Abb. 3-2. Die Energieverteilungsfunktion des in Abb. 3-1 dargestellten Minisystems, ermittelt auf der Basis gleichwahrscheinlicher Mikrozustände. Die logarithmische Auftragung ergibt keine Gerade.

schiedenen Makrozuständen zugeordnet werden können. Deren Zustands-
warscheinlichkeiten sind nach Laplace (vgl. auch Boltzmanns 2. Prämisse):

\[p_A = \frac{4}{20}, \quad p_B = \frac{12}{20}, \quad p_C = \frac{4}{20}. \]

Mit diesen Gewichtsfaktoren können wir sofort die Besetzungswahrscheinlichkeiten \(p_i \) der einzelnen Niveaus ausrechnen:

\[p_i = \frac{p_A(n_A)_i + p_B(n_B)_i + p_C(n_C)_i}{N}. \]

Es ergeben sich folgende Zahlenwerte:

\[p_0 = 0,500 \quad p_1 = 0,300 \quad p_2 = 0,150 \quad p_3 = 0,050. \]

Diese Werte deuten bereits qualitativ den Boltzmannschen e-Satz an (Abb. 3-2). Quantitativ ist dagegen Gleichung (1) nicht erfüllt, was durchaus verständlich ist, da wir die Prämissen 3 und 4 nicht beachtet haben.

Für sehr kleine Systeme muß also die Boltzmann-Verteilung durch eine Verallgemeinerung von Gleichung (3) beschrieben werden:

\[p_i = \frac{g_i \sum p_X(n_X)_i}{N}. \]