistic theoretical description is needed.

Despite its shortcomings, the jellium model is well-suited to describe qual-
itative aspects of the change of the electron density in real space at a surface
and related quantities such as the dipole layer. However, it neglects the lat-
tice aspects in the description of the electronic structure at surfaces. These
aspects related to the crystal structure can be best addressed qualitatively
in the nearly-free electron model [11] in which the influence of the screened
positive ion cores is approximated by a weak periodic pseudopotential.

Let us first focus on a simplified one-dimensional description. Within the
simplest version of the nearly-free electron model, we describe an infinite solid
as a chain of atoms creating an effective potential for the electrons given by

V (z) = V0 + VG cosGz , (4.5)
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where G = 2π/a is the shortest reciprocal lattice vector of the chain. Using
perturbation theory for degenerate states at the Brillouin zone edge, it is easy
to show [12] that the periodic potential causes the opening up of a gap of
Eg = 2VG at the zone boundary (see Exercise 4.1). In the gap, solutions of
the one-particle Schrödinger equation with the potential (4.5) also exist, but
they correspond to exponentially growing wave functions. Therefore they are
physically unreasonable. However, at a surface the wave functions that in-
crease exponentially towards the surface can be matched with wave functions
that decay into the vacuum. This leads to the existence of localized states at
the surface with energies in the gap that are called Shockley surface states.

If the local atomic orbitals are strongly perturbed at the surface, as for
example in the case of semiconductor surfaces with broken bonds, additional
surface states above and below the bulk continuum can appear. The existence
of these so-called Tamm surface states can most easily be derived using a
tight-binding description of the surface (see Exercise 3.7).

In the one-dimensional description, the surface state corresponds to a
localized bound state. In three dimensions, crystal surfaces are still periodic
in the lateral directions and can be characterized by a two-dimensional surface
Brillouin zone. In other words, the wave vector k‖ is still a good quantum
number. This leads to a whole band of surface states. On the other hand,
due to the broken symmetry in the z-direction, the discrete reciprocal lattice
points along the surface normal are turned into rods which reflects that kz

is no longer a good quantum number. In order to analyze the surface band
structure and to determine the nature of the electronic states at the surface,
the presentation of the projected bulk band structure is rather helpful.

The construction of the projected bulk band structure is illustrated in
Fig. 4.4. Two surface state bands are indicated by the solid lines in the band
gaps of the projected bulk band structure. The chosen hypothetical example
corresponds to a metal since for any energy ε there is at least one bulk state
somewhere in the three-dimensional k-space. A semiconductor or an insulator
would have a band gap completely across the entire surface Brillouin zone
(see, e.g., Fig. 4.13).

In the one-dimensional band structure for k = (0, 0, kz), plotted in
Fig. 4.4, two band gaps are present. The lower one is due to the interac-
tion at the Brillouin zone boundary while the upper one results from an
avoided crossing of two bands. In such a hybridization gap, also true surface
states can exist, as is indicated by the upper surface band. The lower surface
band, on the other hand, joins the projected bulk band structure and mixes
with delocalized bulk states. By this mixing, a bulk state with a significantly
enhanced amplitude at the surface is created. Such a state is called a surface
resonance.

The analysis of the band structure is not always a convenient tool for the
determination and discussion of the bonding situation a surfaces, in particular
when it comes to the understanding of adsorption phenomena [75]. Here, in
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Fig. 4.4. Schematic illustration of
the projected bulk band structure
which is indicated by the grey-
shaded areas. In addition, two sur-
face state bands are included in the
band gaps of the projected bulk
band structure. While the upper
band corresponds to true surface
states, the lower surface band mixes
with bulk states leading to surface
resonances

particular the local density of states n(r, ε) (LDOS) can be rather useful.
The LDOS is defined as

n(r, ε) =
∑

i

|φi(r)|2 δ(ε− εi) . (4.6)

Using (4.6), the global density of states and the electron density can be
conveniently expressed through the following integrals

n(ε) =

∫

n(r, ε) d3r ,

n(r) =

∫

n(r, ε) dε . (4.7)

Thus the band-structure energy in the total-energy expression (3.57) can also
be written as an integral

N
∑

i=1

εi =

∫

n(ε) ε dε . (4.8)

Furthermore, the projected density of states (PDOS),

na(ε) =
∑

i

|〈φi|φa〉|2 δ(ε− εi) , (4.9)

is also a useful tool since it allows the determination of the nature and sym-
metry of chemical bonds. Actually, its analysis is already very illuminating
even in the case of a clean surface. In Fig. 4.5, the layer-resolved local d-band
density of states is plotted for the three uppermost surface layers of Pd(210).
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The electronic structure had been determined by GGA-DFT calculations [76].
The (210) orientation corresponds to a rather open surface that can be re-
garded as a stepped surface with a high density of steps. Due to the lower
coordination of the surface atoms, the d-band width is significantly reduced
at the surface. Since the number of d-electrons remains the same, the local
narrowing of the d-band leads to an upshift of the d-band center which is
indicated by the vertical lines in Fig. 4.5. Otherwise the entire d-band would
be located below the Fermi energy resulting in an increased occupation of the
d-band. As we will see in the next chapter, the upshift of the d-band center
leads to a higher reactivity of the surface (see p. 130).

The local d-band of the second layer is still somewhat narrower than the
Pd bulk d-band, but already the third-layer d-band is practically indistin-
guishable from the bulk band. This is a consequence of the good screening
properties of metals which lead to a rapid recovery of bulk properties in the
vicinity of imperfections, which also includes surfaces.

4.2 Metal Surfaces

After introducing the basic concepts relevant for the discussion of the elec-
tronic structure of surfaces, I will first focus on metal surfaces, in particular
on first-principles studies of noble and transition metals. Low-index metal
surfaces do usually not reconstruct. The electron density of a Cu(100) sur-
face determined by GGA-DFT calculations using ultrasoft pseudopotentials
is shown in Fig. 4.6. Recall that the jellium model turned out not to be ap-
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Fig. 4.6. Electron density of a
Cu(001) surface along a (010) plane
demonstrating electron smoothing at
a metal surface. The electronic den-
sity has been calculated by DFT-
GGA calculations using ultrasoft
pseudopotentials

propriate for Cu surfaces (see Fig. 4.3). Figure 4.6 confirms that the electron
density of Cu(100) is indeed rather inhomogeneous. Directly at the surface,
however, the electron distribution is much smoother than in the bulk. At
the surface, the electrons are free to lower their kinetic energy by becom-
ing more uniformly distributed which results in the so-called Smoluchowski
smoothing [77].

Let us now turn from the electronic structure in real space to the electronic
structure in reciprocal space. The calculated band structure of Cu(111) is
shown in Fig. 4.7. The projected bulk d-band is indicated by the darker shaded
areas whereas the lighter shaded areas correspond to states of the sp-bands.
The sp states exhibit an almost free electron behavior which can be infered
from the parabolic shape of the lower and upper band edge. There is a pair
of surface states in the upper band gap which also shows nearly-free-electron
features. If a parabola ε(k) = h̄2k2/2m∗ is fitted to the surface band around
Γ̄ , a so-called effective mass of m∗ = 0.37me is derived [78]. These surface
states correspond to Shockley states in the sp-band gap.

There is another surface state just above the d-band which is located
approximately 1.5 eV below the Fermi level. This is a Tamm state which
is pushed out of the top of the d-band. Although it lies mostly in the sp-
continuum along Γ̄ M̄ , it is still a true surface state since it has a different
symmetry than the sp-states and is therefore orthogonal to the sp-continuum.
There are also surface resonances present at the Cu(111) surface plotted
as dashed lines in Fig. 4.7. For example, focus on the Tamm surface state
band. This band emanating from M̄ bends down and would enter the d-
band continuum were it not repelled. At the point where the surface state is
repelled, a surface resonance splits off and enters the d-band. Another surface
resonance originates at the Γ̄ point where it is degenerate with the Tamm
surface state.



5. Adsorption on Surfaces

The study of adsorption is of central importance in the field of surface science.
Adsorption processes are involved in almost all technological processes in
which surfaces play a crucial role. Often they are an important step in the
preparation of a device as, e.g., in the growth of a semiconductor device.
But adsorption can also be of significant importance in industrially relevant
processes. The most prominent example is heterogeneous catalysis since usu-
ally the reactants have to adsorb on the catalyst before they can react. But
of course, also from a fundamental point of view the physical and chemical
factors determining adsorption processes are most interesting. In this chap-
ter I will first introduce the basic quantities necessary to describe adsorption.
After classifying the different types of adsorption systems the necessary theo-
retical tools to treat these systems will be addressed. Furthermore, reactivity
concepts will be discussed and their usefulness will be demonstrated in some
case studies.

5.1 Potential Energy Surfaces

The central quantity in any theoretical description of adsorption is the poten-
tial energy surface (PES) of the system. It corresponds to the energy hyper-
plane over the configuration space of the atomic coordinates of the involved
atoms. The PES directly gives information about adsorption sites and ener-
gies, vibrational frequencies of adsorbates, reaction paths, and the existence
of barriers for adsorption, desorption, diffusion and reactions.

There is a long tradition in surface science of using one-dimensional po-
tential curves to describe adsorption. The most prominent one goes back to
Lennard-Jones [148] and is shown in Fig. 5.1. Two curves are plotted: the
curve denoted by AB+S represents the potential energy of the molecule AB
approaching the surface S. There is a shallow minimum EAB

ad before the curve
rises steeply. The other curve A+B+S corresponds to the interaction of the
two widely separated atoms A and B with the surface. Far away from the
surface the energetic difference D between the two potential curves is equal
to the dissociation energy of the free molecule AB. Close to the surface it
is energetically more favorable to have two separate atoms interacting with
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Fig. 5.1. Potential energy curves for molecular and dissociative adsorption accord-
ing to Lennard-Jones [148]

the surface than the intact molecule. This corresponds to a dissociative ad-
sorption scenario. The energy gain upon the dissociative adsorption of the
molecule AB is EA+B

ad whereas the energy gain upon the adsorption of the

two isolated atoms A and B is given by EA+B
ad +D.

The exact location of the crossing point between the curves AB+S and
A+B+S determines whether there is a barrier for dissociative adsorption or
not. The scenario depicted in Fig. 5.1 illustrates the case of activated dis-
sociative adsorption with the diabatic dissociation barrier given by Ea. The
adiabatic barrier will be somewhat lower due to the avoided crossing between
the adiabatic potential curves. If the crossing of the two curves is closer to
the surface and thus at a potential energy < 0 eV, the molecule can disso-
ciate spontaneously at the surface and we have non-activated dissociative
adsorption.

Potential curves like the ones presented in Fig. 5.1 illustrate the energetics
of the adsorption process. However, without any additional information we do
not learn anything about the physical and chemical nature of the interaction
between the surface and the adsorbates. The shallow molecular adsorption
well in Fig. 5.1 usually corresponds to a physisorption well caused by van der
Waals attraction while the steep rise of the potential energy is due to the Pauli
repulsion between the molecular and substrate wave functions. The energy
gain upon dissociative adsorption is typical for the so-called chemisorption
which corresponds to the creation of true chemical bonds between adsorbate
and substrate. This interaction can be further classified into ionic, metallic
or covalent bonding.

In the following sections we will learn how to theoretically describe the
interaction of atoms and molecules with surfaces. First we will address physi-
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Fig. 5.2. Schematic illustration of the role of a catalyst using a two-dimensional
representation of the potential energy surface. A catalyst provides a detour in the
multi-dimensional PES with lower activation barriers

sorption which still represents a challenge in density functional theory. In the
discussion of chemisorption we will focus on the analysis of the electronic
structure which is crucial for the understanding of the nature of the chemical
bond.

One note of caution should be added. One-dimensional representations of
potential energy surfaces can be quite misleading. For example, it is often
argued that the presence of a catalyst lowers activation barriers significantly.
However, usually intermediate products are involved in heterogeneous catal-
ysis which can only be illustrated in a multi-dimensional representation of
a PES. This is demonstrated in Fig. 5.2. A catalytic reaction corresponds in
principle to a detour in the multi-dimensional PES on the path from the
reactants to the products. Along this detour, however, the activation barrier
is much smaller than for example in the gas phase. Thus the reaction rate
is enormously enhanced in the presence of a catalyst since the rate depends
exponentially on the barrier height (see Sect. 8.1).

5.2 Physisorption

In the weakest form of adsorption no true chemical bond between surface
and adsorbate is established. The bonding is rather due to the induced dipole
moment of a nonpolar adsorbate interacting with its own image charges in the
polarizable solid, which means that the attraction is caused by van der Waals
forces. Although this bonding is usually rather weak (∼ 0.1 eV), it is in fact
crucial for the bonding in a wide range of matter. For example, the exceptional
ability of geckos to climb up smooth vertical surfaces is caused by the van
der Waals attraction between foot-hairs of the gecko and the surface [149].
Measurements indicate that a single foot of a gecko could produce 100N of
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Fig. 5.3. Schematic illustration of a hydrogen atom in front of a perfect conductor
interacting with its image charges

adhesive force which means that the feet of a gecko could lift a load of 40 kg.
Here we are more concerned with van der Waals interaction of rare gases and
molecules with filled electron shells with surfaces since it is the main source
of the attraction between these species and surfaces.

I will first give a very elementary introduction into to the essential physics
of the van der Waals interaction between an atom and a solid surface [150].
Let us first consider a hydrogen atom in front of a perfect conductor (Fig. 5.3).
The positively charged nucleus is located at R = (0, 0, Z), and the electronic
coordinates r = (x, y, z) are given with respect to the nucleus. This hydrogen
atom is interacting with its image charges of both the nucleus and the electron
in the conductor. The total electrostatic energy is then a sum of two repulsive
and two attractive terms,

Vim = −e
2

2

[

1

|2R| +
1

|2R+ r + r′| − 1

|2R+ r| − 1

|2R+ r′|

]

= −e
2

2

[

1

2Z
+

1

2(Z + z)
− 2

|2R+ r|

]

. (5.1)

We assume that the atom is not too close to the surface which means that
|r| ≪ |R|. A Taylor expansion of (5.1) in powers of the small quantity |r|/|R|
yields

Vim = − e2

8Z3

[

x2 + y2

2
+ z2

]

+
3e2

16Z4

[z

2
(x2 + y2) + z2

]

+O(Z−5) . (5.2)

Let us first consider the leading term of (5.2). The nominator is pro-
portional to the square of the electronic displacement from the nucleus. For
the sake of simplicity we model the electronic motion in the free atom by a
three-dimensional oscillator:

V free
atom =

meω
2
vib

2

(

x2 + y2 + z2
)

. (5.3)

The frequency of the unperturbed oscillator is given by ωvib. The atomic
potential (5.3) is modified by the presence of the surface. The image charges
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lead to additional potential terms that are quadratic in the displacements.
This causes a change in the vibrational frequencies. The modified atomic
potential is given by

Vatom = V free
atom + Vim

Vatom =
meω

2
vib

2

(

x2 + y2 + z2
)

− e2

8Z3

[

x2 + y2

2
+ z2

]

+ . . .

≈
meω

2
‖

2

(

x2 + y2
)

+
meω

2
⊥

2
z2 , (5.4)

where the modified vibrational frequencies are

ω‖ = ωvib − e2

16meωvibZ3
and ω⊥ = ωvib − e2

8meωvibZ3
. (5.5)

Here we have used meω
2
vib ≫ e2/(4Z). If we assume that the atomic oscillator

remains in its quantum mechanical ground state, then the van der Waals
binding energy in this simple picture is exactly given by the change in the
zero-point energy of the atomic oscillator

VvdW (Z) =
h̄

2
∆ω(Z) =

h̄

2
(ω⊥(Z) + 2ω‖(Z) − 3ωvib) =

−h̄e2
8meωvibZ3

.(5.6)

This also demonstrates the long-range nature of the van der Waals interaction
which is proportional to Z−3.

