Niveau Übergängen

induzierte Absorption

spontane Emission

induzierte Emission

E_2

E_1
Hydrogen Absorption Spectrum

Hydrogen Emission Spectrum

400nm

700nm

H Alpha Line
656nm

Transition N=3 to N=2
Energy levels of the hydrogen atom with some of the transitions between them that give rise to the spectral lines indicated.
Helium Spektrum
Termschema und Spektrum von reinen Rotationsübergängen
Energy: \(\frac{hc}{\lambda}\): 4\(eV\) 1.8\(eV\) 1\(eV\)

Valence

Core

UPS XPS AES

Photoelectron Spectroscopy
Ein rotierendes polares 2-atomiges Molekül

μ ändert sich nicht....

Ein schwingendes polares 2-atomiges Molekül

μ ändert sich doch....

Ein schwingendes polares 2-atomiges Molekül

μ ändert sich auch....
<table>
<thead>
<tr>
<th>EM-Strahlung</th>
<th>Wellenlänge</th>
<th>Frequenzbereich</th>
<th>Wellenzahl in cm⁻¹</th>
<th>Energiebereich in kJ/mol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radiowellen</td>
<td>100 m–1 m</td>
<td>3 MHz–300 MHz</td>
<td>10⁻⁴–0,01</td>
<td>10⁻⁶–10⁻⁴</td>
</tr>
<tr>
<td>Mikrowellen</td>
<td>1 m–1 cm</td>
<td>300 MHz–30 GHz</td>
<td>0,01–1</td>
<td>10⁻⁴–0,01</td>
</tr>
<tr>
<td>Mikrowellen</td>
<td>1 cm–100 µm</td>
<td>30 GHz–3·10¹²</td>
<td>1–100</td>
<td>0,01–1</td>
</tr>
<tr>
<td>Infrarotstrahlung</td>
<td>100 µm–1 µm</td>
<td>3·10¹² Hz–3·10¹⁴Hz</td>
<td>100–10⁴</td>
<td>1–100</td>
</tr>
<tr>
<td>sichtbares Licht; UV-Strahlung</td>
<td>1 µm–10 nm</td>
<td>3·10¹⁴ Hz–3·10¹⁶Hz</td>
<td>10⁴–10⁶</td>
<td>10⁰–10⁴</td>
</tr>
<tr>
<td>Röntgenstrahlung</td>
<td>10 nm–100 pm</td>
<td>3·10¹⁶ Hz–3·10¹⁸Hz</td>
<td>10⁶–10⁸</td>
<td>10⁴–10⁶</td>
</tr>
<tr>
<td>Gammastrahlung</td>
<td>100 pm–1 pm</td>
<td>3·10¹⁸ Hz–3·10²⁰Hz</td>
<td>10⁸–10¹⁰</td>
<td>10⁶–10⁸</td>
</tr>
<tr>
<td>EM-Strahlung</td>
<td>untersuchte Eigenschaft</td>
<td>Spektroskopische Methode</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------</td>
<td>--</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radiowellen</td>
<td>Änderung des Kernspinzustandes</td>
<td>Kernresonanzspektroskopie (NMR, auch Hochfrequenzspektroskopie)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mikrowellen</td>
<td>Änderung des Elektronenspinzustandes oder Hyperfeinzustandes</td>
<td>Elektronenspinresonanz (ESR/EPR), Ramsey-Spektroskopie (Atomuhren)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mikrowellen</td>
<td>Änderung des Rotationszustandes</td>
<td>Mikrowellenspektroskopie</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Infrarotstrahlung</td>
<td>Änderung des Schwingungszustandes</td>
<td>Schwingungsspektroskopie; (Infrarotspektroskopie (IR) und Ramanspektroskopie, Ultrakurzzeit-Spektroskopie)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sichtbares Licht; UV-Strahlung</td>
<td>Änderung des Zustandes der äußeren Elektronen</td>
<td>UV/VIS-Spektroskopie (UV/Vis), Fluoreszenzspektroskopie; Ultrakurzzeit-Spektroskopie; Atomspektroskopie</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Röntgenstrahlung</td>
<td>Änderung des Zustandes der Rumpfelektronen</td>
<td>Röntgenspektroskopie (XRS); Elektronenspektroskopie; Auger-Elektronen-Spektroskopie (AES); Mößbauer-Spektroskopie</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gammastrahlung</td>
<td>Änderung des Kernzustandes (Anordnung der Nukleonen)</td>
<td>Gammaspektroskopie</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
vibronische Übergänge zwischen zwei elektronischen Zuständen am Beispiel eines zweiatomigen Moleküls

Intensitätsverteilung von vibronischen Übergängen gemäß dem Franck-Condon-Prinzip
Infrarot Spektroskopie

\[\Delta J = -1 \quad \Delta J = +1 \]

\[\Delta J = 0 \]

(nicht erlaubt)
Raman-Effekt

Stokes-Raman-Streuung
Rayleigh-Streuung
Anti-Stokes-Raman-Streuung

Elastischer Stoß des Photons
Für Moleküle mit Symmetriezentrum sind alle Schwingungen, die symmetrisch zum Symmetriezentrum erfolgen im IR-Spektrum verboten.

Alle Schwingungen, die antisymmetrisch sind, sind im Raman-Spektrum verboten.