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General Introduction to FEA 



Finite Element Methode 
= 

 Numerical Method   
to solve partial differential  

equations (PDEs) approximately  

FE Explanation in one sentence 
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Fields 

Statics, Elasticity 
• Stresses, Strains 

Nonlinearities: 

• Contact, Friction 

• Plasticity, Hardening 

• Fatigue, Fracture mechanics  

• Shape optimization 

Dynamics 
• Implicit: Modal analysis 

• Explicit: transient time dependent (crash) 

Electromagnetic fields 

Heat Transfer, Diffusion 
Fluid flow 
• Air planes 

• Weather prediction 

Accustics 

 

 

FEM 

 



Statics, Elasticity 

Frauenkirche, Dresden 



Heat Transfer and Diffusion 

Pasta 

Chip 

Cheese 



Accustics 

Fluid Flow 



Electromagnetic Fields 

Solution: streamlines of magnetic flow  Model: electric motor 



Shape optimization 

Initially: solid plate Finally: Spokes 



High Speed Dynamics 

• An explicit FE solver is needed 

• to solve initial value instead of 

boundary value problem 

• Application: crash, fast impact, ... 



Steps of a FEA 



Working Steps of a FEA 

1. Preprocessor 
• Geometry 

• Mesh, Discretisation 

• Material properties 

• Load / boundary conditions 

2. Solution 
• Computer is working 

3. Postprocessor 
• Verification,Validation 

• Presenting results 



Step 1:  Preprocessor 

1.1. Generate/Import Geometry 

 

• Botom-up Method 

 

• CAD like Method: using Boolean 

operations: addition, subtraction of  

geometric primitives 

 

• Direct generation of Elements:  e.g. “Voxel 

Model” 

 

• Import Geometry from CAD files 

Volumes 

Elements 

Area 

Lines 

Points 



1.2  Meshing 

 

- Tetraeheadrons: better for complex geometry 

- Hexaheadrons: better mechanical properties 

- Convergence: better results with increasing number of elements, 

check it out! 



1.3  Material laws and properties 
 

- Simplest: Linear elastic, isotropic: E modulus E and Poisson’s ratio  

- More complex:  Non-linear elastic, plastic, hardening, fatigue, cracks 

- Anisotropic:  Transverse Isotropic (wood), Orthotropic, ...  

- Biphasic: Porous media 

 

 

1.4  Load and Boundary Conditions (BC) 
 

- Apply forces and/or displacements (or pressures, temperatures, ...) 

- Forces can be applied to nodes 

- Some programs allow application of line- area- ore volume-forces.  The program 

will then distribute these forces to the underlying nodes automatically. 

- Displacement BC are: fixations, supports, symmetries, constraints 



Step 2:  Solution 

- The computer is doing the work 

- Solver for linear systems:  direct solver or iterative solver 

- Solver for non-linear systems:  iterativ, Newton-Raphson 

Step 3:  Post-Processor 

- Presenting the results (important message) 

- Displacements 

- Strains, stresses 

- Interpretation 

- Verification (check code, convergence, plausibility, ...) 

- Validation (compare with experiments) 

 



Mechanical Basics 



Variables, Dimensions and Units 

Standard: ISO 31, DIN 1313 
 

Variable =  Number  Unit 

Length L =  2  m  =  2 m 

{Variable} =  Number 

[Variable] =  Unit 

Three mechanical SI-Units: 

m (Meter) 

kg (Kilogram) 

s (Seconds) 

Length L [m]  

Length L / m 

Length L in m 

2 1 



THE FORCE 

Method of Sections [Schnittprinzip] 

1 kg

Note to Remember: 

First, cut the system, then include forces and moments. 

Free-body diagram = completely isolated part. 

 

F 

F 

10 N 



Units of Force 

Newton 

N  =  kgm/s2  

1  N

Note to Remember:  

1 Newton    Weight of a bar of chocolate (100 g)  



THE MOMENT [Das Moment] 

Note to remember: 

The moment M = F  a is equivalent to a force couple (F, a). 

A moment is the cause for angular acceleration or angular de-
formation (Torsion, Bending) of a body. 

 

F 

F 
a 

Screw 

F 

F 

Blade 

 
Slotted screw with 

screwdriver blade  
M = Fa 

Force Couples (F, a)  Moment M 



Static Equilibrium 

Important: 

First free-body diagram (FBD), then equilibrium! 

For 2D Problems max. 3 equations for each FBD: 

(For 3D Problems max. 6 equations for each FBD) 

 

F 

F 

10 N 

Free-body diagram 

(FBD)  

The sum of all forces in x-direction equals zero: 

 

The sum of all forces in y-direction equals zero: 

 

The sum of Moments with respect to P equals zero: 

0...
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Recipe for Solving Problems in Statics 

Step 1: Model building.  Generate a simplified replacement model 

(diagram with geometry, forces, constraints).  

Step 2: Cutting, Free-body diagram.  Cut system and develop 

free-body diagrams.  Include forces and moments at cut, as well 

as weight. 

