

Module

Quantum Machine Learning

Code

Instruction language	English
ECTS credits	4
Attendance time	3 hours per week
Duration	1 semester
Cycle	Irregularly
Coordinator	Dean of Physics Studies
Instructors	Dr. Sabine Wölk
Allocation to study programmes	Physics M.Sc., elective module
	Wirtschaftsphysik M.Sc., elective module
Recommended prerequisites	Theoretical Quantum Mechanics (mandatory)
	Theory of Quantum Information (helpful but not required)
Learning objectives	Students who successfully passed this module
	are familiar with basic concepts of classical machine learning such
	 know examples of quantum algorithm which provide advantages for
	machine learning
Syllabus	Neural networks
	Support vector machines
	Restricted Boltzmann machine Beinforcement learning
	Quantum annealing
	Amplitude amplification
Literature	Goodfellow, Bengio and Courville, "Deep Learning", MIT Press, 2016;
	Lämmel and Cleve, "Künstliche Intelligenz", Hanser Verlag, 2008;
	J. Biamonte et al., "Quantum Machine Learning", Nature 549 , 195
	Duniko and Briegel, "Machine learning & artificial intelligence in the
	quantum domain, Rep. Prog. Phys. 81 , 074001 (2018);
Teaching and learning methods	Lecture (2 hours per week)
	Exercise (1 hours per week)
Workload	30 hours lecture (attendance time)
	15 hours exercise (attendance time)
	75 hours self-study
	Total: 120 hours
Assessment	The module assessment consists of a graded written or oral exam. The examination form will be announced at the beginning of the lecture.
Examination	
Grading procedure	The module grade is equal to the examination grade.
Basis for	Research in the field of Quantum Technologies