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Recently it was shown [W. Koch, F. Grossmann, J.T. Stockburger, J. Ankerhold, Phys. Rev. Lett. 100 (2008)

230402] that a combination of an exact stochastic decomposition of non-Markovian dissipative

quantum dynamics with the time-dependent semiclassical initial value formalism offers a powerful tool

to describe quantum Brownian motion in domains of parameter space where other approaches fail. In

particular, low temperatures, stronger friction, a wide range of spectral bath densities, and continuous

nonlinear systems can be treated. Details of this formulation including its numerical implementation

and the impact of non-Markovian phenomena are discussed for the exactly solvable case of a harmonic

oscillator.

& 2009 Elsevier B.V. All rights reserved.

1. Introduction

Brownian motion, that is the fate of a heavy particle immersed
in a fluid of lighter particles, is the prototype of a dissipative
system coupled to a thermal bath. The corresponding classical
theory is well-established and formulated in terms of generalized
Langevin equations for stochastic trajectories or Fokker–Planck
equations for phase-space densities. Within this framework weak
and strong friction as well as processes in presence of colored
noise have been studied. In contrast, for a long time the quantum
mechanical theory could handle only a weak interaction between
‘‘system’’ and ‘‘bath’’ so that master equations for the reduced
density matrix have been derived perturbatively. This type of
approach has been followed very successfully, e.g. in quantum
optics [1].

Based on the work by Feynman and Vernon [2] it has been
shown in the 1980s how to take advantage of the path integral
representation to gain a formally exact expression for the
reduced density as a sum of forward and backward paths, which
is valid for arbitrary damping strength and temperature [3].
These two sets of paths arise from the two time evolution
operators in the expression for the full density of the total
compound, i.e., WðtÞ ¼ expð�iHt=‘ ÞWð0ÞexpðiHt=‘ Þ, where H is
the total Hamiltonian. In the reduced description the influence of
the bath emerges as time-nonlocal kernels including also a
coupling between forward and backward paths. This feature,
which is characteristic for quantum theory, makes a direct
evaluation of the path integral impossible apart from the case of
quadratic systems (harmonic oscillator). Another consequence of

the non-Markovian nature of quantum Brownian motion is that
in general there exists no ‘‘simple’’ (i.e. tractable) equation of
motion for the density.

Everything becomes simpler in the domains of weak
and strong dissipation, where, as mentioned above, master
equations have been in use in the former one and the quantum-
Smoluchowski equation in the latter one [4]. In both cases though,
non-Markovian effects disappear due to a sort of coarse graining
in time. The central question thus arises: Is there any efficient
methodology to attack the formally exact expression for the
density matrix directly? Progress in this direction has been made
in two ways. First, numerical schemes like Quantum Monte Carlo
approaches have been shown to work for systems with a discrete
Hilbert space (tight-binding) [5]; second, it was shown that the
path integral dynamics can be mapped exactly onto a stochastic
Liouville–von Neumann equation with complex noise forces [6].
Equivalently, a system of two Schrödinger equations coupled by
two complex noise forces can be formulated. Unfortunately, a
direct numerical calculation of these stochastic Schrödinger
equations is plagued by severe convergence problems [7].

There is thus need for a formulation of quantum Brownian
motion which can be employed efficiently, treats the system–bath
interaction exactly, and preserves the quantum nature of the bare
bath. In fact, such a formulation has been developed recently in
Ref. [8]. The basic idea is to apply an extremely accurate and
powerful semiclassical representation of the quantum propagator
in terms of phase-space coherent states [9] to solve the stochastic
Schrödinger equations. In the absence of a bath this approach
captures interferences and coherences and, as a leading term in an
asymptotic series [10], can be extended to describe also deep
quantum tunneling [11]. This way, quantum Brownian motion
appears for each realization of the complex noise forces as a
randomly driven system dynamics obtained from stochastic
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orbits. Upon averaging over the noise distributions the full density
matrix is recovered. From a semiclassical point of view this
method is a type of uniform approximation and thus free of
caustics. From the point of view of dissipative quantum dynamics
this semiclassical Brownian motion (SCBM) approach starts from
an approximation, a very accurate though, of the bare system and
treats the bath and its interaction exactly. It is thus able to
describe non-Markovian phenomena, stronger friction, very low
temperatures, and a wide class of spectral bath densities. While
the practicability of the SCBM has been demonstrated in Ref. [8],
in this paper we give a more detailed account on its numerical
implementation and non-Markovian effects by analysing the case
of a damped harmonic oscillator. For this model exact analytical
results are known and the SCBM is numerically exact as well.