The van der Waals potential (5.6) can be further simplified by introducing
the atomic polarizability

α =
e2

meω2
vib

. (5.7)

Substituting (5.7) into (5.6) yields

VvdW (Z) = − h̄ωvibα

8Z3
= −Cv

Z3
(5.8)

Here Cv = h̄ωvibα/8 is the van der Waals constant that is directly related to
the atomic polarizability.

By writing the fourth-order correction in the Taylor expansion (5.2) as
3CvZ0/Z

4, the so-called dynamical image plane at Z0 is defined

Vim(Z) = −Cv

Z3
− 3CvZ0

Z4
+O(Z−5) = − Cv

(Z − Z0)3
+O(Z−5) (5.9)

Note that the 1/Z3 long-range van der Waals attraction can also be ratio-
nalized from a 1/R6 atom-atom dispersion interaction summed over lattice
atoms (see Exercise 5.1).

The derivation of the van der Waals force between an hydrogen atom and
a perfect conductor given above basically corresponds to the interaction of
two dipoles at distance 2Z. However, a hydrogen atom in the ground state has
no permanent dipole moment. Hence there is a rigorous quantum mechanical
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derivation necessary of the long-range interaction between a neutral atom
and a solid surface. Such a derivation was given by Zaremba and Kohn [151].
They treated the interaction in perturbation theory under the assumption
that there is no overlap between the wave functions of the atom and the
solid. The full Hamiltonian is given by

H = Ha +Hs + Vas , (5.10)

where the subscripts a and s denote the atom and the solid, respectively.
The perturbation term Vas describes the electrostatic interaction between
the atom and the solid

Vas =

∫

d3rd3r′
ρ̂s(r)ρ̂a(r′)

|r − r′| , (5.11)

where ρ̂ corresponds to the total charge density of the positive ion core n+

and the electron number operator n̂,

ρ̂s,a(r) = n+
s,a(r) − n̂s,a(r) . (5.12)

It can be shown that the first-order contribution vanishes [151]. The second-
order interaction energy E(2) is expressed in terms of the retarded response
functions χa,s of the atom and the solid, respectively,

E(2) =
∑

α6=0

∑

β 6=0

|〈ψa
0ψ

s
0|V ′

as|ψa
αψ

s
β〉|

(Ea
0 − Ea

α) + (Es
0 − Es

β)

= −
∫

d3r

∫

d3r′
∫

d3x

∫

d3x′ e

|R+ x− r|
e

|R + x′ − r′|

×
∞
∫

0

dω

2π
χa(x,x′, iω)χs(r, r

′, iω) . (5.13)

Regrouping the terms and integrating over the atomic response function leads
to a term proportional to the atomic polarizability α which already appeared
in the simple qualitative derivation above. The remaining integrals can be
expressed in terms of the dielectric function ǫ of the solid. Finally one arrives
at the result that the interaction term E(2) indeed corresponds to the van
der Waals atom-metal potential

E(2)(Z) = VvdW(Z) = − Cv

(Z − Z0)3
+O(Z−5) , (5.14)

where the van der Waals constant is given by

Cv =
1

4π

∞
∫

0

dω α(iω)
ǫ(iω) − 1

ǫ(iω) + 1
(5.15)

and the position Z0 of the dynamical image plane by
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Table 5.1. Van der Waals coefficient CV and dynamical image plane Z0 for rare-
gas atoms on various noble metals obtained by jellium calculations [151]. CV is
given in eV/Å3 and Z0 in Å

He Ne Ar Kr Xe

CV Z0 CV Z0 CV Z0 CV Z0 CV Z0

Cu 0.225 0.22 0.452 0.21 1.501 0.26 2.110 0.27 3.085 0.29

Ag 0.249 0.20 0.502 0.19 1.623 0.24 2.263 0.25 3.277 0.27

Au 0.274 0.16 0.554 0.15 1.768 0.19 2.455 0.20 3.533 0.22

Z0 =
1

4πCv

∞
∫

0

dω α(iω)
ǫ(iω) − 1

ǫ(iω) + 1
z̄(iω) . (5.16)

Here z̄ is the centroid of the induced charge density. This derivation confirms
that the long-range interaction potential is expressible as a polarization en-
ergy. The polarization is due to the interaction of the instantaneous dipole
on the atom caused by charge fluctuations with the induced image charge
distribution in the solid.

The equations (5.15) and (5.16) provide a convenient scheme to evaluate
the van der Waals interaction from first principles. For simple and noble
metals the substrate can be reasonably well represented by the jellium model.
Calculated values obtained in this way for rare-gas atoms on various noble
metal surfaces are listed in Table 5.1 [151]. It is obvious that the van der
Waals coefficient increases strongly from He to Ne for all considered metal
surfaces. This increase is basically a direct consequence of the larger atomic
polarizability of the heavier rare-gas atoms. As far as the dependence on the
substrate is concerned, the van der Waals coefficients CV reflect the increase
in the dielectric function from Cu to Au. The positions of the image plane,
on the other hand, depend only weakly on the atomic polarizabilities but
decrease with increasing dielectric functions. The values for Z0 are rather
small in the order of 0.15–0.3 Å.

The van der Waals interaction (5.14) is purely attractive. However, closer
to the surface the wave functions start to overlap with the substrate wave
functions. There will be some electrostatic attraction towards the positive
ion cores of the substrate. On the other hand, the orbitals of the approaching
atom have to be orthogonal to the substrate wave functions which increases
their kinetic energy. This Pauli repulsion is particularly strong for atoms with
closed valence shells for which it dominates the interaction close to the sur-
face. Thus there will be a balance between the short-range Pauli repulsion
and the long-range van der Waals attraction leading to a physisorption min-
imum. In order to determine the physisorption equilibrium position for rare
gases adsorbed on jellium, Zaremba and Kohn divided the total interaction
into two parts: a short-range term described by Hartree–Fock theory and the
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Fig. 5.4. Physisorption potential for He interaction with different jellium surfaces
as a function of the distance from the jellium edge. The jellium electronic densities
correspond to the noble metals Ag, Cu and Au and the simple metal Li, respectively.
(After [152])

longe-range van der Waals interaction. Thus the physisorption potential is
given by

V (Z) = VHF(Z) + VvdW(Z) . (5.17)

The physisorption potential for He interaction with jellium surfaces with
densities corresponding to Ag, Cu and Au is shown in Fig. 5.4. It is obvious
that the attraction due to the van der Waals interaction is rather weak leading
to well depths below 10meV for He. Furthermore Fig. 5.4 demonstrates that
the divergence of the van der Waals attraction at Z0 ≈ 0.2 Å is irrelevant
for physisorption systems since the Pauli repulsion sets in much further away
from the surface.

There is, however, a certain inconsistency in the determination of the
equilibrium physisorption energy and position using (5.17). In the derivation
of the van der Waals attraction VvdW(Z) (5.14) it was assumed that the wave
function were not overlapping while the Pauli repulsion requires a wave func-
tion overlap. It would be desirable to have a consistent unified description of
both van der Waals interaction and chemical interaction. Unfortunately, den-
sity functional theory using the LDA or GGA for the exchange-correlation
functional does not properly describe the long-range van der Waals interac-
tion. This is closely related to the fact that in the LDA and the GGA the
exchange-correlation hole is still localized. Therefore the effective electron po-
tential outside of a metal falls off exponentially and not proportional to 1/z.
Hence neither image forces nor the van der Waals interaction is appropriately



5.2 Physisorption 107

reproduced. Still there have been calculations of the interaction of rare-gas
atoms with surfaces using DFT within the GGA [153] and LDA [154]. These
calculations yield reasonable potential well depths for rare-gas adsorption
on metal surfaces. It has been argued that this is due to the fact that ph-
ysisorption can induce a static dipole moment at the adsorbate [154] which is
correctly described within LDA or GGA and which contributes significantly
to the bond strength [155].

Still there have been several attempts to properly include the van der
Waals interaction in density functional theory. Two recent approaches [156,
157] utilize the adiabatic connection formula

Exc[n] =
1

2

∫

d3rd3r′
e2

|r − r′|

∫ 1

0

dλ[〈ñ(r)ñ(r′)〉n,λ − δ(r − r′)〈n(r)〉] .

(5.18)

For λ = 0, the Hamiltonian H(λ) does not contain any longe-range interac-
tion. This interaction is adiabatically switched on as a function of the coupling
parameter λ so that for λ = 1 the Hamiltonian H(λ) corresponds to the true
physical Hamiltonian. In (5.18), 〈. . .〉n,λ means the expectation value in the
ground state H(λ) with a potential Vλ which keeps the ground-state density
nλ(r) equal to the exact physical density nλ=1(r) for all λ. The advantage
of the exact formula (5.18) is that approximate expressions for the interact-
ing system can be used which can still be solved. The adiabatic connection
formula then corresponds to an extrapolation to the exact expression.

Hult et al. use second-order perturbation theory equivalent to (5.13) and
then introduce a local dielectric function

ǫ(ω;n(r)) = 1 − κ(n(r))
ω2

p(n(r))

ω2
(5.19)

with the plasma frequency

ω2
p(n(r)) =

4πe2n(r)

me
, (5.20)

thus defining a density functional. A cutoff function κ(n(r)) has to be in-
troduced because the local approximation (5.19) tends to overestimate the
response in the low-density tails of the wave functions [157]. Kohn et al. avoid
the introduction of a cutoff function by transforming the adiabatic connection
formula into the time domain [156].

Both approaches give very satisfactory results for van der Waals constants.
However, it would be much more desirable to find a more appropriate nonlo-
cal form for the exchange-correlation functional that reproduces the correct
long-range form of the effective one-particle potential. This would avoid the
introduction of an explicit van der Waals density functional which requires
some extra computational effort to include the long-range van der Waals at-
traction. Because of this extra effort so far the van der Waals functionals are
usually not included in standard DFT implementations.
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There is a relativistic modification of the van der Waals potential at dis-
tances larger than Z ∼ λ/2π, where λ is the effective atomic transition wave-
length that contributes to the polarizability. This distance of the order of
0.1 µm. At such a large distance the finite velocity of the photons cannot
be neglected which causes retardation effects in the electrostatic interaction.
Hence the van der Waals interaction falls off more rapidly with distance
and becomes proportional to −1/Z4 [158]. The retarded van der Waals or
Casimir-van der Waals potential is in fact a manifestation of the Casimir

effect [159] which is a consequence of the zero-point energy of a quantized
field. Although this effect leads to small changes in the attractive potential on
an absolute scale, it has still been observed in the scattering of an ultracold
beam of metastable neon atoms from silicon and glass surfaces [160].

5.3 Newns–Anderson Model

In contrast to physisorption, in chemisorption true chemical bonds between
adsorbate and substrate are formed. This means that there is a significant
hybridization between the adsorbate and substrate electronic states which
causes a modification of the electronic structure. Let us recall that within
the supercell approach the one-electron eigenfunctions of the Kohn–Sham
equations are delocalized Bloch functions. In the bulk, their eigenenergies as
a function of the crystal momentum ε(k) directly give the electronic band
structure which is crucial for the electronic, structural and optical properties
of the solid. However, adsorption at surfaces corresponds to the making of
localized bonds between the substrate and the adsorbate. The band structure
is not a convenient tool for a direct analysis and discussion of the nature of
the chemical bonds. Often, an analysis of the local density of states n(r, ε)
(LDOS), in particular the projected density of states, is better suited to
analyze the nature and symmetry of chemical bonds between substrate and
adsorbate [75].

In order to obtain the change in the density of states upon chemisorption,
a full self-consistent electronic structure calculation of the interacting sys-
tem has to be performed. However, to establish qualitative trends and basic
mechanisms, it is often very useful to describe a complex system by a sim-
plified Hamiltonian with a limited number of parameters. The dependence of
the properties of the system on these parameters can then be studied in a
well-defined way. In the next sections I will discuss approximative theories of
chemisorption such as the Newns–Anderson model or the effective medium
theory. When these methods were first introduced, they were also meant
to provide semiquantitative results for chemisorption properties. Nowadays,
due to the relative ease with which self-consistent electronic structure calcu-
lations can be performed, these approximative methods are mainly used for
explanatory purposes.



6. Surface magnetism

So far, we have entirely ignored any magnetic properties of surfaces. However,
the magnetism of surface and interfaces is of great technological interest be-
cause of the magnetic storage of data. Furthermore, the so-called spintronics,
i.e. spin-dependent charge transport, has also drawn a lot of attention. This
has motivated an extensive research of the magnetic properties of surfaces
which can be quite different from those of three-dimensional solids. Every
solid exhibits magnetic properties related to the properties of the individual
atoms or ions, namely diamagnetism or paramagnetism, which describe the
magnetic response of the atoms to an external magnetic field. We do not
focus on this kind of magnetism here but rather on magnetic effects that
are also present in the absence of any magnetic field, mainly ferromagnetism

(FM) and antiferromagnetism (AF). In order to understand these effects, we
will briefly review the theory of the exchange interaction, before discussing
the special properties of magnetic surfaces. In fact, in the area of surface
magnetism, theory was ahead of the experiment because of difficulties in de-
tecting magnetic properties on the atomic scale. Therefore there are many
theoretical predictions, as we will see in this chapter, that have only recently
been confirmed by experiment.

6.1 Exchange Interaction

The magnetism of atoms, molecules and solids is mainly related to their
electronic properties whereas the magnetic moment of the nuclei can usually
be neglected. For free atoms, the magnetic moment of the electrons comes
from two contributions, from the angular momentum and from the intrinsic
spin of the electrons. Except for the heaviest elements, the particular ground
state configuration of the atoms is given by Hund’s rules [18].

For solids, the delocalization of the electronic orbitals has to be taken
into account. If the overlap of adjacent orbitals is still sufficiently small, as
for example for the 4f electrons of rare earths elements, the magnetism can
be described within a localized picture. In transition metals, on the other
hand, such a localized picture is no longer appropriate. Magnetic materials
are mainly d-band metals where the magnetic effects originate from the ex-
change coupling between the d electrons. There is a competition between
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these exchange effects and the smearing of the density of state. Broad bands
resulting from small nearest-neighbor distances are usually non-magnetic,
while transition metals with partially filled d-bands are magnetic for larger
volumes and lower densities. As a consequence, a magnetic material such
as iron becomes non-magnetic when it is compressed, or conversely, a non-
magnetic material such as Pd becomes magnetic upon expansion [262]. With
the same arguments, surfaces should show larger magnetic moments as the
bulk because of the lower coordination of the atoms.

