

Abc - Augsburg bleibt cool.

Ein Projekt zur Förderung der Klimaanpassung durch die Identifizierung urbaner Hitze-Hotspots

Kleinräumige Simulation von Hitze-Hotspots in Augsburg

Christoph Beck, Katharina Buse, Marisa Fritsch, Philipp Irber, Marco Linder, Johanna Völkel

Universität Augsburg, Institut für Geographie, Physische Geograpie mit Schwerpunkt Klimaforschung

Überblick

- Zielsetzungen
- Vorgehensweise
- Modellgebiete
- Ist-Zustände und Szenarien
- Modell-Forcing und Modellvalidierung
- Modellergebnisse
- Fazit und Ausblick

Zielsetzungen

- Mikroskalige numerische Modellsimulationen
- für potenziell besonders stark von Hitzeeffekten betroffene "Hotspots" in Augsburg
- Abschätzung von Änderungen temperaturbezogener Belastungsmomente im Außenraum, unter möglichen Klimawandelbedingungen
- modellbasierte Untersuchungen zur Wirksamkeit möglicher Anpassungsstrategien, wie z. B. Anteilssteigerungen innerstädtischen Grüns

Auswahl der Modellgebiete (300 m x 300 m)

Auswahl der Modellgebiete

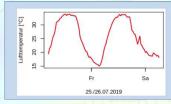
(300 m x 300 m)

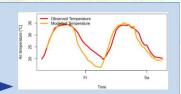
...

Erstellung 3-dimensionaler Modelldomains

(für den jeweiligen Ist-Zustand und für verschiedene Anpassungsszenarien)

Auswahl der Modellgebiete


(300 m x 300 m)


Erstellung 3-dimensionaler Modelldomains

(für den jeweiligen Ist-Zustand und für verschiedene Anpassungsszenarien)

"Forcing" der Modelle (DWD-Daten Augsburg-Mühlhausen) 48-stündige Modellläufe (Loggerdaten des IGUA/HMGU Stadtklimamessnetzes)

Validierung der Ist-Zustand Modelle -

Auswahl der Modellgebiete

(300 m x 300 m)

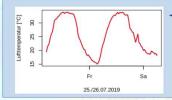
...

Erstellung 3-dimensionaler Modelldomains

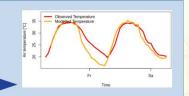
(für den jeweiligen Ist-Zustand und für verschiedene Anpassungsszenarien)

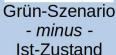
Hitzewelle Ende Juli 2019 als "Analogon" klimawandelbedingt häufiger zu erwartender thermischer sommerlicher Belastungssituationen

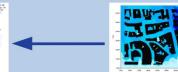
Auswahl der Modellgebiete


(300 m x 300 m)

Erstellung 3-dimensionaler Modelldomains


(für den jeweiligen Ist-Zustand und für verschiedene Anpassungsszenarien)


"Forcing" der Modelle (DWD-Daten Augsburg-Mühlhausen) 48-stündige Modellläufe


(Loggerdaten des IGUA/HMGU Stadtklimamessnetzes)

Validierung der Ist-Zustand Modelle

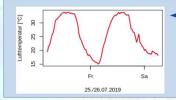
Ist-Zustand Grün-Szenario Lufttemperatur 03:00 UTC (1,5m Höhe)

Modellergebnisse

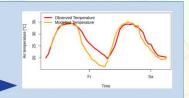
- 4-dimensionale Felder verschiedener meteorologischer Variablen:
- Lufttemperatur, Wind, ... und abgeleiteter Indizes:
- PMV, ...

Auswahl der Modellgebiete

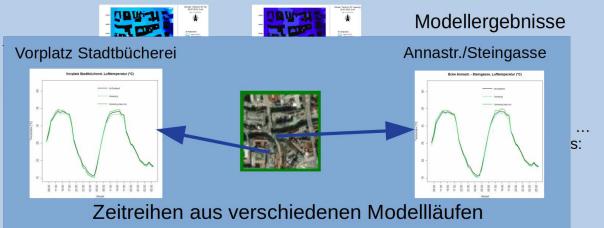
(300 m x 300 m)


...