In Section 2 we briefly recall the central results of the
Feynman–Vernon theory and the mapping onto stochastic
Schrödinger equations. The semiclassical propagator is introduced
in Section 3. Details about the numerical implementation are
described in Section 4. To discuss the impact of non-Markovian
effects, Section 6, the well-known Markovian Caldeira–Leggett
master equation is specified in Section 5 .

2. Unraveling of the Feynman Vernon influence functional

We start with the standard decomposition of the total
Hamiltonian

Ĥ ¼ ĤS þ ĤB þ ĤI ð1Þ

as a sum of a system part, that for reasons of simplicity shall in the
sequel depend on one degree of freedom x only, a bath part
consisting of an infinity of harmonic oscillators together with a
bilinear interaction between them. In case of a factorized initial
density with a bath residing in thermal equilibrium at tempera-
ture T one derives a path integral expression for the time-
evolution of the reduced density matrix of the form [3]

rðxf ; xf
0; tÞ ¼

Z
dxi dxi

0rðxi; xi
0;0Þ

Z
D½x1�D½x2�

� exp
ı

‘
ðSS½x1� � SS½x2�Þ

n o
F½x1; x2�; ð2Þ

where the two real time paths x1 and x2 run in time t from xi and
xi
0 to xf and xf

0, respectively. They are coupled by the influence
functional, which takes the form F½y; r� ¼ expð�F½y; r�=‘ Þ with

F½y; r� ¼
1

‘

Z t

0
du

Z u

0
dv yðuÞ½L0ðu� vÞyðvÞ þ 2iL00ðu� vÞrðvÞ�

þ im
Z t

0
du yðuÞrðuÞ; ð3Þ

where y ¼ x1 � x2, r ¼ ðx1 þ x2Þ=2 denote difference and sum
paths, respectively. The complex valued friction kernel LðtÞ ¼

L0ðtÞ þ ıL00ðtÞ is related to the force–force auto-correlation function
of the bath and completely determined by its spectral density JðoÞ
and inverse temperature b. The static susceptibility denoted by
m ¼ �

R1
o du L00ðuÞ=ð2‘ Þ is a property of the reservoir.

The above formula is an exact expression for the reduced
density matrix. It has been the starting point for further analytical
treatments as well as numerical evaluations via path integral
Monte Carlo techniques [5]. With respect to the former ones
perturbative approaches for weak and strong friction, respectively,
have been put forward leading for weak dissipation/high
temperature particularly to the Caldeira–Leggett master equation
discussed below. An exact re-formulation based on a stochastic
unraveling of forward and the backward paths has been achieved

in Ref. [6]. This procedure leads to

rðxf ; xf
0; tÞ ¼

Z
dxi

Z
dxi
0 rðxi; xi

0;0Þ

�M½Kz1
ðxf ; t; xi;0ÞðKz2

ðxf
0; t; xi

0;0ÞÞ��; ð4Þ

where M denotes the average over noise realizations zj ðj ¼ 1;2Þ,
with the noise augmenting the system actions via

Szj
½xj� ¼ SS½xj� þ m

Z t

0
du xjðuÞ

2
þ

Z t

0
du xjðuÞzjðuÞ ð5Þ

in the path integral expressions of the respective propagators Kzj
.

This stochastic unraveling differs from a similar one by Strunz
et al. [12] through the appearance of two noise variables, allowing
for the elimination of quantum memory effects.

Now, when representing a general initial density operator
through r̂ðt ¼ 0Þ ¼ jC1S/C2j (or through an ensemble of such
projectors) one arrives at two Schrödinger equations coupled via
two noise forces, i.e.,

i‘ j _C1S ¼ HS � xðtÞxþ
m
2

x2 �
‘
2
nðtÞx�jC1S;

�
ð6Þ

i‘ j _C2S ¼ HS � x�ðtÞxþ
m
2

x2 þ
‘
2
n�ðtÞx�jC2S;

�
ð7Þ

where xðtÞ ¼ 1
2½z1ðtÞ þ z2�ðtÞ� and nðtÞ ¼ ð1=‘ Þ½z1ðtÞ � z2�ðtÞ�. The

reduced density matrix (2) is obtained exactly by averaging r̂
calculated from Eqs. (6) and (7) for individual representations
of the noise when the correlations of x and n reproduce the
integral kernel of the influence functional: M½xðtÞxðt0Þ� ¼ L0ðt � t0Þ,
M½xðtÞnðt0Þ� ¼ ð2i=‘ ÞYðt � t0ÞL00ðt � t0Þ, and M½nðtÞnðt0Þ� ¼ 0 (Y de-
notes the Heaviside step function).

