Master Advanced Materials

Computational Methods in Materials Science
Winter Term 2013/2014

Introduction to the
 Finite Element Analysis (FEA)

Dr.-Ing. Ulrich Simon
Dipl.-Inf. Frank Niemeyer
Dipl.-Ing. Malte Steiner
www.UZWR.de

Schedule

Schedule for WS 2013/2014

date	lecturer	lab
17.10 .2013	Krill	-
24.10 .2013	Simon	-
31.10 .2013	Simon	Simon
07.11 .2013	Simon	Simon
14.11 .2013	Krill	Simon

www.UZWr.de

Contents

- General Introduction to FEA
- Mechanical Basics
- FE Theory, Ultra Simple Introduction

General Introduction to FEA

FE Explanation in one sentence

Finite Element Methode $=$
Numerical Method
to solve partial differential equations (PDEs) approximately

FE Explanation on one slide

$$
k \cdot u=F
$$

$$
u=k^{-1} F
$$

$$
\begin{aligned}
& k_{1} u_{1}=k_{2}\left(u_{2}-u_{1}\right) \\
& k_{2}\left(u_{2}-u_{1}\right)=F
\end{aligned}
$$

$$
\begin{gathered}
\underbrace{\left[\begin{array}{cc}
k_{1}+k_{2} & -k_{2} \\
-k_{2} & k_{2}
\end{array}\right]}_{\underline{K}} \cdot \underbrace{\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]}_{\underline{u}}=\underbrace{\left[\begin{array}{l}
0 \\
F
\end{array}\right]}_{\underline{F}} \\
\underline{u}=\underline{K}^{-1} \underline{F}
\end{gathered}
$$

FE-Software

$\underline{\underline{K}} \cdot \underline{u}=\underline{F}$

FE-Software

$$
\underline{u}=\underline{\underline{K}}^{-1} \underline{F}
$$

Fields

Dynamics

- Implicit: Modal analysis
- Explicit: transient time dependent (crash)

Statics, Elasticity

- Stresses, Strains Nonlinearities:
- Contact, Friction
- Plasticity, Hardening
- Fatigue, Fracture mechanics
- Shape optimization

Heat Transfer, Diffusion

Electromagnetic fields

Statics, Elasticity

Frauenkirche, Dresden

Fluid Flow

Accustics

Electromagnetic Fields

Model: electric motor
Solution: streamlines of magnetic flow

Shape optimization

Initially: solid plate
Finally: Spokes

High Speed Dynamics

- An explicit FE solver is needed
- to solve initial value instead of boundary value problem

Steps of a FEA

Step 1: Preprocessor

1.1. Generate/Import Geometry

- Botom-up Method
- CAD like Method: using Boolean operations: addition, subtraction of geometric primitives
- Direct generation of Elements: e.g. "Voxel Model"
- Import Geometry from CAD files

1.2 Meshing

- Tetraeheadrons: better for complex geometry
- Hexaheadrons: better mechanical properties
- Convergence: better results with increasing number of elements, check it out!

1.3 Material laws and properties

- More complex:
- Anisotropic:
- Biphasic:
- Simplest: Linear elastic, isotropic: E modulus E and Poisson's ratio v Non-linear elastic, plastic, hardening, fatigue, cracks Transverse Isotropic (wood), Orthotropic, ...
Porous media

1.4 Load and Boundary Conditions (BC)

- Apply forces and/or displacements (or pressures, temperatures, ...)
- Forces can be applied to nodes
- Some programs allow application of line- area- ore volume-forces. The program will then distribute these forces to the underlying nodes automatically.
- Displacement BC are: fixations, supports, symmetries, constraints

Step 2: Solution

- The computer is doing the work
- Solver for linear systems: direct solver or iterative solver
- Solver for non-linear systems: iterativ, Newton-Raphson

Step 3: Post-Processor

- Presenting the results (important message)
- Displacements
- Strains, stresses
- Interpretation
- Verification (check code, convergence, plausibility, ...)
- Validation (compare with experiments)

Mechanical Basics

Variables, Dimensions and Units

Standard: ISO 31, DIN 1313
Variable $=$ Number. Unit
Length $L=2 \cdot m=2 \mathrm{~m}$
\{Variable $\}=$ Number
[Variable] = Unit

Three mechanical SI-Units:
m (Meter)

kg (Kilogram)
s (Seconds)

THE FORCE

Method of Sections [Schnittprinzip]

Note to Remember:
First, cut the system, then include forces and moments.
Free-body diagram = completely isolated part.