Erstellung 3-dimensionaler Modelldomains


(für den jeweiligen Ist-Zustand und für verschiedene Anpassungsszenarien)

"Forcing" der Modelle (DWD-Daten Augsburg-Mühlhausen) 48-stündige Modellläufe

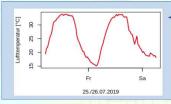

(Loggerdaten des IGUA/HMGU Stadtklimamessnetzes)

Validierung der Ist-Zustand Modelle -

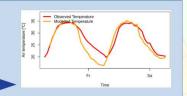
Ist-Zustand

Auswahl der Modellgebiete

(300 m x 300 m)


...

Erstellung 3-dimensionaler Modelldomains

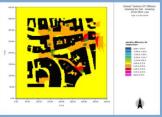

(für den jeweiligen Ist-Zustand und für verschiedene Anpassungsszenarien)

"Forcing" der Modelle (DWD-Daten Augsburg-Mühlhausen) 48-stündige Modellläufe

(Loggerdaten des IGUA/HMGU Stadtklimamessnetzes)

Validierung der Ist-Zustand Modelle

Grün-Szenario
- minus Ist-Zustand



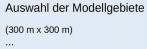
Modellergebnisse

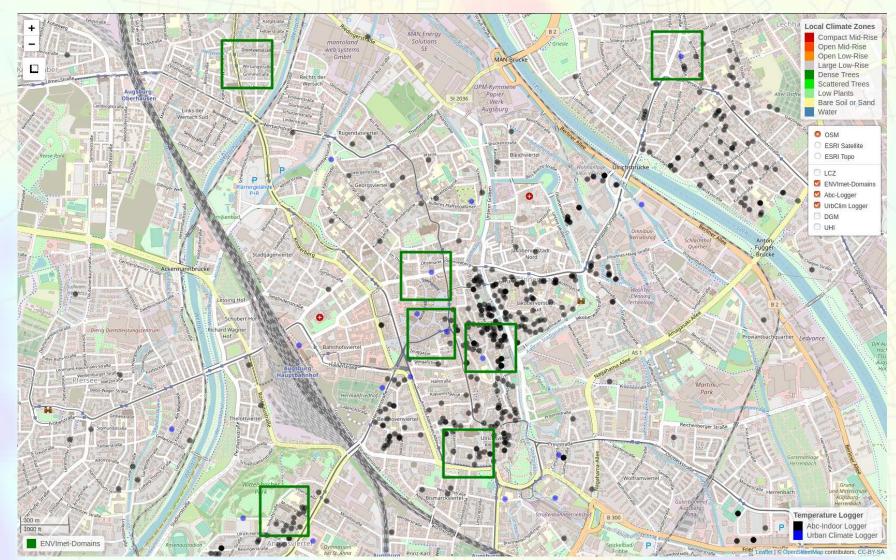
"Dry Soil" Szenario

Differenzen zum klimatischen Ist-Zustand

... S:

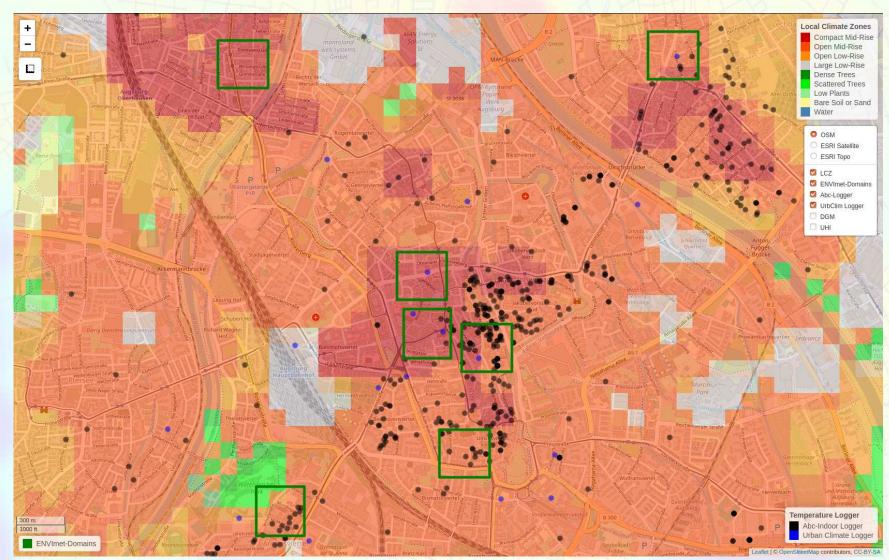
Modellläufe für "Klimaänderungsszenarien"