Although the d-electrons of transition metals are forming bands, they are
still rather localized compared to s and p electrons. Therefore the magnetism
in these materials is controlled by the hybridization between the d electrons of
nearest-neighbor sites. The basic physics underlying the exchange interaction
can thus be understood using the simplest molecule, the H2 molecule, as an
example [11]. We will show that a magnetic solution can exist even if no
magnetism is explicitly taken into account in the Hamiltonian. The electronic
Hamiltonian of a hydrogen molecule for fixed nuclei can be written as

H =
p1

2me
+
p1

2me
− e2

|r1 −R1|
− e2

|r1 −R2|

− e2

|r2 −R1|
− e2

|r2 −R2|
+

e2

|r1 − r2|
+

e2

|R1 −R2|
, (6.1)

where pi and ri are the momenta and the coordinates of both electrons,
respectively, and Ri are the locations of the nuclei, i.e., here the protons.
Note that this Hamiltonian does not depend on the spin state of the electrons.
Therefore, the two-electron wave function solving the Hamiltonian (6.1) can
be separated into a spatial and a spin part,

Ψ = ψ(r1, r2) |ms1
ms2

〉 . (6.2)

The spin part consists of a linear combination of the four spin states

|↑↑〉 , |↑↓〉 , |↓↑〉 , |↓↓〉 . (6.3)

These four states are common eigenvectors of the operators S2
1, S

2
2, S1z,

and S2z. Alternatively, the spin states may also be expressed in the {s,m} or
triplet-singlet representation based on the eigenkets of the total spin operator
S2 = (S1 + S2)

2 and its component Sz along the z-axis:

|s = 1,m = 1〉 = |↑↑〉 ,

|s = 1,m = 0〉 =

(

1√
2

)

(|↑↓〉 + |↓↑〉) ,

|s = 1,m = −1〉 = |↓↓〉 ,

|s = 0,m = 0〉 =

(

1√
2

)

(|↑↓〉 − |↓↑〉) , (6.4)

The three |s = 1,m = ±1, 0〉 states are referred to as the spin triplet, while
|s = 0,m = 0〉 is called the spin singlet state.
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The Pauli exclusion principle requires that the total wave function Ψ is
antisymmetric with respect to the interchange of both electrons. The spin
singlet state is antisymmetric; hence it has to be coupled with a symmetric
spatial wave function. The triplet state, on the other hand, is symmetric with
respect to the interchange of the two electrons; therefore the spatial part has
to be antisymmetric. We will denote by Es and Et the lowest eigenvalues of
the singlet (symmetric) and triplet (antisymmetric) solutions of the electronic
two-particle Hamiltonian (6.1). The sign of the singlet-triplet splitting Es−Et

will determine whether the ground state will have spin zero or spin one. It is
important to recall that this splitting is a consequence of a spin-independent
Schrödinger equation, i.e., there might be a magnetic solution although no
magnetic effects are explicitly included.

In order to approximately solve the electronic Schrödinger equation, we
follow the so-called Heitler-London ansatz of using the single-particle solu-
tions of the isolated hydrogen atom. If we denote with φi the electronic wave
function of the hydrogen atom i, the symmetric and antisymmetric solutions
are given by

ψs,t(r1, r2) =
1√
2

(

φ1(r1)φ2(r2) ± φ1(r2)φ2(r1)
)

. (6.5)

The + sign is for the spin singlet, the − sign for the spin triplet. Using
these singlet and triplet wave functions, the singlet-triplet splitting can be
evaluated in the limit of large spatial separations:

Es − Et = 〈 ψs(r1, r2)|H |ψs(r1, r2)〉 − 〈 ψt(r1, r2)|H |ψt(r1, r2)〉

= 2

∫

d3r1d
3r2 φ1(r1)φ2(r2)

(

e2

|r1 − r2|
+

e2

|R1 −R2|

− e2

|r1 −R1|
− e2

|r2 −R2|

)

φ1(r2)φ2(r1) . (6.6)

This singlet-triplet splitting arises from a matrix element between two two-
electron states that differ only through the exchange of the coordinates of
the electrons; this difference is therefore referred to as the exchange splitting.
Since the electronic hydrogen wave functions are strongly localized close to
the nuclei, the exchange splitting falls off rapidly with increasing distance
|R1 −R2|.

If one only considers the singlet and triplet states, then the two-particles
Hamiltonian (6.1) can be cast into a form in which the spin explicitly appears
and whose eigenfunctions give the spin of the corresponding state. First we
note that

S2 = (S1 + S2)
2 = S2

1 + S2
2 + 2S1 · S2 =

3

2
1 + 2S1 · S2 , (6.7)

where 1 here is the 2 × 2 unit matrix and where we have used the fact that
each individual spin operator satisfies S2

i = 1
2 (1

2 + 1) = 3
4 . The total spin

operator S2 has the eigenvalues s(s + 1). Therefore it is easy to see from
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(6.7) that the operator S1 · S2 has the eigenvalues − 3
4 in the singlet state

(s = 0) and + 1
4 in the triplet state (s = 1). Then the eigenvalues of the

Hamiltonian

Hspin =
1

4
(Es + 3Et) − (Es − Et)S1 · S2 (6.8)

are Es in the singlet state and Et in each of the three triplet states. This
Hamiltonian is referred to as the spin Hamiltonian. We can further simplify
this spin Hamiltonian by redefining the energy zero so that the constant
(Es + 3Et)/4 vanishes. Thus we get

Hspin = −J S1 · S2 , (6.9)

where the exchange coupling parameter J corresponds to the singlet-triplet
splitting

J = (Es − Et) . (6.10)

If J is positive, it is energetically favorable for both spins to be parallel while
for negative J the antiparallel configuration is favored.

This derivation for the spin Hamiltonian of the H2 molecule can be gen-
eralized to the case of a solid. If the overlap of the electronic wave functions
is rather small, the spin Hamiltonian of a solid can be written as

Hspin = − 1

2

∑

i6=j

Jij Si · Sj . (6.11)

where the factor 1/2, as usual, corrects for the double counting. This Hamil-
tonian is called the Heisenberg Hamiltonian, and the coupling constants Jij

are known as the exchange coupling constants.
Although the Hamiltonian (6.11) looks rather simple, solving the cor-

responding Schrödinger equation is far from being trivial. Still one has to
take into account that (6.11) only represents an approximate description of
magnetic properties caused by the electron-electron interaction.

Because of magnetic interactions, the individual atoms of some solids show
non-vanishing magnetic moments below a critical temperature Tc. Those
solids are called magnetically ordered. If the exchange coupling parameters
are all positive, i.e. Jij = Jji ≥ 0, the material exhibits a spontaneous mag-

netization, and the single localized moments add up to a macroscopic net
magnetization density even in the absence of a magnetic field. This ordered
state is called ferromagnetic. However, it is more common that the individ-
ual magnetic moments do not add up to a macroscopic magnetic moment
but rather yield a zero total moment. These magnetically ordered states are
called antiferromagnetic resulting from a Hamiltonian of the form

H =
1

2

∑

i6=j n.n.

|Jij |Si · Sj . (6.12)
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a) ferromagnetic b) antiferromagnetic

Fig. 6.1. Simple magnetically ordered structures on a body-centered cubic lattice.
a) Ferromagnetic structure, b) antiferromagnetic structure.

The simplest cases of ferromagnetic and antiferromagnetic ordering are
illustrated in Fig. 6.1 for a body-centered cubic lattice. In Fig. 6.1a, the fer-
romagnetic structure, all magnetic moments have the same magnitude and
direction. The simplest antiferromagnetic structure results from two identical
interpenetrating sublattices with magnetic moments of the same magnitude
but opposite direction. The bcc lattice can be regarded as two interpenetrat-
ing simple cubic sublattices. Fig. 6.1b demonstrates how antiferromagnetic
ordering results if these two sublattices have opposite magnetic moments.

In general, the ordered magnetic structures can be much more compli-
cated. If, for example, the two interpenetrating sublattices are occupied by
two different kinds of atoms with an antiparallel alignment of the magnetic
moments, there will usually be a net magnetic moment when the moments
of the two kinds of atoms do not exactly cancel. Such a solid is called ferri-

magnetic.
For the occurrence of ferromagnetism, there is in fact a simple criterion,

the so-called Stoner criterion. The total electron density can be divided into
spin-dependent densities, n↑ and n↓. Using these densities, the total electron
density n and the spin density m can be expressed as

n = n↑ + n↓ , m = n↑ − n↓ . (6.13)

Within a mean-field Hubbard Hamiltonian approach, the energy of a system
of N atoms with total spin Sz = 1

2mN can be written as

E(Sz) =
∑

σ

∑

i

εiσ +
1

4
NI

(

n2 −m2
)

, (6.14)

The first term is the band-structure energy (4.8), while the second term is
the exchange term that leads to a stabilization of the magnetic solution for
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m > 0. I is the Stoner parameter that is related to the exchange interaction.
However, changing the system from being paramagnetic to ferromagnetic
leads to a rearrangement of the band occupation that in general costs energy.
If we assume that the exchange splitting between spin up and spin down
states is small and that the density of states at the Fermi level n(εF ) is
constant close to the Fermi energy and almost the same for both σ =↑ and
σ =↓ spin states, then the change of the charge density δn and the spin
density m = n↑ − n↓ are given by

δn = n(εF ) (δε↑ + δε↓) /N = 0

m = n(εF ) (δε↑ + δε↓) /N = 2g(εF )δε , (6.15)

where g(εF ) = n(εF )/N is the density of states per electron at the Fermi level.
It is a simple exercise (see Exercise 6.1) to show that under the conditions of
Eq. (6.15) the rearrangement of the band occupation corresponds to a change
in the band-structure energy (4.8) of

∆Ebs =
N2

4

m2

n(εF )
=
N

4

m2

g(εF )
(6.16)

Thus the creation of the ferromagnetic phase is associated with the energy

∆Efm = E(Sz =
1

2
mN) − E(Sz = 0)

=
N

4

(

1

g(εF )
− I

)

m2 . (6.17)

This leads to the Stoner criterion that a ferromagnetic phase may form for

I g(εF ) > 1 . (6.18)

6.2 Spin-density Formalism

The first-principles treatment of magnetism in solids and surfaces is usu-
ally based on the spin-polarized density functional theory introduced by
von Barth and Hedin in 1972 [263] who developed a generalization of the
Hohenberg-Kohn theorem for the spin-dependent case. In a fully relativistic
treatment, magnetism appears naturally, but in a non-relativistic framework,
the magnetic coupling has to be explicitly included. The energy functional of
a general magnetic system can be expressed as a functional of the Hermitian
2 × 2 density matrix ρ which is defined by

ρ =
1

2
(n1 + σ ·m) =

1

2

(

n+mz mx − imy

mx + imy n+mz

)

, (6.19)

where 1 is again the 2 × 2 unit matrix and σ is the vector of the Pauli
matrices. n and m are the charge density and the magnetization density
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vector field which in the two-component formalism can be expressed in terms
of the Kohn-Sham orbitals ψi = (ψi,1, ψi,2) as

n(r) =

N
∑

i=1

ψ
†
i (r)1ψi(r)

m(r) =

N
∑

i=1

ψ
†
i (r)σψi(r) . (6.20)

It is left as an exercise (see problem 6.2) that the density matrix (6.19)
can be written as

ρkl =

N
∑

i=1

ψ∗
i,kψi,l , k, l = 1, 2 . (6.21)

In the two-component spinor formalism, the potential matrix V is expressed
as

V = V 1 + µB σ ·B . (6.22)

The first term contains the external, the Hartree, and the exchange-correlation
potential averaged over the two spin directions. µB is Bohr’s magneton, and
the vector B incorporates the external magnetic field B and the difference
of the spin-dependent exchange-correlation potential 1

2 (vxc(↑) − vxc(↓)) in a
local frame of reference where the z axis is parallel to the quantization axis.
In the local spin-density approximation (LSDA), the exchange-correlation
energy is written as

ELSDA
xc [ρkl] =

∫

d3r
{

ρ+(r) + ρ−(r)
}

εLDA
xc (ρ+(r), ρ−(r)) , (6.23)

where ρ+(r) and ρ−(r) are the eigenvalues of the density matrix ρkl(r). The
exchange correlation potential in the LSDA is then given by

v(α)
xc =

∂

∂ρ(α)

{(

ρ+(r) + ρ−(r)
)

εLDA
xc (ρ+(r), ρ−(r))

}

. (6.24)

Note that there are also spin-polarized versions of all popular GGA function-
als.

Using the expression (6.22), the Kohn-Sham equations become
{

− h̄2

2m
∇2 1 + V

}

ψk = εkψk . (6.25)

While the kinetic part of the Hamiltonian is diagonal in the two-dimensional
spin space, the two components of the Pauli spinor ψk can only be coupled
by the off-diagonal elements of the potential matrix. If the B field is collinear,
the coordinate system can always be chosen in such a way that the B fields
are oriented in the z direction. Then the total Hamiltonian is diagonal in
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spin space. This means that the spin-up and the spin-down problem decou-
ple so that they can be treated almost independently as two non-magnetic
calculations.

There are, however, situations where the spins are not aligned in a
collinear way. The proper theoretical treatment of such non-collinear spin
structures is much more involved [264–266]. In addition, the calculations also
become computationally much more demanding. The spin-up and spin-down
problems can no longer be solved separately so that the Hamiltonian matrix
that has to be diagonalized effectively doubles in size. Certain magnetic sys-
tems involving non-collinear structures even require orbital functional such
as the exact exchange for an appropriate description with density functional
theory [267]. Consequently, most of the DFT studies addressing magnetic
problems have been restricted to collinear magnetism. We will also first focus
on surface magnetism phenomena that can be treated within the collinear
formalism, but we will also discuss systems such as frustrated triangular spin
structures that require a non-collinear treatment.

It is important to realize that the spin-polarized formalism just introduced
is not only relevant for the treatment of magnetism in solids and at surfaces
but it is also necessary for an appropriate description of atoms and solids
with a non-vanishing magnetic moment, such as the hydrogen atom or the
oxygen atom and molecule.

6.3 Two-dimensional Ferro- and Antiferromagnetism

For three-dimensional transition metal bulk systems, spontaneous magnetism
is limited to the 3d metals, in particular metals and compounds including Fe,
Co and Ni. The outer d electrons become less localized when moving from 3d
to 4d and 5dmetals. Consequently, because of the larger overlap between the d
electrons, the d band becomes broader and the density of states at the Fermi
energy becomes smaller. At the same time, also the exchange interaction
decreases so that the Stoner parameter I becomes smaller. Therefore the
Stoner criterion (6.18) is no longer satisfied for 4d and 5d metals.

However, in a two dimensional layer of transition metal atoms, the coor-
dination of the atoms is lower, and consequently the width of the d band is
smaller. In addition, there are band structure effects which can also stabilize
magnetic phases. Such two-dimensional systems can be approximately real-
ized by transition metal overlayers grown on noble metal substrates because
of the relatively small interaction between the overlayer and the noble metal
substrate. Interestingly, according to the Mermin-Wagner theorem [268], at
finite temperatures there can be neither a ferromagnetic nor an antiferromag-
netic order in one- or two-dimensional isotropic Heisenberg spin models (6.11)
with short-range interactions (

∑

j Jijr
2
ij < ∞). However, in thin films de-

posited on substrates the spin interaction is usually not isotropic since the
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Fig. 6.2. a) Local magnetic moments calculated for 3d and 4d monolayers on
Ag(100) from scalar-relativistic LSDA calculations, i.e. without spin-orbit cou-
pling [270] and from fully relativistic LSDA calculations [271]; b) Local density
of states of a Ru overlayer on Ag(100) (after [270]).

surface breaks the symmetry perpendicular to the film. One can show that
this magnetic anisotropy stabilizes the long-range order in thin films [269].

Using an scalar-relativistic LSDA approach, the magnetism of transi-
tion metal overlayers on the (100) surfaces of Au and Ag has been inves-
tigated [270]. The local magnetic moments obtained from these calculations
are plotted in Fig. 6.2a. And indeed, according to these calculations, mono-
layers of the 4d metals Tc, Ru and Rh are ferromagnetic although the corre-
sponding bulk materials are non-magnetic. Obviously, band structure effects
induced by the lower coordination stabilize the overlayer magnetism for the
late 4d transition metals.

In Fig. 6.2a, additional results for Ru and Rh from fully relativistic calcu-
lations are included [271] which also take the spin-orbit coupling into account.
As can be seen, for the 4d metals, the spin-orbit coupling hardly has an in-
fluence on the magnetic moments. However, the inclusion of this coupling
does in fact matter for the 5d metals, where scalar-relativistic calculations
predict the Os/Ag(100) and Ir/Ag(100) overlayers to be ferromagnetic [270]
while the ferromagnetism vanishes when the spin-orbit coupling is taken into
account [271].