Units of Force

Newton
$N=\mathrm{kg} \cdot \mathrm{m} / \mathrm{s}^{2}$

Note to Remember:
1 Newton \approx Weight of a bar of chocolate (100 g)

THE MOMENT [Das Moment]

Slotted screw with screwdriver blade

Force Couples (F, a)

Moment M

Note to remember:
The moment $M=F$. a is equivalent to a force couple (F, a). A moment is the cause for angular acceleration or angular deformation (Torsion, Bending) of a body.

Static Equilibrium

Important:

First free-body diagram (FBD), then equilibrium!

For 2D Problems max. 3 equations for each FBD:

The sum of all forces in x-direction equals zero:	$F_{1, x}+F_{2, x}+\ldots=0$
The sum of all forces in y-direction equals zero:	$F_{1, y}+F_{2, y}+\ldots=0$
The sum of Moments with respect to P equals zero:	$M_{1, z}^{P}+M_{2, z}^{P}+\ldots \stackrel{1}{=} 0$

(For 3D Problems max. 6 equations for each FBD)

Recipe for Solving Problems in Statics

Step 1: Model building. Generate a simplified replacement model (diagram with geometry, forces, constraints).
Step 2: Cutting, Free-body diagram. Cut system and develop free-body diagrams. Include forces and moments at cut, as well as weight.
Step 3: Equilibrium equations. Write the force- and moment equilibrium equations (only for free-body diagrams).
Step 4: Solve the equations. One can only solve for as many unknowns as equations, at most.
Step 5: Display results, explain, confirm with experimental comparisons. Are the results reasonable?

STRESSES

... to account for the loading of the material!

Note to Remember:
Stress = „smeared" force
Stress $=$ Force per Area or $\sigma=F / A$

Normal and Shear Stresses

Stress

Note to Remember:
First, you must choose a point and a cut through the point, then you can specify (type of) stresses at this point in the body.
Normal stresses (tensile and compressive stress) are oriented perpendicular to the cut-surface.

Shear stresses lie tangential to the cut-surface.

General 3D Stress State

... in a point of the body:

- 3 stress components in one cut (normal stress, $2 x$ shear stress) times
- 3 cuts
result in
- 9 stress components, but only
- 6 of these components will be independent (eq. of shear stresses)

The "stress tensor"

$$
\underline{\underline{\sigma}}=\left[\begin{array}{lll}
\left.\left.\begin{array}{|ccc}
\sigma_{x x} & \sigma_{x y} & \sigma_{x z} \\
\sigma_{y x} & \sigma_{y y} & \sigma_{y z} \\
\sigma_{z x} & \sigma_{z y} & \sigma_{z z}
\end{array}\right]=\left[\begin{array}{lll}
\sigma_{x x} & \tau_{x y} & \tau_{x z} \\
\tau_{x y} & \sigma_{y y} & \tau_{y z} \\
\tau_{x z} & \tau_{y z} & \sigma_{z z}
\end{array}\right], ~\right]
\end{array}\right]
$$

General 3D Stress State

6 Components


```
V Vergleichs- (von Mises)
O Max. im Hauptachsensystem
Mittlere im Hauptachsensystem
Min. im Hauptachsensystem
OMax. Schub
O}\mathrm{ Vergleichs- (Tresca)
O
Schub
```


Problem:

- How to produce nice Pictures?
- Which component should I use?
- Do I need 6 pictures at the same time?

So called "Invariants" are "smart mixtures" of the components
$\sigma_{\text {Mises }}=\sqrt{\sigma_{x x}{ }^{2}+\sigma_{y y}{ }^{2}+\sigma_{z z}{ }^{2}-\sigma_{x x} \sigma_{y y}-\sigma_{x x} \sigma_{z z}-\sigma_{y y} \sigma_{z z}+3 \tau_{x y}{ }^{2}+3 \tau_{x z}{ }^{2}+3 \tau_{y z}{ }^{2}}$

Strains

- Global, (external) strains

$$
\varepsilon:=\frac{\text { Change in length }}{\text { Original length }}=\frac{\Delta L}{L_{0}}
$$