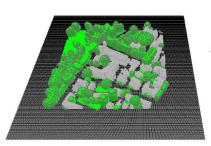
Modellgebiete

Modellgebiete

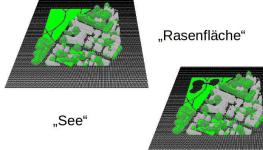


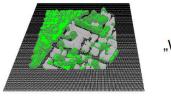
Auswahl der Modellgebiete (300 m x 300 m)

Modellgebiete


(für den jeweiligen Ist-Zustand und für verschiedene Anpassungsszenarien)

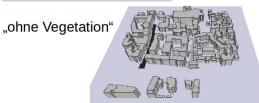
Ist-Zustände und Szenarien


Antonsviertel



Modell: Ist-Zustand

Modell: Szenarien



"Wald"

St. Verena

"ohne Bäume"

(für den jeweiligen Ist-Zustand und für verschiedene Anpassungsszenarien)

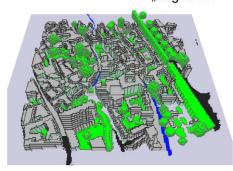
Ist-Zustände und Szenarien

Zentrum 01

Modell: Ist-Zustand

Modell: Szenarien

"begrünt 1"



"begrünt 3"

Zentrum 02

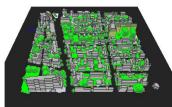
"begrünt 1"

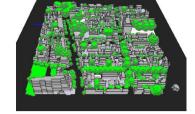
(für den jeweiligen Ist-Zustand und für verschiedene Anpassungsszenarien)

Ist-Zustände und Szenarien

Zentrum 03

Modell: Ist-Zustand

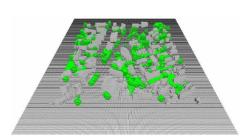

Modell: Szenarien



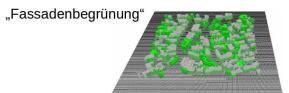
Oberhausen

"begrünt 1"

"begrünt 2"

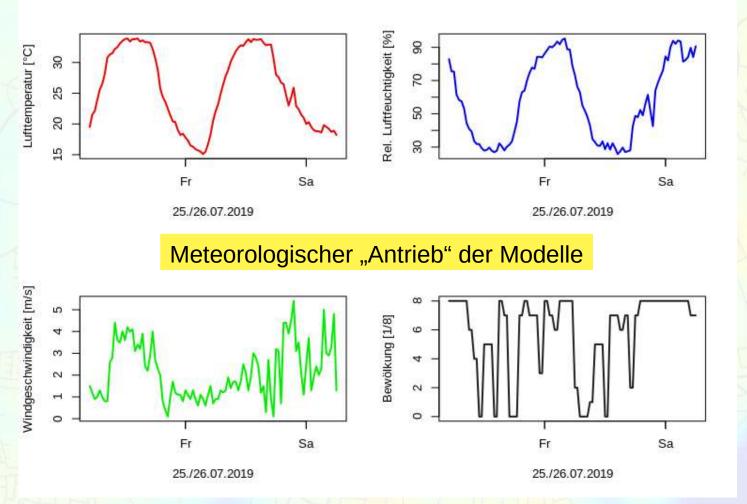

(für den jeweiligen Ist-Zustand und für verschiedene Anpassungsszenarien)