Even though the above linear Schrödinger equations capture
quantum Brownian motion in an appealing and transparent form,
they are of limited use for practical calculations since individual
samples do not stay normalized. This in turn slows down
convergence and makes a direct sampling impractical [13,6].
One way out is to impose norm conservation for each individual
noise realization. It was shown [6,7] that this condition can be
implemented while keeping the formulation exact when one (i)
replaces x-x� r in the n-dependent terms in Eqs. (6) and (7)
with an arbitrary ‘‘reference trajectory’’ rðtÞ and (ii) modifies the
noise probability measure accordingly, which is equivalent as to
putting

x- ~x ¼ x�
Z t

0
duwðt � uÞru; ð8Þ

with wðuÞ ¼ �YðuÞL00ðuÞ=2‘ being the response function of the
reservoir. In fact, with the choice ru ¼ /C1jxjC2Su, the diffusion
of tr r̂ is eliminated. Unfortunately, this does solve the problem
only partially since this mapping can lead to subtle mathe-
matical difficulties limiting the times for which numerical
simulations are stable [7]. However, there are two situations
known to be free of such instabilities, namely, linear systems
and the classical limit. The idea which we followed in Ref. [8] was
thus to combine the stochastic quantum dynamics with a
semiclassical propagation scheme based on coherent states,
the so-called Herman–Kluk (HK) representation of the quantum
propagator [9].

3. Herman–Kluk semiclassical IVR

It was shown recently in Refs. [10,11] that the quantum
mechanical propagator K ¼ expð�iHt=‘ Þ can exactly be represented
as an asymptotic series in ‘ in terms of phase-space integrals,
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e.g. in the form

Kðxf ; t; xi;0Þ ¼
X
n�0

‘ n
Z

dpi dqi

2p‘
/xf jggðpt ; qtÞS

�Rnðpi; qi; tÞe
iSðqi ;pi ;tÞ=‘/ggðpi;qiÞjxiS: ð9Þ

Here complex valued Gaussian wave packets /xjggS�expf�ðg=2Þ
ðx� qÞ2 þ ði=‘ Þpðx� qÞg of fixed width parameter g have been
introduced, centered around the initial phase-space points pi; qi and
the time-evolved phase-space points pt ;qt , respectively. The con-
tribution of each path is weighted by its corresponding action
Sðqi; pi; tÞ and the pre-exponential factors Rn are calculated
recursively from R0, where the latter one contains a complex valued
combination of stability matrix elements. When only the leading
term in the above series is retained ðn ¼ 0Þ, one arrives at the initial
value representation for the semiclassical propagator pioneered by
Herman and Kluk [9], i.e., Kðxf ; t; xi;0Þ � KHKðxf ; t; xi;0Þ. Already this
leading order approximation has turned out to be an extremely
powerful and accurate tool to capture the time evolution of even
high-dimensional systems including typical quantum phenomena
such as interferences and coherences. By taking into account next
two order contributions ðn ¼ 1;2Þ also processes involving deep
tunneling can be described [11]. Here, we concentrate on a one-
dimensional problem without barrier and thus work within the
standard HK-approximation.

One now observes that the propagation of individual samples of
the stochastic processes (6) and (7) by the HK propagator is, apart
from simple potential terms of quadratic order, equivalent to the
time evolution of a closed systems in presence of stochastic
external forces. The action reads as in Eq. (5) with the replacement
of the noise force described in Eq. (8). Obtaining the final density
matrix rðxf ; xf

0; tÞ involves three Monte Carlo integrations, two
over the forward and backward phase spaces of the semiclassical
propagators and an additional one over the noise trajectory
distribution. The expectation is that the asymptotic convergence
properties of the HK propagator for a closed systems [14] are
‘inherited’ by our stochastic samples.