In addition, Fig. 6.2b displays the local density of states of the Ru over-
layer on Ag(100). The majority band, i.e., the band with the larger degree
of filling, is about 1 eV lower in energy than the minority band which means
that there is an exchange splitting between the spin up and the spin down
states of roughly 1 eV. For the 3d metals on Ag(100), however, the exchange
splitting is much larger, for example, it amounts to about 3 eV for Fe. There
are also subtle effects due to the coupling to the substrate. While the Tc
overlayer on Ag(100) still exhibits a weak ferromagnetism, on Au(100) this
overlayer is non-magnetic because of the stronger interaction with Au d states
which are higher in energy than the Ag d states.
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It should be emphasized that the results presented in Fig. 6.2 corre-
sponded to real predictions when they were made because the magnetic mo-
ments of these overlayer systems were not measured yet when the calculations
were done. In fact, most of these predictions still await an experimental ver-
ification.

So far we have just discussed the ferromagnetic state of the metallic mono-
layers. Depending on the exchange coupling, there might as well be antiferro-
magnetic solutions. Within a Heisenberg model for a square lattice, as given
by the (100) surface, the situation is simple if nearest-neighbor interactions
J1 are dominating: For J1 > 0, the monolayers are ferromagnetic, while for
J1 < 0 a c(2 × 2) antiferromagnetic structure is stable.

DFT calculations indeed suggest that V, Cr, and Mn monolayers on sev-
eral (100) surfaces of late d transition and noble metals exhibit a c(2 × 2)
antiferromagnetic configuration whereas Fe, Co, and Ni prefer a p(1× 1) fer-
romagnetism. The c(2 × 2) antiferromagnetic phase was first predicted by
theory; later experimental observations of a Mn overlayer on W(110) using a
spin-polarized STM were interpreted to be an indication for the existence of
this phase [272]. These experiments have then motivated further calculations
based on DFT [273,274] which will be discussed in the following.

Tungsten has an interatomic distance in the bulk that is 7% larger than
the one of manganese. Hence the pseudomorphic Mn films on W(110) are
significantly strained. Still, experimentally it has been observed that up to
four monolayers of Mn can grow pseudomorphically on W(110) [273]. The
DFT calculations confirm that the adsorption of Mn on W(110) is associated
with a large energy gain of 1.79 eV/atom for a Mn monolayer in the most fa-
vorable magnetic configuration [274]. Still it should be noted that this energy
is considerably smaller than the bulk cohesive energy of Mn, 2.92 eV [12],
which means that the Mn films on W(110) are not thermodynamically stable
against the formation of Mn droplets.

The different magnetic structures of the Mn/W(110) film considered in
two different GGA-DFT calculations using a FP-LAPW [273] and a plane-
wave approach [274] are illustrated in Fig. 6.3. For one Mn monolayer, the
antiferromagnetic c(2 × 2) structure (Fig. 6.3b) where all nearest-neighbor
atoms couple antiferromagnetically is the most stable, followed by the anti-
ferromagnetic p(2×1) structure (Fig. 6.3c), where two nearest-neighbor atoms
couple antiferromagnetically and two other couple ferromagnetically, and the
ferromagnetic configuration (Fig. 6.3a). While both DFT methods [273,274]
agree qualitatively on the energetic ordering of the structures, there are some
quantitative differences. According to the FP-LAPW calculations [273], the
p(2 × 1) AF and the FM structures are 102 and 188 meV/atom higher in
energy than the c(2 × 2) AF configuration, respectively, whereas the corre-
sponding plane-wave values [274] are 151 and 186 meV/atom.

In spite of the relatively strong Mn-W interaction, the Mn atoms in
the two-dimensional film on W(110) exhibit a larger magnetic moment
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In the preceding chapter we have been concerned with the solution of the
electronic Schrödinger equation for fixed nuclear coordinates. By performing
total-energy calculations for many different nuclear configurations, energy
minima and whole potential energy surfaces for chemical reactions at surfaces
can be determined. However, this static information is often not sufficient to
really understand how a reaction proceeds. Furthermore, in the experiment
the potential energy surface (PES) is never directly measured but just reac-
tion rates and probabilities. For a real understanding of a reaction mechanism
a dynamical simulation has to be performed. This also allows a true compar-
ison between theory and experiment and thus provides a reliable check of the
accuracy of the calculated PES on which the dynamics simulation is based.

In this chapter methods to perform dynamical simulations will be intro-
duced. In principle the atomic motion should be described by a quantum me-
chanical treatment, but often classical mechanics is sufficient. I will therefore
first present classical methods and then review quantum mechanical methods.

7.1 Classical Dynamics

One can perform classical molecular dynamics studies by integrating the clas-
sical equations of motion, either Newton’s equation of motion

Mi
∂2

∂t2
Ri = − ∂

∂Ri
V ({Rj}) , (7.1)

or Hamilton’s equation of motion

q̇ =
∂H

∂p
ṗ = −∂H

∂q
. (7.2)

The solution of the equations of motion can be obtained by standard nu-
merical integration schemes like Runge–Kutta, Bulirsch–Stoer or predictor-
corrector methods (see, e.g., [17]). Very often the rather simple Verlet algo-
rithm [290,291] is used which is easily derived from a Taylor expansion of the
trajectory.
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+ . . . (7.3)

Here we have introduced the velocity vi = dri/dt. Furthermore, we have used
Newton’s equation of motion to include the force F i = md2ri/dt

2 acting on
the i-th particle. Analogously we can derive

ri(t− h) = ri(t) − h vi(t) +
h2

2

F i(t)

m
− h3

6

d3ri

dt3

∣

∣

∣

∣

h=0

+ . . . (7.4)

Adding (7.3) and (7.4) yields the Verlet algorithm [290]

ri(t+ h) = 2ri(t) − ri(t− h) + h2 F i(t)

m
+ O(h4) . (7.5)

There is a simple test whether the numerical integration of the equations of
motion is accurate and reliable: the total energy, i.e., the sum of the kinetic
energy and potential energy, should be conserved along the trajectory. In
order to evaluate the kinetic energies, the velocities at time t are needed.
Note that they do not explicitly appear in (7.5). They can be estimated by

vi(t) =
ri(t+ h) − ri(t− h)

2h
. (7.6)

However, the kinetic energy evaluated with (7.6) belongs to the time step
prior to the one used for the positions (7.5) which enter the evaluation of the
potential energy. This problem can be avoided in the so-called velocity Verlet
algorithm [291]

ri(t+ h) = ri(t) + h vi(t) +
h2

2

F i(t)

m

vi(t+ h) = vi(t) + h
F i(t+ h) + F i(t)

2m
, (7.7)

which is mathematically equivalent to the Verlet algorithm (Problem 7.1).
In order to perform molecular dynamics simulations with the Verlet algo-

rithm, a specific time step has to be chosen. Of course, the error associated
with each time step is the smaller, the shorter the time step. On the other
hand, a shorter time steps means more iterations for a given trajectory or
simulation time which increases the computational cost. Furthermore, the
error of each time step may accumulate. Hence the chosen time step will re-
present a compromise. The change in the total energy during one molecular
run should be well below 1%. As a rule of the thumb, the time step should be
ten times smaller than the shortest vibrational or rotational period of a given
system. If, e.g., hydrogen belongs to the simulation ensemble, then usually
the H-H intramolecular vibration corresponds to the fastest time scale with
a vibrational period of τvib ≈ 8 fs, hence the time step should be shorter than
0.8 fs.



7.2 Quantum Dynamics 185

In a conservative system, the energy is conserved in a molecular dynamics
run. In a thermodynamical sense this means that the phase space trajectory
belongs to the microcanonical ensemble. Often it is desirable to include dis-
sipation effects in the gas-surface dynamics simulations. The simplest way
to achieve this is to add a friction term to the Hamiltonian. If, however, the
substrate should not only act as an energy sink but rather as a heat bath
in order to model thermalization and accommodation processes, both energy
loss and energy gain processes have to be taken into account. This can be
achieved by a number of techniques. The most prominent ones are the gener-

alized Langevin equation approach [292] and the Nosé thermostat [293, 294].
In both approaches, the molecular dynamics simulations sample the canonical
ensemble at a specified temperature.

7.2 Quantum Dynamics

There are two ways to determine quantum mechanical reaction probabilities:
by solving the time-dependent or the time-independent Schrödinger equation.
Both approaches are equivalent [295] and should give the same results. The
question which method is more appropriate depends on the particular prob-
lem. Time-independent implementations are usually more restrictive as far
as the form of the potential is concerned, but often the choice of the method
is a matter of training and personal taste.

In the most common time-independent formulation, the concept of defin-
ing one specific reaction path coordinate is crucial. Starting from the time-
independent Schrödinger equation

(H − E) Ψ = 0 , (7.8)

one chooses one specific reaction path coordinate s and separates the kinetic
energy operator in this coordinate

(
−h̄2

2µ
∂2

s + H̃E) Ψ = 0 . (7.9)

Here H̃ is the original Hamiltonian except for the kinetic energy operator
in the reaction path coordinate. Usually the use of curvelinear reaction path
coordinates results in a more complicated expression for the kinetic energy
operator involving cross terms, but for the sake of clarity I have neglected this
in (7.9). As the next step one expands the wave function in the coordinates
perpendicular to the reaction path coordinate in some suitable set of basis
functions,

Ψ = Ψ(s, . . .) =
∑

n

ψn(s) |n〉 . (7.10)

Here n is a multi-index, and the expansion coefficients ψn(s) are assumed to
be a function of the reaction path coordinate. Now we insert the expansion of
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Ψ in (7.9) and multiply the Schrödinger equation by 〈m|, which corresponds
to performing a multi-dimensional integral. Since the basis functions |n〉 are
assumed to be independent of s, we end up with the so-called coupled-channel
equations,

∑

n

{

(
−h̄2

2µ
∂2

s − E) δm,n + 〈m|H̃ |n〉
}

ψn(s) = 0 . (7.11)

Instead of a partial differential equation – the original time-independent
Schrödinger equation (7.8) – we now have a set of coupled ordinary differential
equation. Still a straightforward numerical integration of the coupled-channel
equations leads to instabilities, except for in simple cases, due to exponen-
tially increasing so-called closed channels. These problems can be avoided in
a very stable and efficient coupled-channel algorithm [296–298] that will be
briefly sketched in the following.

For the solution Ψ defined in (7.10), which represents a vector in the space
of the basis functions, the initial conditions are not specified. This function
can also be considered as a matrix

Ψ = (ψ)nl , (7.12)

where the index l labels a solution of the Schrödinger equation with an inci-
dent plane wave of amplitude one in channel l and zero in all other channels.
Formally one can then write the solution of the Schrödinger equation for a
scattering problem in a matrix notation as

Ψ(s→ +∞) = e−iqs − eiqs r ,

Ψ(s→ −∞) = e−iqs t . (7.13)

Here q = qmδm,n is a diagonal matrix, r and t are the reflection and transmis-
sion matrix, respectively. Now one makes the following ansatz for the wave
function,

Ψ(s) = (1 − ρ(s))
1

τ(s)
t . (7.14)

Equation (7.14) defines the local reflection matrix ρ(s) (LORE) and the
inverse local transmission matrix τ(s) (INTRA). The boundary values for
these matrices are (except for phase factors which, however, do not affect the
transition probabilities):

(ρ(s); τ(s)) =

{

(r; t) s→ +∞
(0; 1) s→ −∞ . (7.15)

From the Schrödinger equation first order differential equations for both ma-
trices can be derived [296] which can be solved by starting from the known
initial values at s → −∞; at s → +∞ one then obtains the physical re-
flection and transmission matrices. Thus the numerically unstable boundary
value problem has been transformed into a stable initial value problem.
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In the time-dependent or wave-packet formulation, the solution of the
time-dependent Schrödinger equation

ih̄
∂

∂t
Ψ(R, t) = H Ψ(R, t) (7.16)

can formally be written as

Ψ(R, t) = e−iHt/h̄ Ψ(R, t = 0) . (7.17)

Here where we have used the time evolution operator exp(−iHt/h̄) with
the Hamiltonian H = T + V for time-independent potentials V . The eval-
uation of the time evolution operator is unfortunately not straightforward
because the kinetic energy operator T and the potential V do in general
not commute. The most common methods to represent the time-evolution
operator exp(−iHt/h̄) in the gas-surface dynamics community are the split-
operator [299, 300] and the Chebychev [301] methods. In the split-operator
method, the time-evolution operator for small time steps ∆t is written as

e−iH∆t/h̄ = e−iT∆t/2h̄ e−iV ∆t/h̄ e−iT∆t/2h̄ + O(∆t3) , (7.18)

Interestingly enough, the split-operator technique for a certain number of
time steps corresponds to a naive successive application of the operator
exp(−iT∆t/h̄) and exp(−iV ∆t/h̄) except for the first and last step. How-
ever, apparently this is sufficient to approximately take into account the fact
that T and V do not commute.

In the Chebyshev method, the time-evolution operator is expanded as

e−iH∆t/h̄ =

jmax
∑

j=1

aj(∆t) Tj(H̄) , (7.19)

where the Tj are Chebyshev polynomials and H̄ is the Hamiltonian rescaled
to have eigenvalues in the range (−1, 1). Both propagation schemes use the
fact that the kinetic energy operator is diagonal in k-space and the poten-
tial is diagonal in real-space. The wave function and the potential are rep-
resented on a numerical grid, and the switching between the k-space and
real-space representations is efficiently done by Fast Fourier Transformations
(FFT) [17].

Quantum dynamical studies are still computationally very demanding.
This prevents the explicit dynamical consideration of surface degrees of free-
dom. At most, one surface oscillator has been taken into account to model
the influence of the substrate vibrations on scattering or adsorption probabil-
ities [302–304]. However, usually one is not interested in the explicit dynamics
of the substrate vibrations in the context of gas-surface dynamics as long as
there is no strong surface rearrangement due to the interaction with atoms
and molecules. In such a case, substrate phonons are then rather treated as
a heat bath that lead to thermalization and dissipation effects. In order to
describe these effects in terms of an open system dynamics, the system can
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be partitioned into a subsystem (often referred to as just the system) and the
surrounding bath. The reduced density matrix

ρ =
∑

m,n

wmn |m
〉〈

n| , (7.20)

is then defined in the Hilbert space of the system Hamiltonian H . If the
functions |n

〉

form a basis of this space, the diagonal matrix elements wnn =
〈

n|ρ|n
〉

are interpreted as the population of the state |n
〉

, whereas the off-

diagonal elements wmn =
〈

m|ρ|n
〉

are related to the phase coherence between

the states |m
〉

and |n
〉

with respect to interference effects [305]. Physical
observables are obtained as usual in a density matrix formulation by forming
the trace

〈

A
〉

= tr (Aρ) . (7.21)

The time-evolution of the reduced density matrix is given by the Liouville–

von Neumann equation [305, 306]

∂ρ

∂t
= − i

h̄
[H, ρ] + LBρ , (7.22)

where dissipation effects are taken into account through the Liouville bath
operator LB. Without the dissipation term, (7.22) is equivalent to the time-
dependent Schrödinger equation. However, solving (7.22) for a closed system
is not advisable, since a N × N matrix has to be determined if the wave
functions are expanded in a set of N basis functions while in the ordinary
time-dependent Schrödinger equation the wave function is just represented
by a N -dimensional vector. Still, the computational effort associated with the
density-matrix formalism is necessary in order to include dissipation effects in
the quantum dynamics. This is not only essential for scattering and reactive
processes at surface, but also for reactions induced by electronic transitions
(see Sect. 9.5). The dissipative term can describe vibrational or electronic
relaxation effects as well as so-called dephasing processes with corresponding
time scales, T1, T2 and T ∗

2 , respectively.
There is no unique way to choose the bath operator LB. Usually one in-

vokes the Markov approximation, which means that one assumes that the
change of the density matrix at time t is a function of the reduced density
matrix at that time only, i.e. there are no memory effects of the past history.
Even in this approximation, LB is not fully specified. There is a phenomeno-
logical form proposed by Lindblad [307] which guarantees that at all times
the diagonal elements of ρ properly correspond to state populations. The
Lindblad semigroup functional is given by

LBρ =
∑

k

(

CkρC
+
k −

{

C+
k Ck, ρ

})

, (7.23)

where {A,B} = AB+BA denotes the anticommutator. The Ck are the Lind-
blad operators. The dissipative channel is labeled by the subscript k. In the
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Lindblad approach, different diagonal elements are coupled by energy relax-
ation processes on a timescale T1. The off-diagonal elements decay because
of energy relaxation on the timescale T2 = 2T1 as well as because of pure
dephasing processes due to elastic processes on a time scale T ∗

2 . A shortcom-
ing of the Lindblad approach is that the operators are not connected in a
physically transparent way to the interaction Hamiltonian between system
and bath [305].

