Cooling of quantum systems through optimal control and dissipation
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Based on an exact non-Markovian open systems quantum dynamics we demonstrate how to reduce
the entropy of an open system through a cooperative effect of driving and dissipation. We illustrate
the controlled dynamics in phase space in terms of Wigner functions and discuss the applicability

of approximate approaches using master equations.

I. INTRODUCTION

Coherent control of quantum dynamics is a powerful
tool to drive a system towards desired states and to opti-
mize properties of the dynamics. Mature numerical meth-
ods exist for the control of non-dissipative dynamics [1-
5]. Similar approaches to open quantum systems are ur-
gently needed and evolving rapidly [6-8]. However, par-
ticular care is needed in this case, for which commonly
used equations of motion are approximate. Strong driv-
ing does not only have an impact on the system, but
the interaction between the control-modified system and
the reservoir differs substantially from the case of au-
tonomous dynamics. This basically calls Markovian and
perturbative approaches into question. Instead of relying
on these approaches, we propagate the quantum system
using a fully non-Markovian, exact stochastic Liouville-
von Neumann equation [9]. Uniting this approach with
optimal control theory allows the consideration of con-
trol signals of arbitrary strength and complexity [10].

II. METHOD

In order to derive the exact dynamics we describe the
driven open system by a Hamiltonian of the form

H=Hy+ Hc+ H; + Hp, (1)

where the individual terms are defined as follows: The
system Hamiltonian Hy governs the autonomous dynam-
ics of the system, which we assume to be characterized by
a position ¢ and a momentum p, or equivalent conjugate
variables, such as phase and charge in a mesoscopic cir-
cuit. The control Hamiltonian Ho = He(u(t)) describes
the modification of this dynamics through classical con-
trols u(t), typically fields assumed to be acting on the
system only. The vector-valued function u(t) is the in-
dependent quantity to be varied in the control problem.
The term H; denotes the Hamiltonian of the system-
reservoir-interaction, and Hp is the Hamiltonian govern-
ing the autonomous dynamics of the reservoir. As shown
by Caldeira and Leggett [11], any reservoir with Gaus-
sian fluctuations can be modeled by a set of harmonic
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oscillators,
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Here x;, p;, m; and w; are the coordinates and parameters
of the respective reservoir mode, ¢ is the coordinate of the
system and ¢; is the coupling constant of the system and
the respective reservoir mode.

An exact expression for the reduced dynamics in closed
form requires the path integral formalism [11, 12], which
is unsuitable for optimal control theory. However, the
stochastic equation of motion
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7

= h[H0+HCapU,E]

POl pue] 5O pneh, G

which can be used in optimal control theory, has been
shown to be fully equivalent [9]. The functions £(¢) and
v(t) are correlated complex-valued Gaussian stochastic
processes [9] exactly matching the fluctuations and the
dynamic response of the reservoir as given by the quan-
tum correlation function L(7) of the total environmental
force,

L(t—t) = <Zcixi(t)chxj(t/)> : (4)

Eq. (3) introduces the stochastic Liouvillian superoper-
ator £, defined through the second equality. For an en-
vironment in thermal equilibrium, L(t — ¢’) is fully de-
termined by the spectral density J(w) and the inverse
thermal energy 3 of the reservoir:

I
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The specific properties of the Gaussian processes £(t) and



v(t) are related to L(t —t') as follows:

E[EWEW)] = Re(L(t —1')) (6a)
E[S@Ow(t)] = 270(t—1)

xIm(L(t — t')) (6b)

Elvt)v(t)] = 0 (6¢)

E[£(1)] = E(1)] =0. (6d)

For computational purposes, eq. (3) is solved multi-
ple times with numerical samples of £ and v generated
according to Eq. (6). Averaging over samples yields the
physical density matrix,

p=E[pel, (7)

from which any physical observable may be obtained, in
particular, the optimization objective.

Based on the exact dynamics we have generalized Kro-
tov’s iterative algorithm [13, 14] into a form applicable
to Egs. (3) and (7). Details are provided in Ref. [10] (in-
cluding supplemental material).

The type of objective we are considering is minimizing
an expectation value (M) of an observable M of the sys-
tem at a final time ¢; (a von Neumann measurement).
In the minimization of the corresponding objective func-
tional

Flu(t), {pv.e}] = E[tr{M po¢(ts)}], (8)

the equation of motion (3) needs to be introduced as
a constraint, valid for any realization of the stochastic
variables £(t) and v(¢).