How does the semiclassical dynamics corresponding to the
transformed versions of Eqs. (6) and (7) look like? Crucial is the
fact that the complex forces x and n do not extend the phase space
to complex numbers. Namely, since the frozen Gaussians are, up
to a trivial phase factor, coherent states jaS ¼ e�ja

2 j=2eaây j0S with

a ¼
ffiffiffi
g
2

r
qþ

ip

‘g

� �
; ð10Þ

it is obvious that complex values of q and p lead only to states
already described by a real-valued phase space. Thus, the classical
equations of motion derived from (6) and (7) read ðj ¼ 1;2Þ

d

dt
aj ¼

ffiffiffi
g
2

r
pj

m
�

i

‘gV 0ðqjÞ þ
i

‘g fj

� �
ð11Þ

with f1 ¼
~x þ ð‘ =2Þn and f2 ¼

~x
�
� ð‘ =2Þn�, to be solved for real qj

and pj using (10). In the limit ‘-0 and upon integrating by
parts in (8), the classical Langevin equation is indeed recovered
from Eq. (11).

Semiclassically, the reference trajectory is again obtained by
demanding that the n-dependent terms in Eqs. (6) and (7) do not
change the trace of the sample. One then finds the simple
condition

ru ¼ ða1 þ a�2Þ=
ffiffiffiffiffiffi
2g

p
: ð12Þ

This definition of ru includes a single pair of semiclassical
trajectories so that it is suggestive to merge the integrations over
the two HK phase spaces and the function space of noise
trajectories xðtÞ and nðtÞ into a joint Monte Carlo sampling scheme.

4. Sampling strategy

The naive procedure to calculate the semiclassical time
evolution would be to generate first phase-space trajectories for
an individual noise realization until the HK-propagation is
converged and only afterwards to average over a sufficiently large
number of noise realizations. Thereby, the three integrations are
performed via Monte Carlo sampling. However, this procedure is
not only not necessary, but it is also not very efficient. In practice,
all three samplings can be combined such that for each trajectory
pair a separate noise sample is generated and two phase-space
points for the forward and backward trajectories are chosen. For
this combination the semiclassical trajectories are evaluated and
the desired expectation values are computed. The results are then
accumulated. Since each trajectory evaluation contributes to a
different noise sample, the sample count is increased by the
number required to converge the semiclassical propagator, which
is typically on the order of 103–104 for a one-dimensional system.

Using a single pair of semiclassical trajectories for each noise
sample also greatly simplifies the computation of the guide
trajectory as already mentioned above. For a harmonic system it
can even be performed analytically. For N41 trajectory pairs per
noise sample, either the wave function has to be computed
numerically before the position expectation value can be obtained
or N2 analytical exponentials have to be computed. Fig. 1 shows a
comparison of the convergence properties for such a simple
harmonic test case (for details see below). The three curves were
obtained for the naive sampling, the combined sampling, and for
the combined sampling including a guide trajectory. Obviously,
the naive sampling is far from being converged. The general trend
for longer times not even closely matched, but rather the results
are also severely plagued by ‘‘spikes’’. In order to eliminate these,
sample and trajectory count have to be increased tremendously.
The combined sampling, however, improves convergence
significantly and acceptable results can be obtained with only a
moderate increase of the number of trajectory pairs. Convergence
can be attained even faster by also including the guide trajectory
(12). This way, as seen in Fig. 1, numerical data basically coincide
with the analytical result (not shown).

For anharmonic systems the combined sampling with guiding
trajectory is crucial to even approach convergence (see Ref. [8]).
For these potentials the presence of complex noise forces may
lead to significant imaginary components of the action. In theory
these imaginary parts average to zero. In practice, however, one

Fig. 1. Expectation value of variance and position for three different noise

samplings: naive sampling (solid), improved sampling (dotted), improved

sampling and guide trajectory (dashed). Parameters given in Section 6

W. Koch et al. / Physica E 42 (2010) 388–393390
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faces a problem similar to the dynamical sign problem known
from standard HK-propagations. Since the sample count is finite
and imaginary parts of the action produce an exponentially large/
small contribution to the integrand, a specific sample with an
unusually large negative imaginary action may not be compen-
sated for by other samples. There are a number of ways to deal
with this situation. The idea to simply increase the number of
samples fails, as one may expect, since it leads to a typically
exponential increase in computer time. A feasible scheme would
be to detect these ‘‘pathological’’ samples (e.g. define a limiting
value for the imaginary component of the action) and to remove
them before adding up. However, depending on the parameters of
the calculation and the potential considered, the fraction of such
samples can be larger than a few percent. Thus simply eliminating
their contribution might have significant and unpredictable
impact on the results.