In the Redfield approach [308], the bath operator LB is derived from the
system-bath interaction using second-order perturbation theory. This leads
to the Redfield equations

LBρ =
∑

l

([

G+
l ρ,Gl

]

+
[

Gl, ρG
−
l

])

, (7.24)

where the bath modes are labeled by l and the system dependence of the
system-bath operators is represented by the operators Gl. Still, the Redfield
approach suffers from another deficiency, namely the possible violation of the
positivity of the density matrix. There have been further proposals for the
construction of LB [305] which will not be discussed here.

Often negative imaginary potentials, so-called optical potentials have been
used in dissipative dynamics. However, it is important to realize that there is
a difference between the use of a friction term in classical dynamics and the
use of an optical potential in quantum dynamics. Whereas a friction term
leads to momentum relaxation processes, an optical potential reduces the
norm of the wave function.

It is a wide-spread believe that classical dynamical methods are much less
time-consuming than quantum ones. This is certainly true if one compares
the computational cost of one trajectory to a quantum calculation. If inte-
grated quantities such as the sticking probability are to be determined, then
the statistical error of the result is only related to the number of computed
trajectories and not to the dimensionality of the problem. For example, if the
sticking probability S lies in the range 0.1 ≤ S ≤ 1, then usually 103–104

trajectories are sufficient to obtain a sufficiently accurate result independent
of the complexity of the system.

However, for the evaluation of detailed microscopic distribution function
in scattering or desorption processes at surfaces the statistical requirements
are much more demanding. Then the delocalized nature of the wave functions
in the quantum dynamics can be advantageous. Instead of many trajectory
calculations one quantum calculation might be sufficient. Quantum calcu-
lations correspond in a sense to the simultaneous determination of many
trajectories. The crucial difference between quantum and classical dynam-
ics is that in quantum dynamics the averaging is done coherently while it is
done incoherently in classical dynamics. In addition, in wave-packet calcula-
tions dynamical simulations are performed for a whole range of energies in
one run, and in a time-independent coupled-channel method the microscopic
transitions probabilities of all open channels are determined simultaneously.
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Consequently, quantum dynamical simulations do not necessarily have to be
more time-consuming that classical calculations.

7.3 Parameterization of ab initio Potentials

In order to perform dynamical simulations on a potential energy surface de-
rived from first-principles calculations, one needs a continuous description
of the potential. This is especially true for quantum dynamical simulations.
Since the wave functions are delocalized, they always probe a certain area
of the PES at any time. The total energy calculations, however, just provide
total energies for discrete configurations of the nuclei. In classical molecu-
lar dynamics simulation, the gradients of the potential are only needed for
one particular configuration at any time. This makes ab initio molecular dy-
namics simulations possible in which the forces necessary to integrate the
classical equations of motions are determined by electronic structure calcu-
lations in each step [309–312]. The evaluation of the forces for every time
step of a MD run is computationally still so demanding that most ab ini-
tio molecular dynamics studies have been limited to the simulation of well
below 100 trajectories. This number is usually much too small to obtain
sufficient statistics for the reliable determination of reaction probabilities or
distributions. However, this situation is changing. Recently the first ab ini-
tio molecular dynamics studies addressing dissociative adsorption on surface
have been performed [313] that is based on more than 4.000 ab initio tra-
jectories so that statistically meaningful results can be obtained, as will be
demonstrated at the end of this chapter in Sect. 7.7.

On the other hand, molecular dynamics simulations on a suitable analytic
representation of a potential energy surface can be extremely fast. Hence it is
desirable to adjust the first-principles energies to an analytical or numerical
continuous representation of the PES. This is a highly non-trivial task. On
the one hand the representation should be flexible enough to accurately re-
produce the ab initio input data, on the other hand it should have a limited
number of parameters so that it is still controllable. Ideally a good parameter-
ization should not only accurately interpolate between the actually calculated
points, but it should also give a reliable extrapolation to regions of the poten-
tial energy surface that have actually not been determined by the ab initio
calculations.

The explicit form of the chosen analytical or numerical representation of
the ab initio potential varies from application to application. Often the choice
is dictated by the dynamics algorithm in which the representation is used.
Most applications have been devoted to the interaction of a diatomic molecule
with the surface [314,315]. The angular orientation of the molecule has usu-
ally been expanded in spherical harmonics and the center-of-mass coordinates
parallel to the surface in a Fourier series [316–319]. For the PES in the plane
of the molecular distance from the surface and the interatomic separation a
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representation in reaction path coordinate has been employed [317–320], but
also two-body potentials have been used [316]. Before detailed ab initio po-
tentials became available, the so-called LEPS (London-Eyring-Polanyi-Sato)
form was often used to construct a global PES [321]. This parameterization
contains only a small number of adjustable parameters which made it so at-
tractive for model calculations, but which makes it at the same time relatively
inflexible. A modified LEPS potential has still been successfully used to fit an
ab initio PES of the interaction of atomic hydrogen with the hydrogenated
Si(100) surface [322].

Ab initio total energies are often mainly determined at high-symmetry
points of the surface in order to reduce the computational cost. It is true
that these high-symmetry points usually reflect the extrema in the PES.
However, due to this limitation the fitted continuous PES can only contain
terms that correspond to these high-symmetry situations. On the one hand
this often saves computer time also in the quantum dynamics because certain
additional selection rules are introduced which reduces the necessary basis
set [316,317]. On the other hand, of course this represents an approximation
since it introduces additional artificial symmetries into the simulations. The
question, how serious the neglect of terms with lower symmetry is, remains
open until these terms have been determined and included in actual dynami-
cal calculations. In fact, the influence of these terms can be quite significant,
as has been revealed in ab initio molecular dynamics simulations [313].

Most of the corrugation in molecule-surface potential energy surfaces can
already be derived from the atom-surface interaction. This observation has
been used in corrugation-reducing procedures [323,324]. The first step is the
ab initio determination of the interaction of both the atomic and the molec-
ular species with the surface. From the atomic data, a three-dimensional
reference function is constructed which is subtracted from the molecular po-
tential energy surface. The remaining function is much smoother than the
original potential energy surface and therefore much easier to fit. In addi-
tion, the interpolated PES reflects the correct symmetry of the system. This
method has been successfully used for a continuous representation of several
gas-surface interaction systems including H2/Pd(111) [323], H2/Ni(111) [324],
H2/Pt(211) [325], or H2/Cu(110) [326].

If more than just the molecular degrees of freedom should be considered in
a parameterization of an ab initio PES, analytical forms become very compli-
cated and cumbersome. As an alternative, the interpolation of ab initio points
by a neural network has been proposed [327–329]. Neural networks can fit, in
principle, any real-valued, continuous function to any desired accuracy. They
require no assumptions of the functional form of the underlying problem. On
the other hand, there is no physical insight that is used as an input in this
parameterization. Hence the parameters of the neural network do not reflect
any physical or chemical property.
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Fig. 7.1. Potential energy sur-
face of H2/Pd(100) evaluated by
a tight-binding Hamiltonian that
was adjusted to reproduce ab ini-
tio results of [202] (compare with
Fig. 5.19). The filled circles indi-
cate the points that have been used
to obtain the fit. The insets demon-
strate the lateral and angular con-
figuration of the H2 molecule. (Af-
ter [330])

This deficiency is avoided if the results of first-principles electronic struc-
ture calculations are used to adjust the parameters of a tight-binding formal-
ism [72]. A tight-binding method is more time-consuming than an analytical
representation or a neural network since it requires the diagonalization of
a matrix. However, due to the fact that the quantum mechanical nature
of bonding is taken into account [68] tight-binding schemes need a smaller
number of ab initio input points to perform a good interpolation and ex-
trapolation [330]. This is demonstrated in Fig. 7.1 that shows the PES of
H2/Pd(100) obtained by a tight-binding fit to the ab initio data [202]. The
plots should be compared with the ab initio PES in Fig. 5.19. The filled circles
denote the points that have been used to obtain the fit. While for the h–b–h
cut (see p. 137) a relatively large number of input points were necessary for
the fit (Fig. 7.1a), for the h–t–h three points were sufficient for a satisfactory
agreement with the ab initio data (Fig. 7.1a). This is caused by the fact that
the parameters of the tight-binding scheme, the Slater-Koster integrals [67],
have a well-defined physical meaning.

An important issue is to judge the quality of the fit to an ab initio PES.
Usually the root mean squared (RMS) error between fit and input data is
used as a measure of the quality of a fit. If this error is zero, then everything
is fine. However, normally this error is larger than zero. The systematic error
of the ab initio energies is usually estimated to be of the order of 0.1 eV.
Often it is said that the RMS error of the fit should be of the same order.
But the dynamics of molecular dissociation at surfaces can be dramatically
different depending on whether there is a barrier for dissociation of height
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0.1 eV or not [331]. Hence for certain regions of the PES the error has to
be much less than 0.1 eV, while for other regions even an error of 0.5 eV
might not influence the dynamics significantly. Another example occurs in
a reaction path parameterization. If the curvature in the parameterization
is off by a few percent, the energetic distribution of barrier heights is not
changed and the dynamical properties are usually not altered significantly.
However, the location of the barriers is changed and consequently the RMS
error can become rather large. Hence one has to be cautious by just using
the RMS error as a quality check of the fit. Unfortunately there is no other
simple error function for the assessment of the quality of a fit. If it is possible,
one should perform a dynamical check. Obviously, if the dynamical properties
calculated on a fitted PES agree with the ones calculated on the original PES,
the quality of the fit should be sufficient.

7.4 Scattering at Surfaces

If a beam of atoms or molecules is hitting a surface that has a small adsorption
well for the particular particles, most of them will be scattered back into the
gas phase. Especially for the case of light atoms and molecules when the de
Broglie wave length of the particles is of the order of the lattice spacing, the
quantum nature of the scattering event has to be taken into account which
leads to elastic scattering and diffraction.

Let us first consider a beam of atoms with initial wave vector Ki that is
scattered elastically at a periodic surface. The component of the wave vector

parallel to the surface K
‖
f after the scattering is given by

K
‖
f = K

‖
i + Gmn , (7.25)

whereGmn is a vector of the two-dimensional reciprocal lattice of the periodic
surface. Since there is no energy transfer to the surface in elastic scattering,
the total kinetic energy of the atoms is conserved:

h̄2K2
f

2M
=
h̄2K2

i

2M
. (7.26)

By (7.25) and (7.26) all possible final scattering angles are specified. This
leads to a discrete, finite set of scattering channels. Note that for a given
incident energy, angle and mass of the atoms the scattering angles are entirely
determined by the geometry of the surface. The interaction potentials only
influences the intensity of the scattering peaks, but not their position. That is
why diffraction at surfaces can be used to determine the structure of surfaces.

Now we allow for energy transfer processes to the surface, i.e., we consider
the inelastic scattering of atoms. The main source for inelastic effects is the
excitation and deexcitation of substrate phonons. These phonons also carry
momentum so that the conservation of parallel momentum leads to
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Fig. 7.2. Summary of the different collision processes in nonreactive scattering
(after [332]).

K
‖
f = K

‖
i +Gmn +

∑

exch.phon.

±Q , (7.27)

where Q is a two-dimensional phonon-momentum vector parallel to the sur-
face. The plus-signs in the sum correspond to the excitation or emission of a
phonon while the minus-signs represent the deexcitation or absorption of a
phonon. The excitation and deexcitation of phonons with momentum Q and
mode index j also modifies the energy conservation relation:

h̄2K2
f

2M
=
h̄2K2

i

2M
+

∑

exch.phon.

±h̄ωQ,j . (7.28)

If only one phonon is emitted or absorbed in the collision process, the sums in
(7.27) and (7.28) reduce to one term. If one-phonon processes are dominant
in scattering, the phonon spectrum of a surface can be measured.

A schematic summary of possible collision processes in nonreactive scat-
tering is presented in Fig. 7.2. With Imn the intensity of the elastic diffrac-
tion peak mn according to (7.25) is denoted. The scattering peak I00 with

K
‖
f = K

‖
i is called the specular peak. The excitation of phonons usually leads

to a reduced normal component of the kinetic energy of the back-scattered
atoms or molecules. Thus the reflected beam is shifted in general to larger
angles with respect to the surface normal compared to the angle of incidence.
The resulting supraspecular scattering is indicated in Fig. 7.2 as the phonon-
inelastic reflection event.

The coherent scattering of atoms or molecules from surfaces has been
known as a tool for probing surface structures since 1930 [333]. The diffraction
pattern yields direct information about the periodicity and lattice constants
of the surface. Furthermore, if one measures the intensity of the specular
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peak as a function of the angle of incidence, then at specific angles resonances
appear [334]. They are due to so-called selective adsorption resonances which
are also indicated in Fig. 7.2. These resonances occur when the scattered
particle can make a transition into one of the discrete bound states of the
adsorption potential. This can only happen if temporarily the motion of the
particle is entirely parallel to the surface. The interference of different possible
paths along the surface causes the resonance effects. Energy and momentum
conservation yields the selective adsorption condition

h̄2K2
i

2M
=
h̄2(K

‖
i +Gmn)2

2M
− |El| , (7.29)

where El is a bound level of the adsorption potential. Usually these selec-
tive adsorption resonances only occur for relative weak adsorption potentials
that are not strongly corrugated, i.e., mainly for physisorption potentials.
The bound state energies can be obtained without detailed knowledge of the
scattering process. Typically one assumes a Morse potential

V (z) = D0

(

e−2α(z−zo) − 2e−α(z−zo)
)

, (7.30)

or some other parameterization of the interaction potential and can then de-
rive the well depth, position and range of the adsorption potential from an
adjustment of the parameters of the potential to reproduce the experimen-
tally observed binding energies [109]. In particular helium atom scattering
(HAS) has been used intensively to study surface crystallography and the
shape of physisorption potentials (see, e.g., [335] and references therein). He-
lium atom scattering has furthermore been employed extensively in order to
determine the surface phonon spectrum in one-phonon collisions via (7.27)
and (7.28) [335].

Hydrogen molecules have been utilized less frequently in order to study
interaction potentials [336]. The coherent elastic scattering of molecules is
more complex than atom scattering because in addition to parallel momen-
tum transfer the internal degrees of freedom of the molecule, rotations and
vibrations, can be excited during the collision process. Then the total energy
balance in the scattering reads

h̄2K2
f

2M
=
h̄2K2

i

2M
+∆Erot + ∆Evib +

∑

exch.phon.