- Local, (internal) strains

```
Units of Strain
without a unit
1
1/100 = %
1/1.000.000 = \mu\varepsilon (micro strain)
= 0,0001 %
```


Definition of the Local Strain State

undeformed

$\varepsilon_{x x}=\frac{\Delta x}{x_{0}}, \quad \varepsilon_{y y}=\frac{\Delta y}{y_{0}}, \quad \ldots$
$\gamma_{x y}=\frac{1}{2} \cdot \Delta \varphi, \quad \gamma_{x z}=\ldots$
$\underline{\underline{\varepsilon}}=\left[\begin{array}{lll}\left.\begin{array}{lll}\varepsilon_{x x} & \gamma_{x y} & \gamma_{x z} \\ \gamma_{x y} & \varepsilon_{y y} & \gamma_{y z} \\ \gamma_{x z} & \gamma_{y z} & \varepsilon_{z z}\end{array}\right]\end{array}\right]$
The strain tensor

Strain

> Note to Remember:
> Strain is relative change in length (and shape)
> Strain = Change in length / Original length

Material Laws

... relation between stresses and strains

Linear-Elastic, Isotropic Material Law:

Two of the following three parameters are necessary:
Young's Modulus E (Elastic Modulus) [Elastizitäts-Modul]
Shear Modulus G [Schubmodul]
Poisson's ratio v [Querkontraktionszahl]
Complex Material Laws:

- Non-linear (a)
- Non-elastic, plastic (b)
- Visco-elastic, Type: internal damping (c)
- Visco-elastic, Type: memory effect (c)
- Anisotropy

Stress σ
a)

Stress σ

Stress σ

Example: Plastic Strain

Isotropic vs. Anisotropic (linear elastic)

Stress σ

Linear stress-strain relation

$$
\begin{aligned}
& \sigma=E \cdot \varepsilon \\
& \underline{\underline{\sigma}}=\underline{\underline{E} \cdot \underline{\varepsilon}} \\
& \underline{\underline{\sigma}}=\underline{\underline{E}} \cdot \underline{\varepsilon} \quad \text { (81 Param.) }
\end{aligned}
$$

- Full 3^{4} material properties tensor of $4^{\text {th }}$ order
(81 Param.)
- Equality of shear stresses (Boltzmann Continua) and strains:
(36 Param.)
- Reciprocity Theorem from Maxwell \rightarrow fully anisotropic:
(21 Param.)
- Orthotropic:
(9 Param.)
- Transverse isotropic:
(5 Param.)
- Full isotropic:
(2 Param.)

Isotropic vs. Anisotropic (linear elastic)

$$
\underline{\sigma}=\underline{\underline{E}} \cdot \underline{\varepsilon}
$$

$$
\left[\begin{array}{l}
\sigma_{x x} \\
\sigma_{y y} \\
\sigma_{z z} \\
\tau_{x y} \\
\tau_{y z} \\
\tau_{z x}
\end{array}\right]=\frac{E}{(1+v) \cdot(1-2 v)} \cdot\left[\begin{array}{cccccc}
(1-v) & v & v & 0 & 0 & 0 \\
& (1-v) & v & 0 & 0 & 0 \\
& & (1-v) & 0 & 0 & 0 \\
& & & \frac{(1-2 v)}{2} & 0 & 0 \\
& & & & \frac{(1-2 v)}{2} & 0 \\
\operatorname{sym} & & & & & \frac{(1-2 v)}{2}
\end{array}\right] \cdot\left[\begin{array}{l}
\varepsilon_{x x} \\
\varepsilon_{y y} \\
\varepsilon_{z z} \\
\gamma_{x y} \\
\gamma_{y z} \\
\gamma_{z x}
\end{array}\right]
$$

E - Young's modulus
v - Poisson's ratio (0 ... 0.5)
G - Shear modulus

$\leftarrow 2$ of these

K - Bulk modulus
μ, Λ - Lame Constants

Simple Load Cases

 for 1D objects
1 Tension and Compression

Global behavior, stiffness

$$
F=\frac{E A}{L_{0}} \Delta L, \quad k=\frac{E A}{L_{0}}
$$

Stresses in transverse cut

$$
\sigma=\frac{F}{A}
$$

Shear

Global behavior, stiffness

$$
F=\frac{G A}{L} w, \quad k=\frac{G A}{L}
$$

Stresses in transverse cut

$$
\tau=\frac{F}{A}
$$

Bending (Cantilever beam)

