

"Chemieingenieurwesen – eine Mischung, in der die Chemie stimmt!!!"

Fakultät für Naturwissenschaften

Chemieingenieurwesen

4 Fakultäten: Medizin

Naturwissenschaften

Mathematik und Wirtschaftswissenschaften

Ingenieurwissenschaften, Informatik und Psychologie

mehr als 65 Studiengänge zahlreiche Zusatzausbildungen in Sprachen und Soft-Skills

mehr als 90 Institute

rund 10.000 Studierende

Tür an Tür mit der Wirtschaft

über 200 Professorinnen und Professoren 2.500 wissenschaftliche Angestellte

bewährte Begleitprogramme zur Studienunterstützung

Ulm – eine dynamische Stadt mit hoher Lebensqualität im Süden Deutschlands

Chemieingenieurwesen ist ...

Schnittstelle zwischen **Chemie** und **Verfahrenstechnik**

Umsetzung von

Entwicklungen im Labor in technische Produktionsverfahren

Veränderung von Stoffeigenschaften durch chemische und physikalische Verfahren

Entwicklung, Realisierung und Betrieb moderner Verfahren in nachhaltigen Wertschöpfungsketten

Darum Chemieingenieurwesen in Ulm

Eine international ausgerichtete, interdisziplinäre Forschung auf Spitzenniveau – die enge Vernetzung zwischen Natur- und Ingenieurwissenschaften – das ist Chemieingenieurwesen an der UUlm.

Studierende erwerben fundierte Grundlagen in Chemie, Physik, Mathematik und Ingenieurwissenschaften und entwickeln dadurch ein tiefes Verständnis für komplexe Fragestellungen. Diese interdisziplinäre Ausbildung macht die Chemieingenieur*innen zu gefragten Arbeitskräften.

Schon während des Studiums können sich die Studierenden im Rahmen von Projekt- und Abschlussarbeiten anhand spannender und moderner Fragestellungen in die Forschung einbringen. Typische Themenfelder sind:

- Steigerung der Energieeffizienz in chemischen Produktionsverfahren
- Nutzung von CO2 als nachhaltigen chemischen Rohstoff
- Herstellung von Wasserstoffderivaten zur Kopplung stofflicher und energetischer Wertschöpfungsketten.

Eine individuelle Studienbetreuung stellt sicher, dass die Studierenden alle Herausforderungen meistern und gezielt gefördert werden.

Vorteile für Sie

- Trainingscamp "Fit in Chemie" und "Fit in Mathematik" zur optimalen Vorbereitung auf den Studienstart
- Bewährte Tutorien zu ausgewählten Lehrveranstaltungen
- Familiärer Fachbereich mit exzellentem Betreuungsverhältnis und persönlichen Ansprechpartner*innen
- Sehr gut ausgestattete Praktika mit "state-of-the-art"
 Experimenten und Bezug zu aktuellen Forschungsthemen
- Vernetzung mit anderen Fachbereichen durch gemeinsame Kompetenzzentren sowie interdisziplinäre Lehr- und Forschungsprojekte

Das erwartet Sie

Grundlagen:

- Allgemeine, Organische und Physikalische Chemie
- Mathematik und Physik
- Mechanik, Werkstoffkunde und Thermodynamik
- Chemische, Thermische und Mechanische Verfahrenstechnik
- Anlagenbau und Apparatebau
- digitale Werkzeuge im Chemieingenieurwesen
- wahlweise Elektrotechnik, Informatik, Rechnungswesen und andere

Forschungsschwerpunkte:

- Nachhaltige Chemische Prozesse
- Energiewandlung und -speicherung
- Moderne Digitale Werkzeuge

Bachelor

- Abschluss: Bachelor of Science (B.Sc.)
- Regelstudienzeit: 6 Semester
- Studienbeginn: Wintersemester
- Keine Zulassungsbeschränkung
- Informationen und Fristen zum Bewerbungsverfahren unter www.uni-ulm.de/?id=130311

Master

- Abschluss: Master of Science (M.Sc.)
- Regelstudienzeit: 4 Semester
- Lehrsprache: Englisch
- Studienbeginn: Winter- und Sommersemester
- Zugangsvoraussetzungen: Bachelor in Chemieingenieurwesen oder Studiengang mit im Wesentlichen gleichen Inhalten (siehe Kompetenzanforderungen), Durchschnittsnote im Studium von 3,0 oder besser, Nachweis über Englischkenntnisse (siehe Sprachsatzung)
- Informationen und Fristen zum Bewerbungsverfahren unter www.uni-ulm.de/?id=70067

Internationalität

Durch die internationale Ausprägung des Studienganges gibt es europaweit Partneruniversitäten, mit denen Austauschprogramme vereinbart sind.