±h̄ωQ,j . (7.31)

Usually the excitation of molecular vibrations in molecule-surface scattering
is negligible, in contrast to the phonon excitation. This is due to the fact that
the time-scale of the molecular vibrations is usually much shorter than the
scattering time or the rotational period. Therefore the molecular vibrations
follow the scattering process almost adiabatically. Molecular rotations, on
the other hand, can be excited rather efficiently in the scattering at highly
anisotropic surfaces. The rotational excitation leads to additional peaks in
the diffraction spectrum, the rotationally inelastic diffraction peaks.
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Many processes on surfaces such as diffusion, desorption etc. are hindered
by large energetic barriers. On a microscopic time scale, these processes oc-
cur very rarely. Many unsuccessful attempts are performed before eventually
the corresponding barrier is crossed. The time between two successful events
can easily be in the order of nanoseconds or even longer. In any microscopic
molecular dynamics simulation all unsuccessful events are explicitly included.
Since the time scale of MD runs is typically limited to picoseconds, the sim-
ulation of these rare events is prohibited. Besides, such a simulation would
mean a waste of computer time because a lot of useless information would
be gathered.

Therefore, for the simulation of these processes a kinetic approach is nec-
essary in which the single processes are described by the corresponding rates.
Note that in the chemistry literature a rate usually has the dimension con-
centration per time. In contrast, here rates will simply be quantities with the
dimension one over time which a chemist would call rate constants. In this
chapter, we will first show how the rates can be determined from microscopic
information via transition state theory. We will then show how processes such
as diffusion and growth can be described either by rate equations or by kinetic
Monte Carlo simulations. This allows to extend the information gained from
microscopic electronic structure calculations to simulations on mesoscopic or
even macroscopic time and length scales which will be illustrated in detail.

8.1 Determination of Rates

Experimentally it is well established that the rate of many processes as a
function of temperature follows the Arrhenius behavior

k = k0 exp

(

− Ea

kBT

)

. (8.1)

In (8.1), Ea is the apparent activation energy which is usually interpreted as
the minimum barrier hindering the particular process. From a microscopic
point of view, it is desirable to derive an expression for a rate from the
properties of the underlying potential energy surface. This can in fact be
done using transition state theory (TST) [439].
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Fig. 8.1. Schematic representation of escape processes between to locally stable
states with forward rate k+ and backward rate k−

Consider a potential V (x) along the reaction path coordinate x connect-
ing two locally stable states (Fig. 8.1). At x = xT = 0 the transition state
is located. The barrier for the forward escape is given by Ea while the cor-
responding barrier for the backward process is Eb. In the following we are
mainly concerned with the derivation of the forward rate k+. The frequency of
particles vibrating in the initial well around xi is given by ω0. The transition
state is characterized by an imaginary frequency ωT.

There are two basic assumptions underlying transition state theory. First,
it is assumed that the moving particles are sufficiently strongly coupled to a
heat bath so that there is local thermodynamic equilibrium along the whole
reaction path. Secondly, the transition state corresponds to a point of no
return which means that any trajectory passing through the transition state
will not recross it. This last assumption is inherently coupled to classical
mechanics because in quantum mechanics it does not make sense to speak
of single trajectories with no recrossings. Hence transition-state theory is
fundamentally a classical mechanical theory, although the concept can be
generalized to consider the leading quantum corrections within semiclassical
quantum theory [439].

Using the basic assumptions mentioned above, the equilibrium average of
the one-way forward flux at the transition state can be expressed as

k+
TST =

〈 δ(x) ẋ Θ(ẋ) 〉
〈Θ(−x)〉 . (8.2)

Here the average 〈. . .〉 denotes the thermal expectation value. Θ is the step
function defined by

Θ(x) =

{

1 , for x > 0

0 , for x < 0
. (8.3)
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Hence 〈Θ(−x)〉 = n̄i corresponds to the equilibrium population for x < 0,
i.e., of the initial state i in the left well of Fig. 8.1. It is important to note that
the rate (8.2) always gives an upper bound for the true rate, i.e. k+

TST ≥ k,
since recrossing of reactive trajectories are neglected.

In order to derive the rate expression within TST, we start with the
simple case of an one-dimensional system according to Fig. 8.1. A particle of
mass m moves in the potential V (x) with two local minima. Using (8.2), the
transition-state forward rate from state i to state f is given by

kTST = Z−1
0

1

2πh̄

∫

dq dp δ(q) q̇ θ(q̇) exp(−βH(q, p)) , (8.4)

where we have identified the variable q with the reaction-path coordinate x.
β = 1/kBT is the inverse temperature and Z0 denotes the partition sum in
the initial well

Z0 =
1

2πh̄

∫

q<0

dq dp exp(−βH(q, p)) . (8.5)

The integral over the momentum coordinate p in (8.4) can easily be evaluated
to yield

∞
∫

−∞

dp q̇ θ(q̇) exp

(

−β p
2

2m

)

=

∞
∫

0

dp
p

m
exp

(

− p2

2mkBT

)

= kBT , (8.6)

while the integral over the coordinate q simply gives
∫

dq δ(q) exp

(

−V (q)

kBT

)

= exp

(

− Ea

kBT

)

. (8.7)

Inserting the expressions for the integrals into (8.4), we get for the reaction
rate

kTST =
kBT

h

1

Z0
exp

(

− Ea

kBT

)

. (8.8)

In the harmonic approximation, the partition sum in the initial well is given
by Z0 = kBT/h̄ω0, i.e., we obtain the following rate

kTST =
ω0

2π
exp

(

− Ea

kBT

)

. (8.9)

Here we already see that the prefactor before the exponential in (8.9) corre-
sponds to an attempt frequency that yields the number of attempts that the
particle tries to get over the barrier. The Boltzmann factor then gives the
thermal probability that the particle has enough energy to cross the transition
state.

This formalism can relatively easily be extended to the multi-dimensional
case starting from the flux expression (8.2), in particular for the case of a
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nonlinear coordinate (i = 0) coupled to N vibrational degrees of freedom.
In the harmonic approximation, which is valid for h̄ω ≪ kBT , the partition
sums Z0 and ZTS in the initial well and at the transition state are simply
given by

Z0 =

N
∏

i=0

{

kBT

h̄ω
(0)
i

}

, ZTS =

N
∏

i=1

{

kBT

h̄ωTS
i

}

, (8.10)

where ω
(0)
i and ωTS

i are the vibrational frequencies in the initial well and the
transition state, respectively. We note in passing that often the transition
state is denoted by (6=), i.e. ZTS ≡ Z 6=. The transition rate can now be
expressed as [439]

kTST =
kBT

h

ZTS

Z0
exp

(

− Ea

kBT

)

=
1

2π

N
∏

i=0

ω
(0)
i

N
∏

i=1

ωTS
i

exp

(

− Ea

kBT

)

. (8.11)

This result for the TST rate can be reformulated employing the Helmholtz
free energy F via the substitution

Z = exp[−(E − TS)/(kBT )] = exp[−F/(kBT )] (8.12)

Inserting this expression into (8.11), we arrive at

kTST =
kBT

h
exp

(

∆S

kB

)

exp

(

− Ea

kBT

)

= k0 exp

(

− Ea

kBT

)

, (8.13)

where ∆S = STS − S0 is the entropy change and STS and S0 are the en-
tropy of the 2N -dimensional phase space at the transition state and the
2(N + 1)-dimensional phase space in the initial well. Hence we have derived
the Arrhenius expression (8.1) from transition state theory. Note that the
prefactor k0 which is usually assumed to be temperature-independent has in
fact a linear dependence on the temperature according to (8.13). However,
since the temperature dependence is dominated by the exponential term, it
is still often justified to neglect the temperature dependence of the prefac-
tor. Furthermore, as (8.11) shows, in the harmonic approximation the linear
temperature dependence of the first factor is canceled by the temperature
dependence of the entropy change.

In principle, all variables in (8.11) can be evaluated from electronic struc-
ture calculations since they are all related to the potential energy surface.
However, usually the determination of eigenmode-frequencies is computa-
tionally very demanding since it involves the evaluation and diagonalization
of a Hesse matrix. Hence often the prefactor in (8.11) is just estimated and
only barrier heights are computed from first principles.
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Furthermore, it is not trivial to locate the transition state. There is no
uniquely defined way of finding the minimum energy path between a given
initial and final state. One way to determine this path is to simply map out
the relevant potential energy surface in great detail, but this can be computa-
tionally very demanding. However, there are robust methods that can be used
to find a minimum energy path. In the nudged elastic band method [440,441],
first the energy and the forces of the system are determined along a string usu-
ally interpolating linearly between initial and final state. Neighboring points
along the string are connected by springs in order to guarantee a continuous
path. Then an optimization algorithm is performed which involves force pro-
jections of both the true forces and the spring forces. Thus the string of points
is dragged closer and closer to the minimum energy path until the transition
state is located. In that way, also nonintuitive transition state geometries
might be detected.

8.2 Diffusion

A single particle on a surface can jump laterally along the surface from one
stable adsorption site to the next. This process is a typical process that is
driven by thermal fluctuations. Each adsorbate performs thermal vibrations
around the equilibrium site in the adsorption well. The rate for a jump to a
next nearest neighbor site is then given by an Arrhenius expression

kj = k0 exp

(

− Ea

kBTs

)

, (8.14)

where Ea is the energetic barrier to the next-nearest neighbor site and Ts

is the surface temperature. To obtain a more detailed understanding of the
so-called self-diffusion process, we introduce the probability P (R, t) that the
lattice site R on the surface is occupied a time t. The probability that the
atom is still at site R at time t+∆t can be expressed as

P (R, t+∆t) =
∑

R′

W (R,R′, ∆t) P (R′, t) . (8.15)

Here W (R,R′, ∆t) describes the conditional probability that the atom is at
site R at time t+∆t given that it was at site R′ at time t. Now we assume
that only nearest-neighbor (n.n.) jumps can occur and that the time ∆t is so
short that at most one jump happens during this time. Since kj is the overall
rate that a jump to any of the nearest neighbors occurs, the rate of a jump
to a particular nearest neighbor is given by kj/N where N is the number of
nearest neighbors. Then the probability of a jump to this nearest neighbor
site within the time ∆t is simply ∆t ·kj/N . Thus we can write the probability
W as
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W (R,R′, ∆t) =



















kj∆t/N , if R,R′ n.n. ,

1 − ∑

n.n.
kj∆t/N , if R = R′ ,

0 else ,

(8.16)

where we have used the fact thatW is a probability, i.e.,
∑

R

W (R,R′, ∆t) = 1.

This simply says that if a atom is at site R′ at time t, it will also be at some
lattice site at time t+∆t with certainty (which means that desorption events
are not considered).

If we insert (8.16) in (8.15), we obtain

P (R, t+∆t) =
∑

n.n.

kj∆t

N
P (R′, t) +

(

1 −
∑

n.n.

kj∆t

N

)

P (R, t) . (8.17)

Now we subtract P (R, t) from both sides of (8.17), divide by ∆t, and take
the limit ∆t→ 0. This leads to the differential equation

∂P (R, t)

∂t
=
kj

N

∑

n.n.

[P (R′, t) − P (R, t)] . (8.18)

An equation such as (8.18) is called a master equation. In general, master
equations give the time dependence of probability distributions of physical
observables. Equation (8.18) is valid for diffusion via nearest-neighbor jumps
in arbitrary environments. Let us now assume that the jumps are confined
to a two-dimensional square lattice with lattice constant a. The number of
nearest neighbors is 4. If we now perform a Taylor expansion of P (R′, t) at
the nearest-neighbor sites, for example in x-direction:

P (R± aêx, t) = P (R, t) ± a
∂P (R, t)

∂x
+
a2

2

∂2P (R, t)

∂x2
± . . . , (8.19)

where êx is the unit vector in x-direction, we obtain the well-known diffusion
equation

∂P (R, t)

∂t
=
kja

2

4
∇2P (R, t) . (8.20)

The factor

Ds =
kja

2

4
(8.21)

is called the self-diffusion or tracer-diffusion coefficient. It is often denoted by
D∗. This coefficient also enters the mean square displacement of the particle
on the surface. Let us assume that the adatom was at the origin R = 0 at
time t = 0. After the time t the particle has performed t ·kj jumps, each with
a square displacement of a2. Hence the mean square displacement is given by

〈R2(t)〉 = t kj a
2

= 4 Ds t . (8.22)
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a)

initial transition final state

b)

Fig. 8.2. Diffusion mechanisms on a fcc(100) surface. (a) hopping diffusion, (b)
exchange diffusion

In fact, (8.22) is often used to define the self-diffusion coefficient Ds. It is
important to note that Ds differs from the chemical diffusion coefficient Dc.
Consider an ensemble of particles on the surface. If one assumes that the num-
ber of particles stays constant with time, their particle distribution function
n(R, t) obeys a conservation law given by a continuity equation

∂n(R, t)

∂t
+ ∇ · j(R, t) = 0 , (8.23)

where j(R, t) is the particle current. Now we assume that the particle current
is driven by the non-uniformity of the density distribution. The simplest
assumption is a linear dependence

j = −Dc ∇n(R, t) . (8.24)

This equation is known as Fick’s law. Substituting Fick’s law into the con-
servation law yields Fick’s second law, the diffusion equation

∂n(R, t)

∂t
= ∇ · (Dc∇n(R, t)) . (8.25)

The chemical diffusion coefficient does not describe the motion of a single
atom due to thermal fluctuations, but the transport of a large number of
atoms due to a gradient in the particle density. In general, Dc depends on
the particle density. Only in the case of vanishing particle densities when Dc

does not depend on the density any more, Ds and Dc become equal, as a
comparison of (8.20) and (8.25) confirms.

The usual mode of surface diffusion is assumed to proceed via hops be-
tween adjacent equilibrium adsorption sites (see Fig. 8.2a). This is indeed



9. Electronically Non-adiabatic Processes

So far we have almost entirely dealt with surface processes that proceed in
to the electronic ground state. This means that we have assumed that the
Born–Oppenheimer approximation is justified. Although there are many im-
portant processes at surfaces that involve electronic transitions [305,489,490],
the status of the theoretical treatment of processes with electronically excited
states is not very satisfactory. Many factors still hamper the development of
quantitative models incorporating electronic excitations. Neither the deter-
mination of the electronically excited states nor the calculation of coupling
matrix elements between these excited states is trivial. But even if the ex-
cited states and the coupling between them is known, the simulation of the
reaction dynamics with electronic transitions still represents a challenge. In
the next sections I will illustrate why the treatment of excited states is so
complicated, but I will also show that there are some promising approaches
to overcome the problems. In addition, concepts to treat reaction dynamics
with electronic transitions will be discussed.

9.1 Determination of Electronically Excited States

In Sect. 4.3, we already saw that for example the GW approximation allows
for an accurate determination of the electronic band structure including ex-
cited electronic states. However, no total energies can be derived from the
GW approximation so that the evaluation of excited state potential energy
surfaces is not possible.

In principle, energies of excited states can be determined by quantum
chemistry methods. This has in fact been done successfully for the descrip-
tion of electronically nonadiabatic processes at surfaces, as will be shown in
Sect. 9.5. Still, quantum chemistry methods are limited to finite systems of
a rather small size. Density functional theory, which is so successful for elec-
tronic ground state properties of extended system, can not be directly used
for electronically excited states since it is in principle an electronic ground-
state theory.

Still DFT can be extended to allow the determination of excited states
energies, namely in the form of the time-dependent density-functional the-
ory (TDDFT) [491, 492]. It rests on the Runge–Gross theorem which is
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the analogue to the Hohenberg–Kohn theorem of time-independent density-
functional theory. The Runge–Gross theorem states:

The densities n(r, t) and n′(r, t) evolving from a common ini-
tial state Ψ0 = Ψ(t0) under the influence of two potentials v(r, t)
and v′(r, t) are always different provided that the potentials differ
by more than a purely time-dependent, i.e. r-independent function
v(r, t) 6= v′(r, t) + c(t).