A more subtle procedure is based on the observation that an
imaginary part of the action is not just a consequence of the
chosen noise sample but also depends strongly on the chosen
initial phase-space coordinates. Thus, upon detecting that a
certain trajectory pair is of adverse character, one can keep the
corresponding noise sample and attach to it two newly generated
phase-space points. Even better, one can keep both, noise sample
and initial phase-space points, and interchange this set with
another one corresponding to a second adverse trajectory pair.
Thus, neither the statistics of the noise distribution nor the
semiclassical sampling of the initial phase spaces are altered. The
only effect of this procedure is the introduction of a correlation
between the sampling of the phase spaces and the noise
distribution. Explicit calculations with and without this swapping
procedure show though that apart from the removal of ‘‘spikes’’
due to adverse samples, there is no systematic effect introduced
on the time dependence of the physical observables.

5. Caldeira–Leggett master equation

For sufficiently elevated temperatures the exact path integral
expression (2) can be represented in an approximate time
evolution equation for the reduced density, the so-called Caldeir-
a–Leggett (CL) master equation [17]. One crucial assumption is
that the memory time of the environment, i.e., the correlation
time of the noise forces, is small compared to the relaxation time
scale. Accordingly, only Markovian properties of the bath survive.
The CL-master equation is thus a convenient reference to study to
what extent non-Markovian effects influence the full quantum
dynamics even in ranges of parameter space beyond its strict
applicability. Specifically, one has

i‘ _̂r ðtÞ ¼ ½HS; r̂ðtÞ� þ
Z

2m
½x; ½p; r̂�þ� �

iZ
‘b
½x; ½x; r̂�� ð13Þ

with the classical damping constant Z ¼ limo-0 JðoÞ=o [JðoÞ is
the spectral density of the bath]. Apparently, the quantum
dynamics of the bare system is fully described, while the bath
has lost its quantum nature completely so that it reacts
instantaneously on the system and retardation effects are absent.
Further, asymptotically (for long times) the density matrix
reduces to an expression for the thermal equilibrium density
whose statistics of position and momentum are valid only at
higher temperatures.

6. Results and discussion

In the following we will highlight a few features of the SCBM
approach by studying the one-dimensional damped harmonic

oscillator under varying environmental parameters. The reason for
this is twofold: on the one hand exact analytical results for this
system are available for comparison and on the other hand the
HK-propagation becomes exact which allows for carefully study-
ing convergence properties of various numerical algorithms.
Specifically, the system potential is

VðxÞ ¼ 1
2mo2x2;

where we set m ¼ 1; o ¼ 1 for convenience in the sequel. The
initial wave packet will be a Gaussian shifted in coordinate space
away from the minimum of the potential by /xS0 ¼ 1 and with
zero momentum. The spectral density of the bath oscillators is
taken to be Ohmic with a choice of two different cutoff behaviors,
namely,

JkðoÞ ¼
Zo

ð1þo2=o2
c Þ
k with k ¼ 1;2; ð14Þ

where the dimensionless coupling strength is denoted by Z and
the cutoff frequency by oc. The form J2 facilitates numerical
computation as its narrower spectral width allows for a larger
time step to be chosen whereas J1 simplifies the comparison
with analytical results as explicit evaluations of the general
analytical expressions are straightforward for a Drude–Lorentz
type of cutoff (see e.g. Ref. [16]). For all examples shown in the
following, the cutoff frequency is chosen to be oc ¼ 10, suffi-
ciently far above the system frequency. Accordingly, non-
Markovian effects in the dynamics are assumed to be basically
absent at higher temperatures.

Other cutoff-procedures are possible as well, of course. A
necessary requirement is though that the friction kernel LðtÞ, or for
the purpose of noise generation its Fourier transform, to be given
in analytical form or at least to be calculated numerically with
only modest computational effort. A rather practical limit is
furthermore imposed by implementing the convergence improv-
ing properties of the guide trajectory. In this case, the integral in
Eq. (8) needs to be evaluated at every time step.