Auskünfte erteilt das International Office.

Und danach

Ein zentrales Berufsfeld für Absolvent*innen des Chemieingenieurwesens sind nach wie vor die chemische Industrie und ihre verwandten Bereiche, etwa die Pharmaindustrie. Darüber hinaus eröffnen sich – gerade im Ulmer Raum – vielfältige Einsatzmöglichkeiten in zukunftsweisenden Feldern wie Energietechnik und Elektromobilität. Dank der breiten, interdisziplinären Ausbildung und der Fähigkeit, komplexe Problemstellungen kreativ und selbstständig zu lösen, können sich Chemieingenieur*innen auch in anderen Branchen erfolgreich etablieren. Die Berufsaussichten sind ausgezeichnet: Die Nachfrage übersteigt seit Jahren deutlich das Angebot an Absolvent*innen.

Studienfachberatung Chemieingenieurwesen

Dr. Gloria Gessinger N25, Raum 3101 Albert-Einstein-Allee 11 89081 Ulm

Telefon: +49 (0)731/50-22292 Email: gloria.gessinger@uni-ulm.de

Übersicht aller Studiengänge www.uni-ulm.de/studiengaenge

@studium_uniulm @universitaetulm

Stand: September 2025

Studienplan B.Sc. Chemieingenieurwesen FSPO 2025

Struktur LP im Fachsemester Prüfung # Vor-Bereiche 1 2 3 4 5 6 Modul Prüfng leistung Module LP sws WiSe SoSe WiSe SoSe WiSe SoSe Anzahl MP A Pflichtbereich 145 A1 - Grundlagen Naturwissenschaften 32 73195 13195 12986 Allgemeine Chemie 4V+1S 10860 Physik für Ingenieure I 70386 10424 6 4V+2S 6 74352 14352 Organische Chemie I 7 4V+1S 7 1 10930 11319 8 70930 Physikalische Chemie I 4V+2S 8 76644 14307 16644 Grundlagen der analytischen Chemie 4 2V+1S 4 1 A2 - Mathematik 25 70374 10344 10 10861 Höhere Mathematik I 10 6V+2Ü 70579 10346 11438 Höhere Mathematik II 10 6V+2Ü 10 16531 Höhere Mathematik III - Differenzialgleichungen 76031 16031 5 3V+1Ü A3 - Grundlagen Ingenieurwesen 29 Technische Mechanik 75223 15223 5 2V+2Ü 10423 Einführung in die Werkstoffe 4 70385 2V+1Ü 1 74293 14293 Strömungsmechanik 5 45 5 12632 Technische Thermodynamik 76501 5 5 45 74381 14381 Thermodynamik der Gemische 5 45 5 75213 15213 Wärme- und Stoffübertragung 5 2V + 2Ü 5 1 A4 - Chemieingenieurwesen 30 Einführung in das Chemieingenieurwesen 75212 15212 5 45 5 76506 12633 Mechanische Verfahrenstechnik I 2V + 2Ü 5 1 76507 12634 Thermische Verfahrenstechnik I 5 45 5 76505 13898 Chemische Reaktionstechnik I 5 5 2S+2Ü 75214 15214 Prozessdynamik und Regelung 5 2S+2Ü 5 5 76500 12637 Anlagen- und Apparatebau 45 5 A5 - Schwerpunkt Digitale Werkzeuge 17 Digitale Werkzeuge im CIW I 45 75215 15215 5 Digitale Werkzeuge im CIW II 5 75216 15216 45 5 1 75217 15217 Digitale Werkzeuge im CIW III - Praktikum 7 5P 7 1 A6 - Abschlussarbeit 12 Bachelorarbeit 12 3 Monate 12 RΔ B Wahlpflichtbereich >=23 B1 - Überfachliche Spezialisierung (benotet) >=12 70378 10416 10862 Elektrotechnik 10417 10939 Elektrotechnik II 70379 6 71070 11070 11071 Einführung in die Informatik I - Grundlagen 71077 11077 11079 Einführung in die Informatik II - Vertiefung 6 70003 10615 Einführung in die Betriebswirtschaftslehre 6 70004 10804 Externes Rechnungswesen 6 10425 12886 Physik für Ingenieure II 70387 6 B2 - Praktika (unbenotet) >= 11 72626 12626 Grundpraktikum Chemie 85000 10099 Industriepraktikum C Ergänzungsbereich Weitere Kurse aus Prüfungsbereich B oder ASQs >=12 i.d.R. 2V oder 2S ASQ I neu ASQ II neu neu ASQ III neu ASQ IV