This means that there is an one-to-one mapping between time-dependent
potentials and time-dependent densities. However, it is important to note
that the functional depends on the initial conditions, i.e. on Ψ0 = Ψ(t0). Only
if the initial state corresponds to the electronic ground state, the functional
is well-defined since then it depends on the density n(r, t) alone.

The proof of the Runge-Gross theorem is a little bit more complex than
the one for the Hohenberg–Kohn theorem. Still it is not too complicated [492].
Here I only sketch the main ideas of the lines of reasoning. First one shows by
using the quantum mechanical equation of motion that the current densities

j(r, t) =
〈

Ψ(t)|ĵp|Ψ(t)
〉

(9.1)

and

j′(r, t) =
〈

Ψ ′(t)|ĵp|Ψ ′(t)
〉

(9.2)

are different for different potentials v and v′. The current densities are related
to the density by the continuity equation. By using

∂

∂t
(n(r, t) − n′(r, t)) = −∇ · (j(r, t) − j′(r, t)) , (9.3)

the one-to-one mapping between time-dependent potentials and densities can
be proven.

Still it does not seem to be obvious why time-dependent DFT should lead
to the determination of electronic excitation energies. To see this, we have
to use linear response theory. We consider an electronic system subject to an
external potential of the form

vext(r, t) =

{

v0(r) ; t ≤ t0

v0(r) + v1(r, t) ; t > t0
, (9.4)

In perturbation theory, the change of the density due to the external potential
v1(r, t) is expanded in powers of v1, i.e., the density is written as

n(r, t) = n0(r) + n1(r, t) + n2(r, t) + . . . , (9.5)

where the single terms correspond to the different orders of v1. The first order
or linear response to the perturbation v1(r, t) is given by

n1(r, t) =

∫

dt′
∫

d3r′ χ(r, t, r′, t′)v1(r
′, t′) , (9.6)



9.1 Determination of Electronically Excited States 275

where the density-density response function χ is defined as

χ(r, t, r′, t′) =
δn[vext](r, t)

δvext(r′, t′)

∣

∣

∣

∣

v0

. (9.7)

The Runge–Gross theorem is not only valid for interacting particles, but
also for non-interacting particles moving in an external potential vs(r, t).
The density-density response function of non-interacting particles with un-
perturbed density n0 corresponds to the Kohn–Sham response function and
is given by

χs(r, t, r
′, t′) =

δn[vs](r, t)

δvs(r′, t′)

∣

∣

∣

∣

vs[n0]

. (9.8)

This linear response formalism can be used in order to determine polarizabil-
ities not only of atoms and molecules [493], but also for large systems. For
the fullerene molecule C60, e.g., the results have been quite accurate; how-
ever, for polyacetylene chains the conventional exchange-correlation func-
tionals fail [494]. I do not want to address this subject any further, but
rather focus on another application of time-dependent DFT, the calculation
of excitation energies [492, 495]. The main idea rests on the fact that the
frequency-dependent linear response of a finite system, i.e. the Fourier trans-
form of (9.6), has discrete poles at the excitation energies Ωj = Ej − E0 of
the unperturbed system. By using the functional chain rule, it can be shown
that the noninteracting and interacting response functions are related by a
Dyson-type equation [492, 495]. This leads to an integral equation for the
frequency-dependent linear response n1(r, ω)

∫

d3x K(x, r, ω) n1(x, ω) =

∫

d3r′ χs(r, r
′, ω) v1(r

′, ω) , (9.9)

where the Kernel K(x, r, ω) is given by

K(x, r, ω) = δ(r − x) −
∫

d3r′ χs(r, r
′, ω)

×
(

1

|r′ − x| + fxc[n0](r
′,x, ω)

)

, (9.10)

with the Fourier transform fxc[n0](r
′,x, ω) of the so-called time-dependent

exchange-correlation kernel

fxc[n0](r, t, r
′, t′) =

δvxc[n](r, t)

δn(r′, t′)

∣

∣

∣

∣

n0

. (9.11)

Now one uses the fact that the Kohn–Sham excitation energies ωj are in
general not identical with the true excitation energies Ωj . Hence the right
hand side of (9.9) remains finite for ω → Ωj . On the other hand, the exact
density response n1 diverges for ω → Ωj . In order that the integral operator
acting on n1 on the left hand side of (9.9) yields a finite result, the eigenvalues
of this integral operator have to vanish. This is equivalent to the statement
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Fig. 9.1. Illustration of electronically excited states in the interaction of atoms or
molecules with surfaces

that the true excitation energies Ω are characterized as those frequencies
where the eigenvalues λ(ω) of

∫

d3x

∫

d3r′ χs(r, r
′, ω)

(

1

|r′ − x| + fxc[n0](r
′,x, ω)

)

g(r′, ω)

= λ(ω) g(r, ω) (9.12)

satisfy λ(Ω) = 1. This can easily be shown by performing the integration
over the delta function in (9.10). The solution of (9.12) is still not trivial.
For practical purposes, further approximations have to be made. If the stan-
dard LDA is used in TDDFT for the exchange-correlation functional, then
not only locality in space, but also locality in time is assumed. Therefore
it is then called the adiabatic local density approximation (ALDA). Analo-
gously, standard GGA functionals become the adiabatic generalized gradient
approximation in TDDFT.

9.2 Electronic Excitation Mechanisms at Surfaces

If we consider electronic excitations in the interaction of atoms or molecules
with surfaces, we have to distinguish between delocalized excited states of the
surface and localized excitations at the adsorbate or the adsorbate-surface
bond. These two different kinds of excitation modes are illustrated in Fig. 9.1
where potential energy surfaces reflecting the interaction of a molecule with
a surface are plotted.

First of all, the interaction of a molecule with a surface can lead to the
excitation of a electron-hole (e-h) pair in the surface. In particular in metals,
the electronic states show a continuous spectrum. More importantly, they
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are rather delocalized. Hence the local interaction of a molecule with a metal
surface will hardly be influenced by the excitation of an electron-hole pair.
In Fig. 9.1, this is schematically illustrated by a multitude of shifted ground
state potentials. Still, the excitation of an electron-hole pair corresponds to an
energy transfer process to the surface that leads to dissipation effects. Thus
the influence of the excitation of e–h pairs on the molecule-surface dynamics
can be described within a friction-dissipation formalism.

The situation is entirely different in the case of an electronic excitation
of the molecule or atom interacting with the surface. Then the shape of
the excited-state potential might be entirely different from the ground-state
potential. In a theoretical description of such a process usually the potential
of the excited state must be explicitly considered. These two scenarios can
be considered as the adiabatic and the diabatic limit of electronic transitions
at surfaces.

9.3 Reaction Dynamics with Electronic Transitions

In order to couple the direct determination of excited states by electronic
structure methods with a dynamical simulation, a full quantum treatment
of the system would be desirable. However, this is usually computationally
not feasible because of the different mass and time scales associated with nu-
clei and electrons, respectively. In any case, for atoms heavier than hydrogen
or helium a classical description of the reaction dynamics is usually suffi-
cient. Hence a mixed quantum-classical dynamics method is appropriate in
which a multi-dimensional classical treatment of the atoms is combined with a
quantum description of the electronic degrees of freedom. The crucial issue in
mixed quantum-classical dynamics is the self-consistent feedback between the
classical and the quantum subsystems. There are two standard approaches
that incorporate self-consistency, mean-field or Ehrenfest and surface-hopping

methods [496].
These methods are based on the separation of the kinetic energy of the

classical particles from the total Hamiltonian

H = TR +Hel(r,R) , (9.13)

where R are the classical and r the quantum degrees of freedom. The time
evolution of the quantum wave function is then given by the time-dependent
Schrödinger equation using the electronic Hamiltonian Hel

ih̄
∂

∂t
ψ(r,R, t) = Hel(r,R(t)) ψ(r,R, t) , (9.14)

where the coordinates R of the classical degrees of freedom enter as parame-
ters. In both the mean-field and the surface-hopping methods, the quantum
particles are subject to a Hamiltonian that varies in time due to the motion of
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the classical particles. On the other hand, the quantum state of the system de-
termines the forces that act on the classical particles. Thus the self-consistent
feedback cycle between quantum and classical particles is realized.

The difference between the two methods lies in the treatment of the back-
response of the classical system to quantum transitions. In the mean-field
method, the motion of the classical particles is determined by a single effective
potential that corresponds to an average over quantum states

MI
d2

dt2
RI = −∇RI

〈

ψ(r,R)|Hel(r,R)|ψ(r,R)
〉

, (9.15)

which, using the Hellmann–Feynman theorem, can be transformed to

MI
d2

dt2
RI = −

〈

ψ(r,R)|∇RI
Hel(r,R)|ψ(r,R)

〉

. (9.16)

The mean-field approach properly conserves the total energy, furthermore it
does not depend on the choice of the quantum representation since the wave
function can be directly obtained by the numerical propagation of the wave
packet using (9.14). However, this approach violates microscopic reversibility,
and it is subject to the deficiency of all mean-field methods: the classical path
is mainly determined by the major channel trajectory so that branching and
correlation effects in the time-evolution are not appropriately accounted for.

A proper treatment of the correlation between quantum and classical
motion requires a distinct classical path for each quantum state. This is
in fact fulfilled in the surface-hopping method. In this approach, the wave
function is expanded in terms of a set of basis functions

ψ(r,R, t) =
∑

j

cj(t)φj(r,R) . (9.17)

With respect to this basis, matrix elements of the electronic Hamiltonian are
constructed

Vij =
〈

φi(r,R)|Hel(r,R)|φj(r,R)
〉

. (9.18)

Furthermore, the nonadiabatic coupling vector is defined as

dij =
〈

φi(r,R)|∇R|φj(r,R)
〉

, (9.19)

where the gradient is taken with respect to all atomic coordinatesR. Inserting
the wave function (9.17) into (9.14), one obtains [497] (see Exercise 9.2)

ih̄ċk =
∑

j

cj(Vkj − ih̄Ṙ · dkj) . (9.20)

In the adiabatic representation, the matrix elements Vkj are zero while in a
diabatic representation the nonadiabatic coupling vector vanishes.

In any surface-hopping method, the classical particles move on the poten-
tial energy of one particular quantum state subject to the classical equation
of motion
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MI
d2

dt2
RI = −∇RI

〈

φi(r,R)|Hel(r,R)|φi(r,R)
〉

. (9.21)

At the same time, the set of coupled differential equations (9.20) is solved in
order to obtain the amplitudes cj of each electronic quantum state. What is
left, is the specification of a rule for the switches or jumps between the dif-
ferent potential energy surfaces. This rule can in fact not be uniquely defined
so that many different algorithms exist (see, e.g., [498]). One particularly
elegant method is the so-called fewest-switches algorithm [497] which is a
variationally-based hopping algorithm that guarantees the correct popula-
tion |cj(t)| of each state in an ensemble of many calculated trajectories with
the minimum number of hops (see Exercise 9.3).

There are also caveats of surface hopping algorithms. They are not inde-
pendent of the quantum representation [497,499], and there is some ambiguity
in the velocity adjustment if Vkk(R) 6= Vll(R) at the position of the switch
between state k and l. In addition, they are computationally more demanding
than mean-field methods, and in fact there are cases for which the mean-field
method is more accurate [496]. We will first discuss processes that can be
treated within a mean-field formalism.

9.4 Electronic Friction Effects

The determination of the role of electron-hole pairs in the scattering and
sticking of molecules at surfaces is rather cumbersome. There are hardly any
reliable studies where the influence of the e-h pairs has been investigated from
first-principles. Hence there is also no accepted viewpoint about the impor-
tance of the e–h pairs. It seems that whenever there are some unclear results
in sticking or scattering experiments, e–h pairs are made responsible. Equiv-
alently, the validity of Born–Oppenheimer molecular dynamics simulations is
often questioned because of the neglect of e–h pair excitations.

Using a thin polycrystalline Ag film deposited on n-type Si(111) as a
Schottky diode device, the nonadiabatically generated electron-hole pairs
upon both atomic and molecular chemisorption can be detected [500,501]. A
strong correlation between the adsorption energy and the measured chemi-

current has been observed. For NO adsorption on Ag (adsorption energy
∼ 1 eV), it has been estimated that one quarter of the adsorption energy is
dissipated to electron-hole pairs. Adsorption-induced electron hole-pair cre-
ation has also been found for other metal substrates, such as Au, Pt, Pd, Cu,
Ni or Fe, and even for semiconductors such as GaAs and Ge [500,502].

The understanding of this nonadiabatic dissipation channel is still rather
incomplete. There are, however, theoretical studies that used ab initio input
in order to assess the effects of electron-hole pair excitations in adsorption
and reaction processes on surfaces. An approach based on time-dependent
density functional theory was used in order to estimate the electron-hole
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Traditionally, surface science studies have focused on the investigation of
low-index single crystal surfaces and the interaction of atoms and simple
molecules with them. As shown in the previous chapters, the focus in ex-
perimental as well as theoretical surface science shifts more and more to
surfaces with well-defined defects such as for example the steps of vicinal
surfaces. However, even more complex systems have become the subject of
microscopic studies [541]. In this final chapter I present some examples of
such microscopic studies based on ab initio electronic structure calculations.
The examples do not only show the state of the art but they also indicate the
promising perspective and future directions of theoretical research in surface
science.

10.1 Solid-liquid Interface

All the examples presented so far have been concerned with solid surfaces
either in vacuum or interacting with gas particles, i.e. we did not consider
any liquids in contact with a solid surface. Still, the solid-liquid interface is
of significant importance in the fields of electrochemistry and electrocatalysis
which deal with reactions of molecule at this interface [542]. Such reactions
are of enormous technological relevance, for example with respect to the de-
velopment of more efficient fuel cells. In theoretical surface science, however,
the solid-liquid interface has hardly been studied microscopically yet because
of the difficulties in the reliable description of both the liquid or electrolyte
and the solid surface. Often electronic structure studies addressing electro-
chemical systems omit the description of the electrolyte with the hope that
the influence of it on, e.g., adsorption and reaction properties of molecules is
negligible [543].

In principle, it is not particularly difficult to include a liquid in periodic
supercell calculations. Instead of leaving the region between the slabs empty,
it can well be filled with the liquid. This is illustrated in Fig. 10.1. Indeed there
are first supercell calculations that have addressed surface energies and struc-
tures [544,545] and even reactions at the solid-liquid interface. A particularly
impressive study addressed the deprotonation of acetic acid (CH3COOH)
over Pd(111) [546]. In this study, DFT calculations were performed in order
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Fig. 10.1. Illustration of the description of the solid-liquid interface within the
supercell approach in periodic electronic structure calculations. The region between
the adsorbate covered slabs is filled with water molecules

to examine how solvating molecules influence the bond-breaking and bond-
making process at metal surfaces. The dissociation of acetic acid into the
acetate anion and a proton is highly endothermic in the gas phase. However,
the DFT calculations found that this dissociation is almost thermoneutral
in the presence of water molecules [546]. The dissociation is facilitated in
an aqueous environment since the fragments which are highly unstable when
formed in the gas phase become stabilized by the solvation. The Pd(111)
surface also catalyzes the deprotonation of acetic acid and strongly binds the
acetate intermediates, but the dissociative adsorption is more endothermic
than the dissociation in water without the metal surface. The dissociation is
even less favorable at Pd(111) if water is present at the surface because the
solvating water molecules weaken the interaction of the acetic acid with the
Pd(111) surface.