We start by comparing various sampling strategies as
already discussed in Section 4 in Fig. 1. For this purpose, the
spectral density J2 was chosen together with an inverse tempera-
ture b ¼ 2:0 and a coupling strength Z ¼ 0:2. We emphasize that
the differences in the approaches towards convergence are not
due to a higher trajectory count. The data for all three graphs were
obtained with about 106 trajectory pairs so that the improve-
ments are sole results of a combined sampling and an inclusion of
a guide trajectory.

For any realistic system the spectral density has a finite cutoff
frequency. In Figs. 2–4 we also demonstrate the significance of
choosing the correct type of cutoff behavior. Once again the lower
panel depicts the expectation value of position and the upper ones
its variance calculated within the SCBM scheme for two different
numbers of trajectory pairs. For comparison the analytical
expressions from Ref. [15] for a purely ohmic environment
ðoc-1Þ as well as for a Drude–Lorentz density J1 are shown.
For all cases the inverse temperature of the bath is b ¼ 0:5 and the
coupling strength is Z ¼ 0:2. While in Fig. 2 differences are hardly
discernable, the detailed plots of Figs. 3 and 4 clearly reveal that
the analytical results for a purely ohmic bath deviate significantly
from those with a finite cutoff at early but also at intermediate
times. Further, a fourfold increase of the trajectory count in the
SCBM scheme (upper panel of Fig. 4) improves convergence
substantially and basically reproduces the exact data.

To quantify the errors incurred by invoking a high temperature
Markov approximation in the form of the Caldeira–Leggett master
equation and to demonstrate the accuracy of the SCBM scheme,
we compare the latter ones with analytical results and those
obtained by means of a finite difference implementation in

W. Koch et al. / Physica E 42 (2010) 388–393 391
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position space of the CL master equation (for details see Ref. [18]).
For the sake of comparability with the analytical results we again
select a Drude–Lorentz cutoff J1. In Fig. 5 the second moment of
coordinate for three different temperatures and for each of the
three methods is shown. Even at a relatively high temperature
(upper panel, b ¼ 0:1) the dynamics according to the CL clearly
deviates from the exact data at all intermediate times. Since in
this temperature range the CL provides the correct asymptotic
value for the thermal equilibrium, these deviations must be
attributed to the non-Markovian nature of the exact quantum
dynamics. At lower temperatures also the asymptotic behavior is
no longer captured and the dynamics for intermediate times
scales is strongly off the exact data in amplitude and phase. The
SCBM simulations provide extremely accurate results over the
whole temperature range. They were obtained with 5� 106

trajectory pairs which requires a computation time of a few
hours on a desktop PC.

To summarize, we have shown that an improved SCBM scheme
(combined sampling and guide trajectory) reproduces nicely the
known analytical results for the harmonic oscillator in a wide

range of parameters and far beyond the applicability of the CL
master equation. For anharmonic potentials analytical exact
expressions are no longer available and one can assume that CL
results are accurate only for narrow windows of parameters. In
contrast, as already demonstrated in Ref. [8], the SCBM can be
employed efficiently also in domains of parameter space where no
other approximate method is known to work. It remains to be
seen how substantial deviations are quantitatively. Apart from
this point, the SCBM scheme provides a level of accuracy where
the form of the bath spectral density matters up to high
frequencies on the order of the cutoff frequency. It can thus be
used as a powerful tool to sensitively probe the quantum
dissipative dynamics for various models of the environment.
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Fig. 2. Expectation values of variance and position for a harmonic oscillator gained

with SCBM calculations: 4� 106 trajectory pairs (solid), 1� 106 trajectory pairs

(dotted), and analytical results [the latter ones without cutoff (dashed) and with

Drude cutoff (dash-dotted)]. Boxes indicate the ranges of the blowups in Figs. 3

and 4.

Fig. 3. Same as Fig. 2, in detail.

Fig. 4. Same as Fig. 2, in detail.

Fig. 5. Second moment of the density /x2S: b ¼ 0:1 (top panel), b ¼ 1 (middle

panel), and b ¼ 10 (bottom panel). SCBM calculations (solid line), analytical results

(dotted), and Caldeira–Leggett (dashed) ðZ ¼ 0:4Þ.
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