Cantilever beam (Bending regidity $\mathrm{EI}_{\text {a }}$, Length L)
Cut

Global behavior, compliance

$$
\begin{aligned}
& w=\frac{L^{3}}{3 E I_{a}} F+\frac{L^{2}}{2 E I_{a}} M \\
& \varphi=\frac{L^{2}}{2 E I_{a}} F+\frac{L}{E I_{a}} M
\end{aligned}
$$

Local stress in transverse cut:
(normal stress)

$$
\sigma_{x x}(x, z)=\frac{M+F(x-l)}{I_{a}} z
$$

Torsion

Global behavior, stiffness

$$
M=\frac{G I_{T}}{L} \varphi, \quad c=\frac{G I_{T}}{L}
$$

Stresses in transverse cut

$$
\begin{aligned}
& \tau=\frac{M}{I_{T}} \rho \\
& \rho=\text { Distance from Center }
\end{aligned}
$$

Second Moment of Area I (SMA)

[Flächenmoment zweiten Grades]

Axial moment of area (bending)

$$
I_{a}=\frac{b \cdot h^{3}}{12}
$$

$$
I_{a}=\frac{\pi}{64} D^{4}
$$

$$
I_{a}=\frac{\pi}{64}\left(D^{4}-d^{4}\right)
$$

Polar moment of area (torsion)

$$
I_{T}=I_{P}=\frac{\pi}{32} D^{4} \quad I_{T}=I_{p}=\frac{\pi}{32}\left(D^{4}-d^{4}\right)
$$

Example: Tensile Rod

Given:

Rod with ...

- Length L
- Cross-section A (constant)
- E-modulus E (constant)
- Force F (axial)
- Upper end fixed

To determine:

Deformation of the loaded rod: Displacement function $u(x)$

A) Classical Solution (Method of „infinite" Elements)

A) Classical Solution (Method of „infinite" Elements)

Solve the Differential Equation

$$
\begin{aligned}
& u^{\prime \prime}(x)=0 \\
& u^{\prime}(x)=C_{1} \\
& u(x)=C_{1}{ }^{*} x+C_{2} \quad \text { (General Solution) }
\end{aligned}
$$

Integrate 2 times:

Adjust to Boundary Conditions
Top (Fixation):

$$
\begin{aligned}
u(0)=0 & \Rightarrow C_{2}=0 \\
N(L)=F & \Rightarrow u^{\prime}(L)=F /(E A) \\
& \Rightarrow C_{1}=F / E A
\end{aligned}
$$

Bottom (open, Force):

Adjusted Solution

$$
u(x)=(F / E A)^{*} x
$$

B) Solution with FEM

Discretization: We divide the rod into (only) two finite (= not infinitesimal small) Elements. The Elements are connected at their nodes.

Unloaded:
(Reference condition)

Ansatz functions (linear) for the unknown
displacements u

The unknown displacement function of the entire rod is described with a series of simple (linear) ansatz functions (see figure). This is the basic concept of FEM.

$$
\begin{aligned}
& u_{A}\left(x_{A}\right)=\hat{u}_{1}+\left(\hat{u}_{2}-\hat{u}_{1}\right) \frac{x_{A}}{L_{A}}=\hat{u}_{1}\left(1-\frac{x_{A}}{L_{A}}\right)+\hat{u}_{2} \frac{x_{A}}{L_{A}} \\
& u_{B}\left(x_{B}\right)=\hat{u}_{2}+\left(\hat{u}_{3}-\hat{u}_{2}\right) \frac{x_{B}}{L_{B}}=\hat{u}_{2}\left(1-\frac{x_{B}}{L_{B}}\right)+\hat{u}_{3} \frac{x_{B}}{L_{B}}
\end{aligned}
$$

The remaining unknowns are the three "nodal displacements" $\hat{u}_{1}, \hat{u}_{2}, \hat{u}_{3}$ and a no longer a whole function $u(x)$. Now we introduce the so-called "virtual displacements (VD)". These are additional, virtual, arbitrary displacements $\delta \hat{u}_{1}, \delta \hat{u}_{2}, \delta \hat{u}_{3}$. Basically: we "waggle" the nodes a bit.