Ist-Zustände und Szenarien

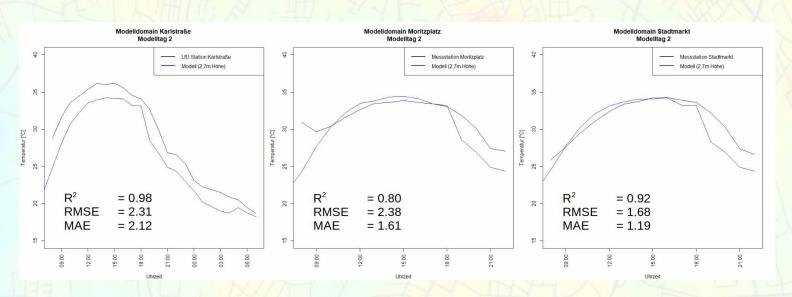

Lechhausen

Modell: Ist-Zustand

Modell: Szenarien



Modell-Forcing



Beobachtungswerte der DWD-Station Augsburg-Mühlhausen

Modellvalidierung

Vergleich der modellierten Lufttemperatur mit Messwerten des Stadtklimamessnetzes von IGUA und HMGU

Stundenmittelwerte der Lufttemperatur für den zweiten Modelltag

Ist-Zustand

Grün-Szenario

Modellergebnisse

für Umwelt, Naturschutz und nukleare Sicherheit

4-dimensionale Felder verschiedener meteorologischer Variablen: - Lufttemperatur, Wind, ...

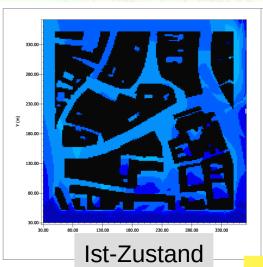
Domain "Zentrum 01"

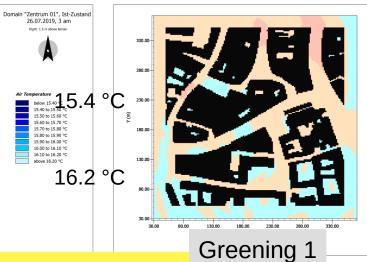
Differenz Greening - Ist 26.07.2019, 3 am

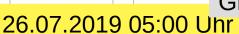
-0.50 to -0.40

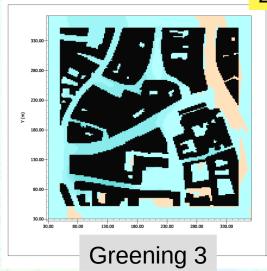
-0.40 to -0.30 K

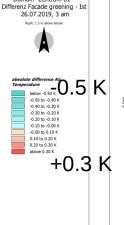
-0.30 to -0.20 K -0.20 to -0.10 K

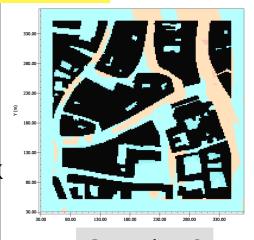

-0.10 to -0.00 K


-0.00 to 0.10 K

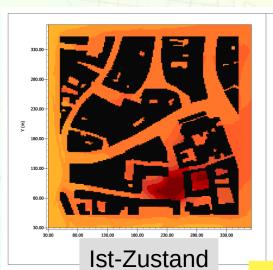

0.20 to 0.30 K

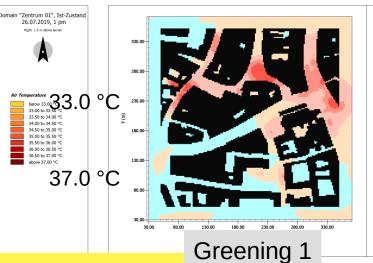

+0.3 K


Modellergebnisse



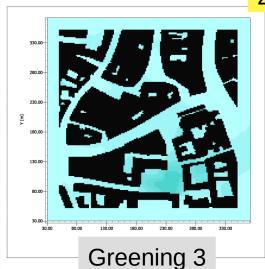
Lufttemperatur 03:00 UTC (1,5m Höhe)