Step 3: Equilibrium equations.  Write the force- and moment 

equilibrium equations (only for free-body diagrams).  

Step 4: Solve the equations.  One can only solve for as many 

unknowns as equations, at most. 

Step 5: Display results, explain, confirm with experimental 

comparisons.   Are the results reasonable? 



STRESSES 

500 N

Note to Remember: 

Stress  =  „smeared“ force 

Stress  =  Force per Area   or    = F/A 

… to account for the loading of the material ! 



 

F 

1 

2 

Tensile bar 

P 

 

1 

Cut 1: 

 Normal stresses 1 

P 

 

2 2 

Cut 2: 

 Normal 2 and  

shear stresses 2 

P 

Normal and Shear Stresses 



Note to Remember: 

First, you must choose a point and a cut through the point, 

then you can specify (type of) stresses at this point in the 

body. 

Normal stresses (tensile and compressive stress) are 

oriented perpendicular to the cut-surface. 

Shear stresses lie tangential to the cut-surface. 

Stress 



General 3D Stress State 

... in a point of the body: 

 

 3 stress components in one cut (normal stress, 2x  shear stress ) 

  times 

 3 cuts 

  result in 

 9 stress components, but only  

 6 of these components will be independent (eq. of shear stresses) 

The „stress tensor“ 
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6 Components 

Der „Spannungstensor“ 

General 3D Stress State 



Problem:   

 How to produce nice Pictures? 

 Which component should I use? 

 Do I need 6 pictures at the same time? 

 

So called „Invariants“ are „smart mixtures“ of the 
components 
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Strains 

• Global, (external) strains 

 

 

• Local, (internal) strains 

Distortional Strain in  
a fracture callus 

Units of Strain 

without a unit 

1 

1/100 = % 

1/1.000.000 = με (micro strain) 

= 0,0001 % 

Gap 

0lengthOriginal

lengthinChange
:

L

L


Finite element model 
of the fracture callus 



Definition of the Local Strain State 

undeformed deformed 
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Strain 

Note to Remember: 

 Strain is relative change in length (and shape) 

 Strain  =  Change in length / Original length 



Material Laws 

Linear-Elastic, Isotropic Material Law: 

Two of the following three parameters are necessary: 

Young's Modulus E  (Elastic Modulus) [Elastizitäts-Modul] 

Shear Modulus G  [Schubmodul] 

Poisson's ratio   [Querkontraktionszahl] 

Complex Material Laws: 

• Non-linear (a) 

• Non-elastic, plastic (b) 

• Visco-elastic, Type: internal damping (c) 

• Visco-elastic, Type: memory effect (c) 

• Anisotropy 

... relation between stresses and strains 

 Stress σ 

Strain ε 

degressive 

progressive linear 

a) 

 Stress σ 

Strain ε 

Release 

Loading 

b) 

 

Loading 

Release 

Stress σ 

Strain ε c) 



Local damage 

ISO- 

Bonescrew 

Optimiezed 

screw 

Example: Plastic Strain 
 

Stress σ 

Strain ε 

Ideal  

elastic-plastic 



 
Stress σ 

Strain ε 

linear 

 E

Linear stress-strain relation 

Isotropic vs. Anisotropic (linear elastic) 

 E (81 Param.) 

• Full 34 material properties tensor of 4th order (81 Param.) 

• Equality of shear stresses (Boltzmann Continua) and strains:  (36 Param.) 

• Reciprocity Theorem from Maxwell    fully anisotropic:  (21 Param.) 

• Orthotropic: (9 Param.) 

• Transverse isotropic: (5 Param.) 

• Full isotropic: (2 Param.) 

 E (36 Param.) 



E   -  Young‘s modulus 

   -  Poisson‘s ratio  (0 ... 0.5) 

G   -  Shear modulus 

K   -  Bulk modulus 

μ, λ -  Lame Constants  
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Simple Load Cases 

for 1D objects 



1  Tension and Compression 

Tensile rod (tensile regidity EA) 

L0 d0 d0-d

F

L

A



 

 Unloaded Loaded Cut 
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Global behavior, stiffness 
 
 
 
 
 
Stresses in transverse cut 
 
 
 
 A

F
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Shear 

Scherstift (Schersteifigkeit GA) 
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 Unloaded Loaded Cut     
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Global behavior, stiffness 
 
 
 
 
 
Stresses in transverse cut 
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Bending (Cantilever beam) 

 

 

M 

F 
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Tensile stress 

Neutrale line 

x 
z 

Shear 
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Compress.  str. 

Cantilever beam (Bending regidity EIa, Length L)         Cut  

Global behavior,  compliance 
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     (normal stress) 
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Torsion 

Torsional rod (torsional regidity GIT) 
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R
τ

 

 Length L, radius r                     Cut 

 

L

GI
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Global behavior, stiffness 
 
 
 
 
 
Stresses in transverse cut 
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Theory of the 

Finite Element Method 
using a ‘super simple’ example 

Hier geht 
es weiter! 