Now the Principle of Virtual Displacements (PVD) applies: A mechanical system is in equilibrium when the total work (i.e. elastic minus external work) due to the virtual displacements consequently disappears.

$$
\delta W=0 \Rightarrow \delta W_{e l}-\delta W_{a}=0
$$

For our simple example we can apply:
virt. elastic work $\quad=$ normal force N times VD
virt. external work $=$ external force F times VD
The normal force N can be replaced by the expression $E A / L$ times the element elongation. Element elongation again can be expressed by a difference of the nodal displacements:

$$
\begin{aligned}
\delta W & =N_{A}\left(\delta \hat{u}_{2}-\delta \hat{u}_{1}\right)+N_{B}\left(\delta \hat{u}_{3}-\delta \hat{u}_{2}\right)-F \delta \hat{u}_{3} \\
& =\frac{E A}{L_{A}}\left(\hat{u}_{2}-\hat{u}_{1}\right)\left(\delta \hat{u}_{2}-\delta \hat{u}_{1}\right)+\frac{E A}{L_{B}}\left(\hat{u}_{3}-\hat{u}_{2}\right)\left(\delta \hat{u}_{3}-\delta \hat{u}_{2}\right)-F \delta \hat{u}_{3} \\
\delta W & =\delta \hat{u}_{1}\left(+\frac{E A}{L_{A}} \hat{u}_{1}-\frac{E A}{L_{A}} \hat{u}_{2}\right) \\
& +\delta \hat{u}_{2}\left(-\frac{E A}{L_{A}} \hat{u}_{1}+\frac{E A}{L_{A}} \hat{u}_{2}+\frac{E A}{L_{B}} \hat{u}_{2}-\frac{E A}{L_{B}} \hat{u}_{3}\right) \\
& +\delta \hat{u}_{3}\left(\quad-\frac{E A}{L_{B}} \hat{u}_{2}+\frac{E A}{L_{B}} \hat{u}_{3}-F\right)=0
\end{aligned}
$$

With this principle we unfortunately have only one equation for the three unknown displacements \hat{u}_{l}, \hat{u}_{2}, \hat{u}_{3}. What a shame! However, there is a trick...

Abbreviated we write:

$$
\delta \hat{u}_{1}(\ldots)_{1}+\delta \hat{u}_{2}(\ldots)_{2}+\delta \hat{u}_{3}(\ldots)_{3}=0
$$

The virtual displacements can be chosen independently of one another. For instance all except one can be zero. Then the term within the bracket next to this not zero VD has to be zero, in order to fulfill the equation. However, as we can chose the VD we want and also another VD could be chosen as the only non-zero value, consequently all three brackets must individually be zero. We get three equations. Juhu!

$$
(\ldots)_{1}=0 ; \quad(\ldots)_{2}=0 ; \quad(\ldots)_{3}=0
$$

... which we can also write down in matrix form:

$$
\left[\begin{array}{ccc}
\frac{E A}{L_{1}} & -\frac{E A}{L_{1}} & 0 \\
-\frac{E A}{L_{1}} & \frac{E A}{L_{1}}+\frac{E A}{L_{2}} & -\frac{E A}{L_{2}} \\
0 & -\frac{E A}{L_{2}} & \frac{E A}{L_{2}}
\end{array}\right]\left[\begin{array}{l}
\hat{u}_{1} \\
\hat{u}_{2} \\
\hat{u}_{3}
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
F
\end{array}\right]
$$

Or in short: $\quad \underline{\underline{K}}-$ Stiffness matrix $\quad\left[\begin{array}{ccc}\frac{E A}{L_{1}} & -\frac{E A}{L_{1}} & 0 \\ -\frac{E A}{L_{1}} & \frac{E A}{L_{1}}+\frac{E A}{L_{2}} & -\frac{E A}{L_{2}} \\ 0 & -\frac{E A}{L_{2}} & \frac{E A}{L_{2}}\end{array}\right]\left[\begin{array}{l}\hat{u}_{1} \\ \hat{u}_{2} \\ \hat{u}_{3}\end{array}\right]=\left[\begin{array}{c}0 \\ 0 \\ F\end{array}\right]$

$$
\underline{\underline{K}} \underline{\underline{\hat{u}}}=\underline{\underline{F}}
$$

$\underline{\hat{u}}$ - Vector of the unknown nodal displacement
\underline{F} - Vector of the nodal forces
This is the classical fundamental equation of a structural mechanics, linear FE-analysis. A linear system of equations for the unknown nodal displacements