Variational calculus leads to a characterization of local
extrema that includes a stochastic equation of motion
for the Lagrange multiplier A with a terminal boundary
condition:

Ave(t) = —LTAe(t) (9a)
Avelty) = —M (9b)

where L is the adjoint of the Liouvillian £ (see Eq. (3))
and M = —|a){«a| is defined through a projection opera-
tor on a target state |a) at final time ¢;.

The Krotov algorithm relies on the coupled dynamics
of the quantum state and a costate A, which can (for most
purposes) be identified with the previously introduced
Lagrange multiplier; most importantly, it also obeys the
equation of motion (9a). The key step of the Krotov algo-
rithm is an iterative update for the control fields, chang-
ing the components of the vector u(t) according to
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Different choices for the function A;(¢) can be made in

order to tune the convergence properties of the algo-
rithm [14].

IIT. APPLICATION AND RESULTS

While coherent control of Hamiltonian dynamics still
conserves entropy (a scalar invariant of unitary transfor-
mations), open-system dynamics generally brings about a
change in entropy. Without external control, this results
in thermalization, i.e., a rise in entropy when considering
a pure initial state. In the following, we demonstrate that
it is possible to remove entropy from an open quantum
system by applying optimal control fields, without pro-
moting the coupling to a low temperature reservoir, as is
done, e.g., in sideband cooling.

In this context, we look at systems with at most a
few bound states thermally accessible, usually well de-
scribed in the harmonic approximation, with an envi-
ronment characterized by a spectral density of the form
J(w) =nw/ (1+5—2)2 with large UV cutoff w,, correspond-
ing to Stokes (orc Ohmic) friction with friction constant
7 in the classical limit. Still, we emphasize our method
is not restricted to harmonic systems. In the following,
we use natural units (h = 1;kp = 1). At the initial time
t = 0 the system is thermalized with the reservoir (inverse
thermal energy 8 = 1), and a moderate value n = 0.1 is
chosen for the friction constant. The objective is defined
by chosing the ground state as target state |«).

The parametric control

(11)

is chosen as the simplest time-dependent modification of
the potential with non-trivial effects on the dynamics.
The single control field A(t) takes the place of u(t). With
a Gaussian initial state, all stochastic samples remain
Gaussian over time; therefore Eqgs. (3) and (9a) can be
replaced by ordinary differential equations for the expec-
tation values of position and momentum and for the ma-
trix elements of the covariance matrix associated with the
Wigner function. We emphasize, however, that the more
general case of an anharmonic system can be treated on
an equal footing. In either case the optimal control dy-
namics in phase space can be investigated in terms of the
Wigner function of the system.

A. stochastic Liouville-von Neumann equation

In Fig. 1 we show the time evolution of the Wigner
function of the system for the optimal control field ob-
tained from Egs. (10) and (11). In natural units, the
initial Wigner function has rotational symmetry, char-
acteristic of a thermal state, later evolving through var-
ious squeezed states. The optimal control solution (Fig.
1, right) shows two main features: First there is a long
ramp-like rise, followed by a steep descent, with virtually
no transition. On the other hand the signal carries also
a periodic modulation which, in this case matches both
on the timescale of the original system (wp = 1) and the



thermal time 23 = 1. During the gradual rise, the Wigner
function gets more and more squeezed in the direction ¢
as the applied control narrows the potential, indicating
that the energy added by the work performed is dissi-
pated to the reservoir, also transferring entropy to the
environment in the process. The effective temperature of
the system, roughly estimated from the level populations
and the characteristic energy scale of Hy+ H¢, decreases.
The rapid decrease of the control towards the end of the
propagation is fast enough to preserve this cooling effect
(i.e. to prevent the full re-thermalization of the energy
levels). In addition, the small modulations visible in the
numerically determined optimal control, serve to drive
the squeezed state back towards a state again isotropic
in phase space.

In Fig. 2 we compared our optimal control signal with
a simplified one lacking the oscillatory parts, approxi-
mating the numerical solution by two linear ramps. This
simplified signal, while also achieving a significant over-
lap with the ground state, results in a Wigner much less
isotropic. One might be interested in replacing the exact
but computationally expensive equation of motion Eq.
(3) with simpler approaches to the dynamics. The conse-
quences will be outlined in the following section.