Legende

SWS = Semesterwochenstunde, V = Vorlesung, S = Seminar, \ddot{U} = \ddot{U} bung, P = Praktikum, LP = Leistungspunkte MP = Modulpr \ddot{u} fung, LN = Leistungsnachweis

Summe Pflicht

28 25 24 19 27 22

180

31 31 30

Studienplan M.Sc. Chemical Engineering FSPO 2025

as of October 2025

			Structure				CP in semester				Exam	С	P in se	mest	er
#	#	# pre-	Bereiche				1	2	3	4	# of	1	2	3	-
module	exam	course	Module	LP	SWS	Turnus	WiSe	SoSe	WiSe	SoSe	exams	SoSe	WiSe	SoSe	W
Compulso				82											
L - Chemic	cal Engin	eering		35											
76542	13826		Chemical Reaction Engineering II	5	2S+2Ü	WiSe	5				1		5		
76543	13827		Thermal Process Engineering II	5	2S+2Ü	WiSe	5				1		5		
76544	13828		Mechanical Process Engineering II	5	45	SoSe		5			1	5			
75218	15218		Chemical Reaction Engineering III	5	2S+2Ü	SoSe		5			1	5			
75219	15219		Thermal Process Engineering III	5	2S+2Ü	SoSe		5			1			5	Г
75028	15028		Process Intensification	5	2S+2Ü	WiSe	5				1		5		Г
75220	15220		Industrial Catalyis	5	2S+2Ü	SoSe		5			1	5			
- Labora	atory an	d Resea	rch Practice	17				•						•	
						WiSe/									
73739	13739		Advanced Laboratory Chemical Engineering	5	4P	SoSe			5		1			5	
						WiSe/									t
73738	13738		Research Internship I	12	16P	SoSe			12		LN			12	
B - Maste				30			!								٠
						WiSe/									
80000	88888	88889	Master Thesis	30		SoSe				30	1				
															+
Compulso	rv elect	ive area		>=30											
			nd Subject-Specific Specialisation (graded)	>=25											
			ng Electives	>=15											
	15762	Витеети	Simulation and Modelling of Multi-Phase-Reactors	7		WiSe					1			l	
	15723		Sustainable Process Engineering	3		SoSe					1				
111	15759		Photochemical Processes	3		SoSe					1				-
73733	13733		Thotochemical Processes	3		WiSe/					-				-
75763	15763		Seminar Chemical Engineering	3		SoSe					1				
73703	13703		Schillar Chemical Engineering	3		WiSe/	1				-				-
77155	17177	17255	Chamical Engineering Project	7		SoSe					1				
			Chemical Engineering Project cialisation	/		3036					1				H
	15549	cilic spe		3		M/:Co	ı				1				H
			Seminar in Energy Science and Technology		2) / . 4 C	WiSe	-				1				_
	15528		Renewable and conventional Energy Production	4	2V+1S	WiSe					1				-
	15592		Integration of Renewable Energies	4		SoSe					1			_	
	11335		Energy Science and Technology III - Batteries and Fuel Cells	5		WiSe	15	10	13		1	15	15	8	
71326			Hydrogen as Energy Carrier	3		SoSe					1				_
71323	11441		Lithium Ion Batteries	3		WiSe					1				_
			Scientific, Economical and Ecological Aspects of the												
111	11440		Energy Economy	3		SoSe					1				
	14329		Electrochemistry	4		WiSe					1				
			tories (ungraded)	>=5			1								L
B2a Che	mical Er	gineerir	ng Internships	>=5											L
						WiSe/									
85000	10099		External Engineering Internship (5 LP)	5		SoSe					LN				
			Research Internship II			WiSe/									
75758	15758		(Prerequisite: 73738 Research Internship I)	5	5P	SoSe					LN				
B2b Sub	ject-Spe	cific Lab	oratories		-										Г
75544	15544		Energy Technology Laboratory I	4		SoSe					LN				
	15545		Energy Technology Laboratory II	5		WiSe					LN	1			
		nodules	("Ergänzungsmodule")												
				>=8											
mplemen	,,														
	nal cour	es out c	of B Composory elective area or ASOs	>=8											
Addition	nal cours	es out c	of B Composory elective area or ASQs	>=8	mpulsory	<u> </u>	15	20	17	30		15	15	22	Τ

Legend SWS = weekly attendance hours ("Semesterwochenstunden"), LN = Study achievement ("Leistungsnachweis") V = lecture ("Vorlesung"), S = Seminar, P = lab course ("Praktikum"), CP = credit points (Leistungspunkte)