| Module | Near-Field Optics and Plasmonics | |------------------------------|---| | Code | 71422 | | Instruction language | English | | ECTS credits | 3 | | Credit hours | 3 | | Duration | 1 semester | | Cycle | Each winter semester | | Coordinator | Prof. Othmar Marti | | Lecturer | Dr. Manuel Rodrigues Gonçalves | | Allocation to study programs | Advanced Materials M.Sc., elective module, 3 rd Semester Physics M.Sc., elective module, 1 st or 2 nd Semester | | Formal prerequisites | None | | Recommended prerequisites | Knowledge of geometrical wave optics, Maxwell's equations and electromagnetism, fundamentals of algebra and mathematical analysis. | | Learning objectives | Students who successfully passed this module understand the mathematical description of electromagnetic waves in near- and far-field know the physical basis of surface plasmons and the preparation of plasmonic nanostructures can operate optical scanning near-field microscopes can simulate optical properties of nanoparticles | | Syllabus | Concepts of near-fields and far-fields Principles of confocal and SNOM microscopy SNOM probes and near-fields probing methods Fresnel formulas Light scattering, absorption and extinction of isolated nanoparticles Mie theory Plasmons in films and nanoparticles Fabrication techniques of noble metal nanostructures Simulation of optical properties of plasmonic particles Surfaces-enhanced Raman scattering Near-field enhancement and fluorescence Optical forces and thermal effects of plasmons Quantum plasmonics | | | Lab experiments: Fabrication of plasmonic nanostructures Confocal microscopy: reflection and transmission modes SNOM in illumination/transmission mode Angle-resolved spectroscopy Light scattering and surface-plasmon resonance | | | Surface enhanced Raman scattering | |-------------------------------|--| | Literature | Principles of Nano-Optics 2nd Ed., L. Novotny and B. Hecht,
Cambridge 2014 Nanoplasmonics, V. Klimov, Pan Stanford Publishing 2014 Modern Introduction to Surface Plasmons, D. Sarid and W. Challener,
Cambridge 2010 Journal papers and lectures script | | Teaching and learning methods | Lecture with practical course (2 hour per week) | | Workload | 30 hours lab and exercise (attendance time) 60 hours self-study and examination preparation Total: 90 hours | | Assessment | Written examination and lab work. | | Examination | 11981 Near-Field Optics and Plasmonics (AMS, FSPO 2012)
11516 Surface Plasmon Photonics (PHYS , FSPO 2014) | | Grading procedure | The module grade is the examination grade. | | Basis for | Research in Nanosciences |