B. Quantum optical master equation

Surprisingly, the quantum optical master equation,
one of the standard approaches to the dynamics of
open quantum systems, fails to account for the cool-
ing effect described above. Since the level structure of
the time-independent Hamiltonian Hj is, so to speak
“hard-coded” into the dissipative terms, these terms de-
scribe relaxation towards the canonical ensemble, p =
Z~Yexp(—BHy) even for strong changes to the potential.
Using the system Hamiltonian Hy + He and standard
Lindblad operators (obtained solely from Hy) cannot re-
produce the cooling effect. The fact that the resulting
solutions always describe heating, never cooling [10], un-
derscores the inconsistency of this approach.

C. Caldeira-Leggett master equation

The shortcomings of the quantum optical master equa-
tion are related to the inapplicability of the Born-Markov
approximation and the rotating-wave approximation in
their conventional form. One attempt to circumvent this
difficulty while maintaining the simplicity of a master
equation is the use of the Caldeira-Leggett master equa-
tion [11].

d i in n
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TP = —7Ho pl = 54, {p, p}] hgﬁ[% [g,p]] (12)
This approach replaces the Born-Markov approximation
(separation of time scales between environmental fluc-

tuations and relaxation) with a stronger Markovian ap-
proximation, assuming the decay of environmental fluc-
tuations to be virtually instantaneous compared to any
other time scale of the dynamics. It does not rely on the
rotating-wave approximation.

In Fig.3 we show the optimal control solution obtained
through the Caldeira-Leggett Master equation. The re-
sulting control signal shows some qualitative features of
the one calculated without approximations. Again, there
is a gradual rise of the control signal, superimposed with
oscillations of increasing amplitude. However, the growth
of this amplitude is much stronger than in the exact dy-
namics, and the final drop of the signal is virtually in-
stantaneous. This indicates that the Markovian approxi-
mation of the dynamics reproduces the essence of the ef-
fect, but overestimates the effectiveness of high-frequency
components in the control signal. The final states shown
on the r.h.s. of Fig. 3 also show that the Caldeira-Leggett
master equation tends to overstate the effect: The pre-
dicted phase-space density is concentrated in a smaller
area than that of the ground state. In retrospect, this
misfeature is less than surprising: When Eq. (12) is trans-
lated into an equation of motion for the Wigner func-
tion, the special case of an harmonic potential yields a
result identical to the classical Klein-Kramers equation.
The quantum mechanical zero-point motion is missing
from this picture. This anomalous result is also closely
related to the previous observation that the Caldeira-
Leggett master equation violates positivity [15]. Reliable
results can be expected of the Caldeira-Leggett master
equation only for temperatures far above the range of
interest for the cooling effect considered here.

However, the observation that cooling can be observed
in classical dynamics as well, is interesting in itself. Pre-
liminary results indicate that both Markovian and non-
Markovian classical dynamics allow cooling through op-
timal control [16].

IV. OUTLOOK

Controlling an open quantum system not only changes
the dynamics of the system but has an equally impor-
tant indirect impact on mechanisms of dissipation. We
demonstrate that driving can partly reverse the natural
heat flow a reservoir to a system as a drastic manifes-
tation. This opens the door to a rigorous treatment to
non-equilibrium mesoscopic heat engines.
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Figure 1:(color online) Control of an open quantum system with parametric control: For the time steps ¢
0, 10, 18.7, 19.7 and 20 each. Left hand side: Wigner function, right hand side: control signal A(t). Parameters:

inverse thermal energy of the reservoir: § = 1, friction constant n = 0.1
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Figure 2: (color online) Comparison between original control signal A(t) (upper left) with respective contour plot of
the Wigner function of the system (upper right) at t = ¢; and a simplification of the control signal (lower left) with
respective contour plot of the Wigner function of the system (lower right) at ¢ = ty. While achieving compareable
overlap with the objective, the simplified control fails to reduce the squeezing of intermediate states.
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Figure 3: (color online) Results of optimal control with a classical Caldeira-Leggett-Master equation: The computed
control signal A(¢) (left hand side) carries the main features of the control signals of the quantum treatment. The
Wigner function of the classical dynamics shows cooling (middle), but violates the uncertainty relation: the ground
state (right hand side) covers a larger area in phase space