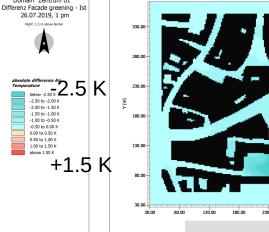

Ist-Zustand

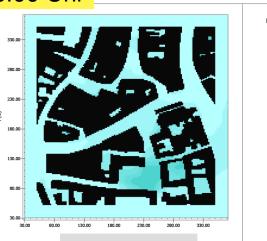


Modellergebnisse 4-dimensionale Felder verschiedener

meteorologischer Variablen: - Lufttemperatur, Wind, ... für Umwelt, Naturschutz und nukleare Sicherheit


Modellergebnisse



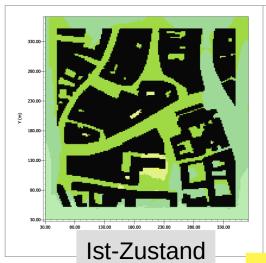


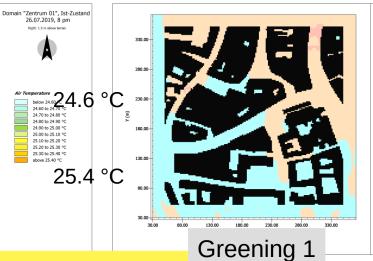
26.07.2019 15:00 Uhr

Lufttemperatur 03:00 UTC (1,5m Höhe)

Ist-Zustand

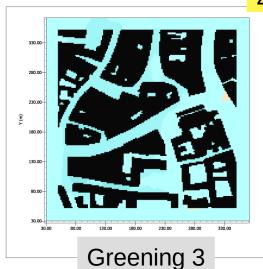
Grün-Szenario

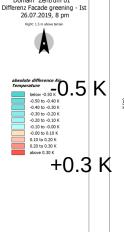

Modellergebnisse

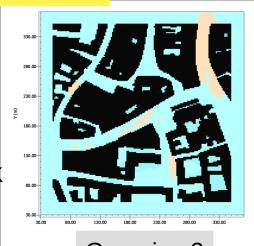

4-dimensionale Felder

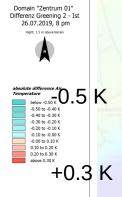
für Umwelt, Naturschutz und nukleare Sicherheit

verschiedener meteorologischer Variablen: - Lufttemperatur, Wind, ...


Modellergebnisse





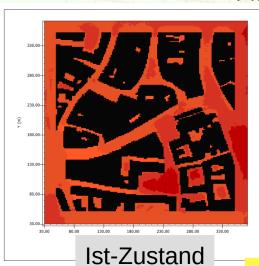


26.07.2019 22:00 Uhr

Bundesministerium für Umwelt, Naturschutz und nukleare Sicherheit

Grün-Szenario

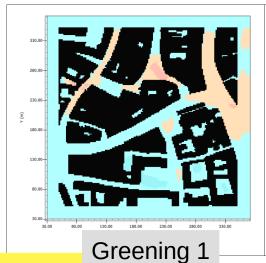
4-dimensionale Felder verschiedener meteorologischer Variablen:

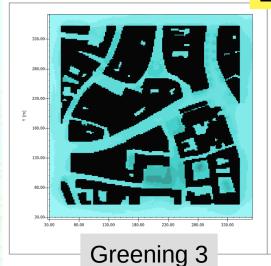

- Lufttemperatur, Wind, ...

