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Example: Tensile Rod

Given:

Rod with …

• Length L

• Cross-section A (constant)

• E-modulus E (constant)

• Force F (axial)

• Upper end fixed

To determine:

Deformation of the loaded rod:

Displacement function u(x)

x

Unloaded
(Reference state)

EA, L

F

u(x)

Loaded



 ODE: (EA u‘)‘ = 0

Generate the Differential Equation

1. Kinematics:  = u‘

2. Material:  = E  N = EAu‘

3. Equilibrium: N‘ = 0

N(x)

N(x+dx)

x

x+dx

Differential 

Element

(infinitesimale

heigth dx)

A) Classical Solution (Method of „infinite“ Elements)

u‘‘ = 0

If  EA = const  then

x

EA, L

F

u(x)

Unloaded
(Reference state)

Loaded



Solve the Differential Equation

u‘‘(x) = 0

Integrate 2 times: u‘(x)  = C1

u(x)   = C1*x + C2 (General Solution)

Adjust to Boundary Conditions

Top (fixation): u(0) = 0  C2 = 0

Bottom (open, force): N(L) = F  u‘(L) = F/(EA)

 C1 = F/EA

Adjusted Solution

u(x)   = (F/EA)*x

A) Classical Solution (Method of „infinite“ Elements)

F

u(x)

u

x

u(L) = (F/EA)*L



B) Solution with FEM

F

Element A

L1 , EA

Node 1

Node 2

Node 3

Element B

L2 , EA

uA(xA)

uB(xB)

Unloaded:
(Reference condition)

Loaded: Ansatz functions (linear) 

for the unknown 

displacements u

uA(xA)

uB(xB)

xA

xB

u1

u2

u3

Discretization: We divide the rod into (only) two finite (= not infinitesimal small) 

Elements. The Elements are connected at their nodes.
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The unknown displacement function of the entire rod is described with a series of simple (linear) ansatz

functions (see figure).  This is the basic concept of FEM.

The remaining unknowns are the three “nodal displacements” û1, û2, û3 and a no longer a whole function 

u(x).  Now we introduce the so-called “virtual displacements (VD)“. These are additional, virtual, 

small, arbitrary displacements δû1, δû2, δû3, consistent with BC. Basically: we “waggle” the nodes a bit.

Now the Principle of Virtual Displacements (PVD) applies:  A mechanical system is in equilibrium 

when the total work (i.e. elastic minus external work) due to the virtual displacements consequently 

disappears.
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Element A

L1 , EA

Node 1

Node 2

Node 3

Element B

L2 , EA

uA(xA)

uB(xB)

Unloaded:
(Reference condition)

Loaded: Ansatz functions (linear) 

for the unknown 

displacements u

xA

xB

u2

u3

δu1

δu2

δu3

Virtual displacements

at all nodal displace-

ments
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With this principle we unfortunately have only one equation for the three unknown displacements  û1, 

û2, û3 .  What a shame! However, there is a trick…

For  our simple example we can apply:

Virt. elastic work =   normal force N times VD

Virt. external work =   external force F times VD

The normal force N can be replaced by the expression EA/L times the element elongation.  Element 

elongation again can be expressed by a difference of the nodal displacements:



The virtual  displacements can be chosen independently of one another.  For 

instance all except one can be zero.  Then the term within the bracket next to this not zero VD 

has to be zero, in order to fulfill the equation.  However, as we can chose the VD we want and 

also  another VD could be chosen as the only non-zero value, consequently all three brackets 

must individually be zero. We get three equations. Juhu!
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Abbreviated we write:

… which we can also write down in matrix form:
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Or in short:

This is the classical fundamental equation of a structural mechanics, linear FE-analysis.  A 

linear system of equations for the unknown nodal displacements

K - Stiffness matrix

û - Vector of the unknown nodal displacement

F - Vector of the nodal forces

0ˆ
1 u

Because the virtual displacements also have to fulfill the boundary conditions  

δû1 = 0.  

we need to eliminate the first line in the system of equations, as this equation does no longer 

need to be fulfilled.  The first column of the matrix can also be removed, as these elements are 

in any case multiplied by zero.  So it becomes …
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We still have to account for the boundary conditions.  The rod is fixed at the top end.  As a 

consequence node 1 cannot be displaced:
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We solve the system of equations and obtain the nodal displacements
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Here the FE-solution corresponds exactly with the (existing) analytical solution.  In a more 

complex example this would not be the case.  

Generally, it applies that the convergence of the numerical solution with the exact solution 

continually improves with an increasing number of finite elements.  For extremely 

complicated problems there is no longer an analytical solution; for such cases one needs 

FEM!

From the nodal displacements one can also determine strains and stresses in a 

subsequent calculation [Nachlaufrechnung].  In our example strains and stresses stay 

constant within the elements.
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Finished!

Analytical Solution:

u(x)   = (F/EA)*x
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The essential steps and ideas of FEM are thus:

• Discretization: Division of the spatial domain into finite elements

• Choose simple Ansatz functions (polynomials) for the unknown variables within the 

elements.  This reduces the problem to a finite number of unknowns.

• Write up a mechanical principle (e.g. PVD, the mathematician says “weak formulation” of 

the PDE) and

• From this derive a system of equations for the unknown nodal variables

• Solve the system of equations

Summary

Many of these steps will no longer be apparent when using a commercial FE program.  With 

the selection of an analysis and an element type the underlying PDE and the Ansatz functions

are implicitly already chosen.  The mechanical principle was only being used during the 

development of the program code in order to determine the template structure of the stiffness 

matrix.  During the solution run the program first creates the (big) linear system of equations 

based on that known template structure, than solves the system in terms of nodal 

displacements, and finally calculating strains and than stresses.