In the field of electrochemistry, the knowledge about reaction steps and
mechanisms at the liquid-solid interface is still rather limited. Therefore there
is a strong need for studies like the one just presented which will open the way
to a microscopic description and analysis of electrocatalytic reactions. How-
ever, there is an additional problem associated with the theoretical descrip-
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tion of electrochemical processes, namely the correct treatment of applied
external fields always present in electrochemistry.

There have already been several attempts to model external fields or the
electrochemical potential within the DFT slab approach. An external field can
be explicitly included by using a dipole layer in the vacuum region between
the slabs [547, 548], but in such an approach only a thin liquid layer cover-
ing the electrode can be modeled, and the evaluation of the corresponding
electrochemical potential is not trivial. The electrochemical potential can be
introduced by charging the slab which is counterbalanced by a homogeneous
background charge [549–551], but this also introduces an interaction between
the charged slab and the background charge which has to be subtracted from
the total energy.

In yet another approach [552], hydrogen atoms are added to a water bi-
layer outside the slab. The hydrogen atoms become solvated as protons lead-
ing to the formation of hydronium ions (H3O

+), and the electrons move to
the metal electrode. By changing the hydrogen concentration, the surface
charge and hence the electrochemical potential can be varied. However, the
excess hydrogen atoms have to be kept fixed because otherwise they would
propagate towards the surface. This can introduce errors due to geometrical
constraints. It is certainly fair to say that there is still enough room for im-
provements in the realistic theoretical description of solid-liquid interfaces in
the presence of external fields.

10.2 Nanostructured Surfaces

The last years have seen a tremendous interest in the so-called nanoscience
and nanotechnology. Small particles or clusters with sizes in the nanometer
range show strongly modified electronical, optical and chemical properties,
compared to bulk materials. The research on nanosized particles has been
fueled by the hope that the modified properties can be used to build new or
better devices or chemical reactors [129].

The theoretical treatment of nanosized particles by electronic structure
theory methods represents a great challenge. Due to the large number of
symmetrically different atoms in nanostructures, the numerical effort required
to treat these structures is enormous. On the other hand, there is definitely a
need for the microscopic description of nanoparticles because the knowledge
of the underlying mechanism leading to the modified nature of the particles
is still rather limited. It is often not clear whether the specific properties are
caused by the reduced dimension of the particles (“quantum size effects”) or
by the large surface area of the nanocluster where furthermore often many
defects are present.

One of the most remarkable modifications of the properties of a material
by going from the bulk to nanoscale particles has been found with respect
to the catalytic activity of gold. While gold as a bulk material is chemically
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Fig. 10.2. CO oxidation on an Au8 cluster ad-
sorbed on a MgO(100) surface containing an
oxygen-vacancy F-center. Due to the perspective,
not all Au atoms are visible. A snapshot of a
CO molecule approaching an adsorbed oxygen
molecule is shown. (After [555])

inert [189], nanoscale gold particles supported on various oxides show a sur-
prisingly large catalytic activity, especially for the low-temperature oxidation
of CO [553,554].

In a collaboration between experiment and electronic structure theory, the
CO oxidation catalyzed by size-selected Aun clusters with n ≤ 20 supported
on defect-poor and defect rich MgO(100) films has been investigated [555].
The experiments revealed that the gold clusters deposited on defect-rich
MgO-films have a dramatically increased activity compared to clusters de-
posited on defect-poor films at temperature between 200 and 350 K. Fur-
thermore, the Au8 cluster was found to be the smallest catalytically active
particle.

In order to explore the microscopic mechanisms underlying the observed
behavior, LDA-DFT calculations have been performed [555]. Between 27 and
107 substrate atoms have been embedded into a lattice of about 2000 ± 2 e
point charges at the positions of the MgO lattice. In order to model the defect-
rich substrate, an oxygen vacancy was introduced at the MgO(100) surface
which is called a colour center or F-center (from German “Farbzentrum”)
because of its optical properties. The equilibrium shape of a Au8 cluster
adsorbed on the defect-free MgO surface and on the F-center was determined
and reaction paths of the CO oxidation catalyzed by the Au8 cluster were
explored. Figure 10.2 shows a side view of the Au8 cluster adsorbed on the
F-center. The structure corresponds to a deformed close-packed stacking. A
sizable charge transfer of 0.5 e from the MgO(100) surface to the gold octamer
has been found.

In addition, a snapshot along the CO oxidation path according to an
abstraction or so-called Eley–Rideal mechanism is shown. A CO molecule
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Fig. 10.3. One-dimensional rod model for the adsorption of O2 an Au/TiO2

nanoparticles used in GGA-DFT calculations. a) Illustration of the rod geometry.
The dark-shaded area indicates the lateral extension of the unit cell. b) Relaxed
structure of O2 binding at the Ti trough close to a supported one-dimensional Au
rod with a sharp Au edge (after [556,557]).

approaches an adsorbed O2 molecule and reacts spontaneously to form a
weakly bound (∼ 0.2 eV) CO2 molecule that can directly desorb plus an
adsorbed oxygen atom. Recall that although the CO oxidation is strongly
exothermic, it is hindered by a large activation barrier in the gas phase. An-
other reaction pathway of the Langmuir-Hinshelwood type where the two
reactants are initially coadsorbed on the top-facet of the Au8 cluster has also
been found with a similarly small barrier. Through these reaction channels
the low-temperature CO oxidation down to 90K can proceed. As far as the
higher-temperature oxidation is concerned, further channels have been iden-
tified at the periphery of the gold cluster. Their barriers are much smaller at
the Au8 cluster adsorbed above the F-center than on the perfect surface giv-
ing an explanation for the enhanced activity of the clusters on the defect-rich
substrate.

In general, supported clusters studied in the experiments are significantly
larger than those accessible to first-principles electronic structure calculations
where the number of clusters atoms is typically below 10, as just demon-
strated. For example, the Au clusters deposited on TiO2(110) that exhibit a
surprisingly high catalytic activity for the low-temperature oxidation of CO
have a diameter of 3 nm [553, 554] which means that they contain several
hundreds of atoms and thus are not accessible by DFT calculations. Still one
can address binding of O2 and CO to such supported nanoparticles by re-
placing the supported nanoparticle with one-dimensional rods [556,557]. This
approach is illustrated schematically in Fig. 10.3a. One side of the rod was
modeled according to the local bonding situation of the Au atoms at the edge
of the supported nanoparticles while the other side of the rod only served the
correct boundary conditions towards the interior of the supported clusters.
Thus it could be shown that the adsorption of O2 on top of a Ti trough
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atom is strongly stabilized by the presence of an adjacent Au cluster with its
edge above the bridging O atoms of the TiO2(110) surface (see Fig. 10.3b),
resulting in a binding energy of 0.45 eV. In contrast, on clean, stoichiometric
TiO2(110), O2 does not bind [558].

10.3 Biologically Relevant Systems

Molecules relevant in biology, biochemistry and biological surface science [559]
are usually much too complex to be fully treated by ab initio electronic struc-
ture methods. Typically, classical force field methods dominate in the simu-
lation of biomolecular systems. However, these methods do not give any in-
formation about the electronic structure. These information can be obtained
by mixed quantum-classical embedding schemes in which the active center
treated by electronic structure methods is embedded in a classical potential
of the remaining atoms at the periphery. This QM/MM (Quantum Mechan-
ics/Molecular Mechanics) hybrid method [560] has been used successfully for,
e.g., the simulation of enzymatic systems [64].

When the biomolecular systems are relatively simple, they can in fact
nowadays be fully treated by periodic calculations [561]. However, using cur-
rent DFT functionals, one faces one severe problem: The interaction of or-
ganic molecules with substrates and between organic molecules themselves is
often dominated by weak van der Waals or dispersion forces which are often
refered to as dispersion forces in quantum chemistry. Hence, one is often in
a dilemma if one wants to treat the adsorption of organic molecules on sub-
strates: For the description of the substrate a periodic DFT code is required
in order to take the delocalized nature of the substrate states into account,
but the functionals do not appropriately reproduce the weak van der Waals
interaction necessary for an adequate treatment of the organic molecules.

One possibility to deal with this problem is to simply add the van der
Waals interaction between to atoms i and j explicitly, e.g. via the London
dispersion formula [562]

EvdW
ij (r) = − 3

2r6
αiαjIiIj
Ii + Ij

(10.1)

This method has been successfully used to describe the interaction of the
DNA base adenine with graphite [563]. However, due to the fact that GGA
already contains some correlation effects, the additional van der Waals term
has to be modified in an empirical way which depends on the particular
system looked at. This is not very satisfactorily from a fundamental point of
view.

One promising hybrid approach to treat dispersion effects in extended
systems from first principles has recently been proposed [564–566] which is
based on the observation that the error due to exchange-correlation effects
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Fig. 10.4. The energetically most stable configuration of the amino acid cysteine
on Au(110) calculated by DFT calculations [568]. It corresponds to two units of
the double row structure of D cysteine.

converges rather rapidly with the size of the system. Hence one can deter-
mine the error due to the inaccuracy of the chosen DFT exchange correlation
functional by doing cluster calculations. In practice, one starts by doing a
DFT calculation for the extended periodic system. Then a cluster with the
same geometry as the extended system is chosen, and for this cluster the dif-
ference between DFT and any appropriate post-HF method (see section 3.2)
that takes the many-body effects correctly into account is evaluated. The
corrected energy is then obtained by

Ehybrid = E(DFT)extended +E(post − HF)Cluster −E(DFT)Cluster .(10.2)

If necessary, cluster of different sizes can be employed in order to obtain
converged correction terms. This approach has for example successfully been
applied to protonation reactions of isobutene in a zeolite [565] where for the
clusters the MP2 method has been used in order to derive a damped disper-
sion expression (10.1) for the dispersion effects between the zeolite catalyst
and the hydrocarbon species.

If the interaction of the organic molecules with the substrate is governed
by strong bonds, as for example in the case of the interaction of thiols with
gold because of the strong Au-S bond, current DFT functionals are able to
give reliable results. As an example, we consider the adsorption of cysteine
(HS-CH2-CH(NH2)-COOH), an amino acid, on Au(110) which has been in-
vestigated by both STM experiments and DFT calculations [567, 568]. Cys-
teine exists in two different so-called enantiomeric forms, L-cysteine and D-
cysteine, i.e. two forms that are each others’ mirror image with different
chirality. The STM experiments have found a high stereoselectivity in the
dimerization of adsorbed cysteine molecules on the Au(110) surface which
reconstructs in the missing-row structure. Only either LL pairs or DD pairs
have been identified.



300 10. Perspectives

These findings have been rationalized by DFT-GGA calculations [567].
The calculated most favourable adsorption configuration for a DD-cysteine
dimer on Au(110) is illustrated in Fig. 10.4. The presence of sulfur causes the
formation of four vacancies on the gold rows due to the tendency of sulfur to
bind to low-coordinated atoms. Since sulfur prefers the bridge site, the DD
dimer is slightly rotated. In this configuration, three bonds are formed which
mainly stabilize this structure: sulphur–gold, amino–gold and carboxylic–
carboxylic. In any possible LD dimer adsorption structure, at least one of
these bonds is lost, making the LD dimer energetically unfavourable. This
explains the high selectivity observed in the STM experiments and fits into
the picture that chiral recognition might be in general driven by the formation
of three-point contacts [569].

In the STM experiments, not only isolated cysteine dimers are found, but
also extended molecular dimer rows [568]. In fact, Fig. 10.4 shows the energet-
ically most stable structure of these rows. The driving force for the formation
of these rows is the fact that the formation energy of the four-adatom vacancy
on Au(110) required for the adsorption of cysteine is considerably lowered ad-
jacent to already existing vacancies. Hence ones a cysteine dimer is adsorbed
forming a first double-row unit, additional cysteine dimers will preferentially
attach to the existing dimer instead of forming isolated adsorbates. Thus uni-
directional, self-assemblied molecular nanowires can be formed even in the
absence of any significant direct adsorbate-adsorbate interaction along the
growth direction.

10.4 Industrial Applications

Quantum chemistry methods based on Hartree-Fock theory have been an
integral part of research and development in the chemical and pharmaceu-
tical industry for some decades. Companies which manufacture products for
which surface structures are relevant have been much more reluctant to em-
ploy first-principles electronic structure methods. This is caused by the fact
that surface structures that are employed for industrial purposes are usually
far away from being perfect. Cluster or slab calculations containing in the
order of 100 atoms are therefore often not directly relevant for the research
and development process of new catalysts or semiconductor devices. Still, al-
though it is impossible to create new products theoretically from the scratch
(and probably will remain impossible for a long time), electronic structure
calculations can still add valuable information to the research and develop-
ment process, in particular for properties where measurements are much more
time consuming or not possible [570].

This has already been realized by some manufacturers in the semicon-
ductor and chemical industry. One of the first examples of a successful col-
laboration between fundamental academic research, both experimental and
theoretical, and industrial development has led to the design of a new catalyst
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for the steam-reforming process [571]. Here I will focus on the contribution of
electronic structure calculations [257, 571] to the design of the catalyst; the
corresponding experiments have already been reviewed in detail [572].

In the steam-reforming process, hydrocarbon molecules (mainly CH4) and
water are converted into H2 and CO. This is a important process of great
technological relevance since it is the first step for several large scale chemical
processes such as ammonia synthesis, methanol production or reactions that
need H2 [572]. The catalysts usually used for this reaction are based on Ni.
However, during the catalyzed reaction also an unwanted by-product, namely
graphite, is formed. A graphite overlayer on the Ni surface leads to a poisoning
of the reaction, i.e., it lowers the activity of the catalyst. Such poisoning
processes are very costly since they reduce the time the catalyst can be used
so that they require a more frequent maintenance of the reactor unit in the
chemical plant.

One way of changing the reactivity of metal surfaces is to modify their
chemical composition by alloying them with other metals. Some metals that
are immiscible in the bulk may still be able to form alloys at the surface. Au
and Ni is such a system. The rate-limiting process in the steam-reforming
process on Ni is the dissociation of CH4 into CH3 and H. DFT calculations
by Kratzer et al. showed that this process is hindered by a relatively high
barrier of 1.1 eV on Ni(111) [257]. If a Ni atom on the (111) surface has one
or two Au atoms as neighbors, this barrier is even increased by 165 meV
and 330 meV, respectively. Due to the fact that Au is a noble metal, the
CH4 dissociation barrier over the Au atom is even much higher [571]. An
analysis of the calculated electronic structure revealed that the presence of
neighboring Au atoms leads to a downshift of the d states at the Ni atom
which reduces the reactivity at the Ni atoms [189]. Hence alloying a Ni surface
with Au atoms leads to a reduced activity of the catalyst. However, DFT
calculations also demonstrated [571] that the presence of the Au atoms lowers
the chemisorption energy considerably for C atoms on Ni. If carbon is less
strongly bound to the surface, the formation of CO becomes more likely which
prevents the building up of a graphite layer.

Altogether, the DFT calculations showed that the lowering of the C
chemisorption energy by alloying Ni with Au is much more effective than
the increase of the CH4 dissociation barrier. Hence one ends up with a cat-
alyst that is slightly less reactive but much more robust and stable due to
its higher resistance to graphite formation. These fundamental theoretical
results together with experimental studies have led to the design of a new
catalyst that is now patented [572].

Besides this application for the development of better catalysts, DFT
calculations have for example also contributed to the research and devel-
opment process with respect to the equipment simulation in the electronic
industry [573] and in the manufacturing of discharge fluorescent lamps [574].
Recent example of the impact of DFT on materials research are collected in
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an issue of the MRS Bulletin [575]. However, although the number of DFT
applications in industry is increasing, it is fair to say that there is still a
long way to go before DFT calculations will become generally accepted as a
valuable tool industrial research.