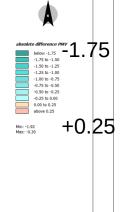
Modellergebnisse

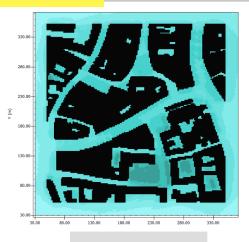
für Umwelt, Naturschutz und nukleare Sicherheit

Modellergebnisse

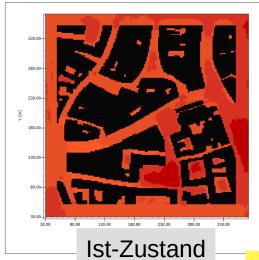

PMV (Predicted Mean Vote)

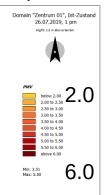

Domain "Zentrum 01" Differenz Facade greening - Ist

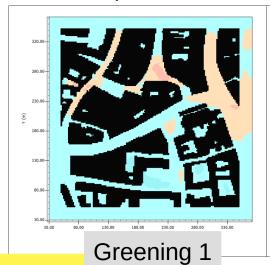

26.07.2019, 1 pm



26.07.2019 15:00 Uhr

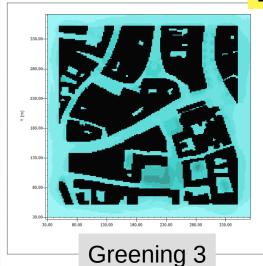


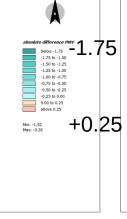


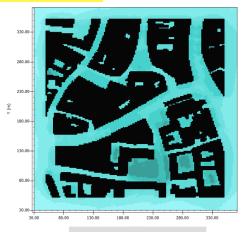

Thermisches Empfinden	Belastungs- stufe	Biologische Wirkung
sehr kalt	Extrem	Kältestress
kalt	Stark	
kühl	Mäßig	
leicht kühl	Schwach	
behaglich	Keine	keine
leicht warm	Schwach	
warm	Mäßig	
heiß	Stark	
sehr heiß	Extrem	Wärmebelastung
	Empfinden sehr kalt kalt kühl leicht kühl behaglich leicht warm warm heiß	Empfinden stufe sehr kalt Extrem kalt Stark kühl Mäßig leicht kühl Schwach behaglich Keine leicht warm Schwach warm Mäßig heiß Stark

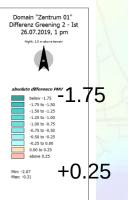
Modellergebnisse

PMV (Predicted Mean Vot



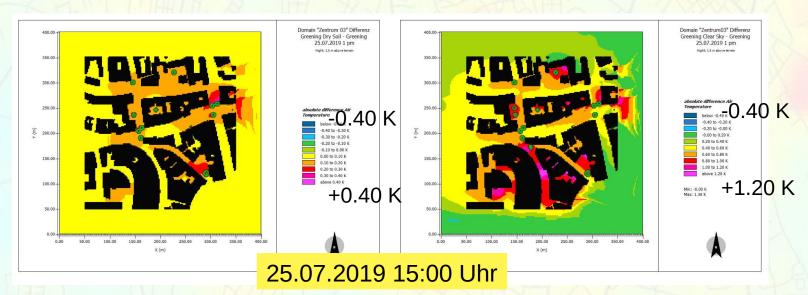



26.07.2019 15:00 Uhr



Domain "Zentrum 01" Differenz Facade greening - Ist

26.07.2019, 1 pm



Modellergebnisse

"Dry Soil" Szenario

"Clear Sky" Szenario

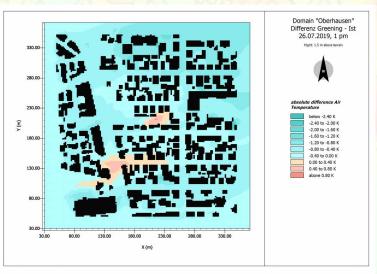
Differenzen zum "beobachteten Klima"