We still have to account for the boundary conditions. The rod is fixed at the top end. As a consequence node 1 cannot be displaced:

$$
\hat{u}_{1}=0
$$

Because the virtual displacements also have to fulfill the boundary conditions we have $\delta \hat{u}_{l}=0$. Therefore we need to eliminate the first line in the system of equations, as this equation does no longer need to be fulfilled. The first column of the matrix can also be removed, as these elements are in any case multiplied by zero. So it becomes ...

$$
\left[\begin{array}{cc}
\frac{E A}{L_{1}}+\frac{E A}{L_{2}} & -\frac{E A}{L_{2}} \\
-\frac{E A}{L_{2}} & \frac{E A}{L_{2}}
\end{array}\right]\left[\begin{array}{l}
\hat{u}_{2} \\
\hat{u}_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
F
\end{array}\right]
$$

$u(x)=(F / E A)^{*} x$

We solve the system of equations and obtain the nodal displacements

$$
\hat{u}_{2}=\frac{L_{A}}{E A} F \quad \text { und } \quad \hat{u}_{3}=\frac{L_{A}+L_{B}}{E A} F
$$

Here the FE-solution corresponds exactly with the (existing) analytical solution. In a more complex example this would not be the case.
Generally, it applies that the convergence of the numerical solution with the exact solution continually improves with an increasing number of finite elements. For extremely complicated problems there is no longer an analytical solution; for such cases one needs FEM!
From the nodal displacements one can also determine strains and stresses in a subsequent calculation. In our example strains and stresses stay constant within the elements.

Finished!

$$
\begin{array}{ll}
\varepsilon_{A}\left(x_{A}\right)=\frac{\hat{u}_{2}-\hat{u}_{1}}{L_{A}} & \sigma_{A}\left(x_{A}\right)=E \varepsilon_{A}\left(x_{A}\right) \\
\varepsilon_{B}\left(x_{B}\right)=\frac{\hat{u}_{3}-\hat{u}_{2}}{L_{n}} & \sigma_{B}\left(x_{B}\right)=E \varepsilon_{B}\left(x_{B}\right)
\end{array}
$$

Stresses

Summary

The essential steps and ideas of FEM are thus:

- Discretization: Division of the spatial domain into finite elements
- Choose simple ansatz functions (polynomials) for the unknown variables within the elements. This reduces the problem to a finite number of unknowns.
- Write up a mechanical principle (e.g. PVD, the mathematician says "weak formulation" of the PDE) and
- From this derive a system of equations for the unknown nodal variables
- Solve the system of equations

Many of these steps will no longer be apparent when using a commercial FE program. With the selection of an analysis and an element type the underlying PDE and the ansatz functions are implicitly already chosen. The mechanical principle was only being used during the development of the program code in order to determine the template structure of the stiffness matrix. During the solution run the program first creates the(big) linear system of equations based on that known template structure and than solves the system in terms of nodal displacements.

General Hints and Warnings

- FEA is a tool, not an solution
- Take care about nice pictures („GiGo")
- Parameter
- Verification

needs experiments
- FE models are case (question) specific

Literature and Links reg. FEM

Books:

- Zienkiewicz, O.C.: „Methode der finiten Elemente"; Hanser 1975 (engl. 2000). The bible of FEM (German and English)
- Bathe, K.-J.: „Finite-Elemente-Methoden"; erw. 2. Aufl.; Springer 2001 Textbook (theory)
- Dankert, H. and Dankert, J.: „Technische Mechanik"; Statik, Festigkeitslehre, Kinematik/Kinetik, mit Programmen; 2. Aufl.; Teubner, 1995.

German mechanics textbook incl. FEM, with nice homepage http://www.dankertdankert.de/

- Müller, G. and Groth, C.: „FEM für Praktiker, Band 1: Grundlagen", mit ANSYS/ED-Testversion (CD). (Band 2: Strukturdynamik; Band 3: Temperaturfelder)

ANSYS Intro with examples (German)

- Smith, I.M. and Griffiths, D.V.: „Programming the Finite Element Method" From engineering introduction down to programming details (English)
- Young, W.C. and Budynas, G.B: „Roark's Formulas for Stress and Strain" Solutions for many simplified cases of structural mechanics (English)

Links:

- Z88 Free FE-Software: http://z88.uni-bayreuth.de/

