Relativistic Quantum Electrodynamics

<table>
<thead>
<tr>
<th>Code</th>
<th>76017</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instruction language</td>
<td>English</td>
</tr>
<tr>
<td>ECTS credits</td>
<td>6</td>
</tr>
<tr>
<td>Credit hours</td>
<td>5</td>
</tr>
<tr>
<td>Duration</td>
<td>1 semester</td>
</tr>
<tr>
<td>Cycle</td>
<td>irregular</td>
</tr>
<tr>
<td>Coordinator</td>
<td>Dean of Physics studies</td>
</tr>
<tr>
<td>Lecturer</td>
<td>Prof. Wolfgang Schleich</td>
</tr>
</tbody>
</table>
| Allocation to study programmes | Physics M.Sc., elective module, 1st or 2nd semester
Wirtschaftsphysik M.Sc., elective module, 1st – 3rd semester |
| Formal prerequisites | |
| Recommended prerequisites | Quantum Mechanics course
Classical Electrodynamics course |
| Learning objectives | Students who successfully passed this module
- know the relativistic formulation of quantum mechanics
- know the formalism of second quantization and can perform elementary calculations for electron/positron and photon fields
- know how the coupling between electron and photon fields is established
- understand the theoretical perturbative approach for the electron-photon interaction using Feynman graphs
- are able to reproduce simple Feynman diagrams
- are familiar with the conventions and the mathematical methods relevant for this research area (operator algebra, Fourier integrals, covariant formulation, tensors) |
| Syllabus |
- Relativistic quantum mechanics (Dirac equation)
- Second quantization
- Electron-Photon interaction through the principle of minimal coupling
- Feynman rules and calculation of simple Feynman diagrams
- Techniques and problems of Feynman graphs, renormalization |
| Literature |
- J.I. Sakurai: Advanced Quantum Mechanics (Addison-Wesley, Redwood, 1987)
| Teaching and learning methods | Lecture (3 hours per week)
Exercise (2 hours per week) |
| Workload | 45 hours lecture (attendance time)
30 hours exercise (attendance time)
105 hours self-study and exam preparation |
<table>
<thead>
<tr>
<th>Assessed dedication</th>
<th>Total: 180 hours</th>
</tr>
</thead>
</table>

Assessment
Written or oral examination. Form and scope of the examination is determined and notified by the lecturer at the beginning of the course.

Examination
16017 Relativistic Quantum Electrodynamics
16517 Relativistic Quantum Electrodynamics (Precourse)

Grading procedure
The module grade is the examination grade.

Basis for
Research in the field of quantum physics