Fazit und Ausblick

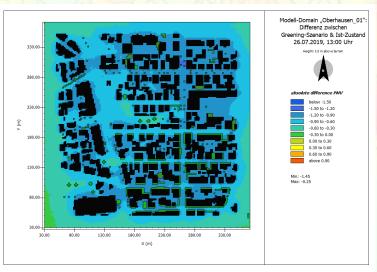
- plausible Ergebnisse mikroklimatischer numerischer Modelle
- mehr Grün bewirkt Reduzierungen der Lufttemperatur
 - vor allem während der Einstrahlungsperiode (bis zu ~ -3 K)
 - bedeutet wirkungsvolle Reduzierung thermischer Belastung
 - weniger ausgeprägt während der Ausstrahlungsperiode (bis zu ~ -1 K)
- teilweise gegenteiliger Effekt höherer Lufttemperaturen bei Begrünung
- Lufttemperaturerhöhung unter Szenarien veränderter Randbedingungen (Dry Soil, Clear Sky)

Fazit und Ausblick

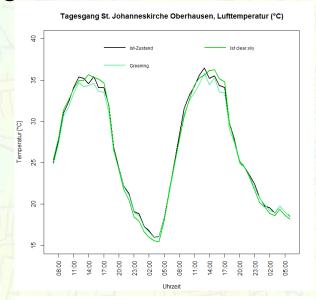
- plausible Ergebnisse mikroklimatischer numerischer Modelle
- mehr Grün bewirkt Reduzierungen der Lufttemperatur
 - vor allem während der Einstrahlungsperiode (bis zu ~ -3 K)
 - bedeutet wirkungsvolle Reduzierung thermischer Belastung
 - weniger ausgeprägt während der Ausstrahlungsperiode (bis zu ~ -1 K)
- teilweise gegenteiliger Effekt höherer Lufttemperaturen bei Begrünung
- Lufttemperaturerhöhung unter Szenarien veränderter Randbedingungen (Dry Soil, Clear Sky)
- weitere Auswertungen der Modellläufe (z.B. bzgl. Innentemperaturen)
- Berücksichtigung lufthygienischer Aspekte
- Einsatz alternativer Modelle (z.B. PALM-4U)

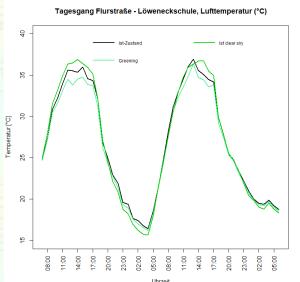


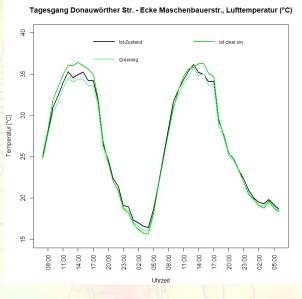
Modellgebiet Oberhausen



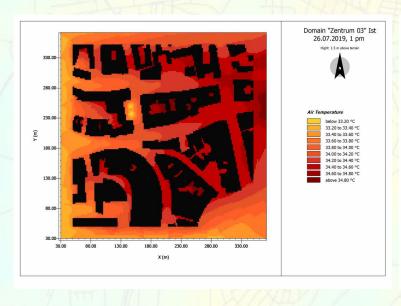
Modellgebiet Oberhausen

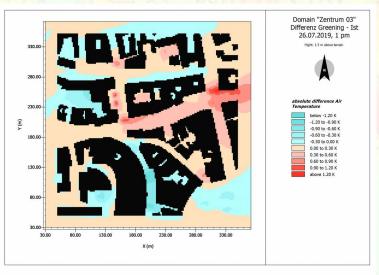




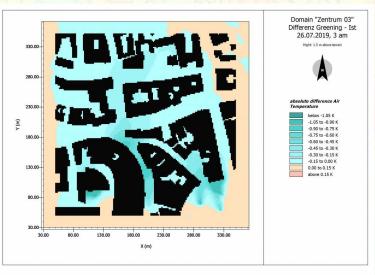


Modellgebiet Oberhausen





Modellgebiet Zentrum 03



Modellgebiet Zentrum 03

