The Stern-Gerlach Effect in Nonlinear Optics

Prof. Ady Arie
School of Electrical Engineering
and the Center for Light-Matter Interaction,
Tel Aviv University, Israel

The Stern-Gerlach effect, separating the electron spin components of Silver atoms that pass in a transversely varying magnetic field, is considered one of the cornerstones of quantum mechanics. I will discuss an analogue effect in nonlinear optics, based on the mixing of two different light waves (signal and idler waves) in a quadratic nonlinear crystal.

The dynamics of the nonlinear sum frequency generation process is similar to that of many other two-level systems, and in particular to spin-1/2 particles in magnetic field. Therefore, light beams that carry signal-idler superposition states can be spatially separated by transversely varying the nonlinear optical coupling. Moreover, when non-classical light, consisting of a signal-idler two-photon pair, is sent into the nonlinear Stern-Gerlach device, these photons emerge together at one of the two output ports, thus representing the frequency domain.

Fig. 1: Left: The original Stern-Gerlach effect – a beam of silver atoms is deflected into two discrete directions owing to the magnetic field gradient; Right: the equivalent Stern-Gerlach effect in nonlinear optics, where light beams are deflected into two discrete directions owing to the nonlinear coupling.

Fig. 2: Left: The Stern-Gerlach effect for quantum light: The signal-idler two photon pair emerges in only one of the two output ports. Right: Bloch sphere representation of this effect.

References: