Physikalisches Kolloquium

Monday, 21 November 2022

Lecture Hall N24/H13, at 16:15
Coffee and cookies will be served in front of the lecture hall from 16:00

Seeing into organic 2D materials – defects, dynamics, and resolution

Dr. Haoyuan Qi
Materials Science Electron Microscopy, Universität Ulm
Faculty of Chemistry and Food Chemistry,Technische Universität Dresden
haoyuan.qi@uni-ulm.de; haoyuan.qi@tu-dresden.de

Recent years have witnessed the rise of organic 2D materials (O2DMs), including 2D polymers (2DP), covalent organic frameworks (COF), and metal-organic frameworks (MOF) 1. However, probing the structures of O2DMs via aberration-corrected high-resolution transmission electron microscopy (AC-HRTEM) remains a formidable task. Electron irradiation damage leads to the rapid disintegration of the molecular network during the imaging process, severely limiting achievable resolution regardless of TEMs’ optical performance. In this talk, I will present various experimental efforts to extract high-resolution information from O2DMs, including low-dose approach 2, optimization of electron dose efficiency 3, and cryogenic conditions. The sub-2-Ångstrom resolution achieved on multiple 2D polymer systems offers insights into the crystal defects, i.e., grain boundaries, interstitials, and their formation mechanisms. The phase transition of a MOF upon different stimuli has been observed in situ down to the atomic scale.

3. Nat. Commun. 13, 3948 (2022)

Pictures see next page
Fig. 1. AC-HRTEM imaging of 2D polymers.
Upper row: atomic models.
Lower row: AC-HRTEM images with the atomic models overlaid.
The acceleration voltage, electron dose and specimen resolution are specified. Scalebar: 2 nm.