Example: Tensile Rod 

Given: 

Rod with … 

• Length L 

• Cross-section A (constant) 

• E-modulus E (constant) 

• Force F (axial) 

• Upper end fixed 
 

To determine: 

Deformation of the loaded rod: 

Displacement function u(x) 

x 

Unloaded 
(Reference state) 

EA, L 

F 

u(x) 

Loaded 

 



 DGl:   (EA u‘)‘ = 0 

Generate the Differential Equation 

1. Kinematics:   = u‘ 

2. Material:   = E     N = EAu‘ 

3. Equilibrium: N‘ = 0 

N(x) 

N(x+dx) 

x 

x+dx 

Differential 

Element 

(infinitesimale 

Higth dx) 

A) Classical Solution (Method of „infinite“ Elements) 

u‘‘ = 0 

If  EA = const  then 

x 

EA, L 

F 

u(x) 

Unloaded 
(Reference state) 

Loaded 

 



Solve the Differential Equation 

 u‘‘(x) = 0 

Integrate 2 times: u‘(x)  = C1 

 u(x)   = C1*x + C2   (General Solution) 

 

Adjust to Boundary Conditions 

Top (Fixation): u(0) = 0   C2 = 0 

Bottom (open, Force): N(L) = F   u‘(L) = F/(EA) 

    C1 = F/EA 

Adjusted Solution 

 u(x)   = (F/EA)*x 

A) Classical Solution (Method of „infinite“ Elements) 

F 



B) Solution with FEM 

F 

Element A 

L1 , EA 

Node 1 

Node 2 

Node 3 

Element B 

L2 , EA 

uA(xA) 

uB(xB) 

uA(xA) 

uB(xB) 

xA 

xB 

Unloaded: 
(Reference condition) 

Loaded: 

 

u1 

u2 

u3 

Ansatz functions (linear)  

for the unknown  

displacements u 

Discretization:  We divide the rod into (only) two finite (= not infinitesimal small) 

Elements.  The Elements are connected at their nodes. 
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The unknown displacement function of the entire rod is described with a series of simple (linear) ansatz 

functions (see figure).  This is the basic concept of FEM. 

The remaining unknowns are the three “nodal displacements” û1, û2, û3 and a no longer a whole function 

u(x).  Now we introduce the so-called “virtual displacements (VD)“.   These are additional, virtual, 

arbitrary displacements δû1, δû2, δû3.  Basically: we “waggle” the nodes a bit. 

Now the Principle of Virtual Displacements (PVD) applies:  A mechanical system is in equilibrium 

when the total work (i.e. elastic minus external work) due to the virtual displacements consequently 

disappears. 
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With this principle we unfortunately have only one equation for the three unknown displacements  û1, 

û2, û3 .  What a shame!  However, there is a trick… 

For  our simple example we can apply: 

virt. elastic work =   normal force N  times VD 

virt. external work  =   external force F  times VD 

The normal force N can be replaced by the expression EA/L times the element elongation.  Element 

elongation again can be expressed by a difference of the nodal displacements: 



The virtual  displacements can be chosen independently of one another.  For 

instance all except one can be zero.  Then the term within the bracket next to this not zero VD 

has to be zero, in order to fulfill the equation.  However, as we can chose the VD we want and 

also  another VD could be chosen as the only non-zero value, consequently all three brackets 

must individually be zero. We get three equations. Juhu! 
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Abbreviated we write: 

… which we can also write down in matrix form: 
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Or in short: 

This is the classical fundamental equation of a structural mechanics, linear FE-analysis.  A 

linear system of equations for the unknown nodal displacements 

K -  Stiffness matrix 

û -  Vector of the unknown nodal displacement 

F -  Vector of the nodal forces 

0ˆ
1 u

Because the virtual displacements also have to fulfill the boundary conditions we have  δû1 = 0.  

Therefore we need to eliminate the first line in the system of equations, as this equation does 

no longer need to be fulfilled.  The first column of the matrix can also be removed, as these 

elements are in any case multiplied by zero.  So it becomes … 
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We still have to account for the boundary conditions.  The rod is fixed at the top end.  As a 

consequence node 1 cannot be displaced: 
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We solve the system of equations and obtain the nodal displacements 

F
EA
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 32
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Here the FE-solution corresponds exactly with the (existing) analytical solution.  In a more 

complex example this would not be the case.   

Generally, it applies that the convergence of the numerical solution with the exact solution 

continually improves with an increasing number of finite elements.  For extremely 

complicated problems there is no longer an analytical solution; for such cases one needs 

FEM! 

From the nodal displacements one can also determine strains and stresses in a 

subsequent calculation.  In our example strains and stresses stay constant within the 

elements. 
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Strains 

Finished! 

u(x)   = (F/EA)*x 
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The essential steps and ideas of FEM are thus: 

• Discretization: Division of the spatial domain into finite elements 

• Choose simple ansatz functions (polynomials) for the unknown variables within the 

elements.  This reduces the problem to a finite number of unknowns. 

• Write up a mechanical principle (e.g. PVD, the mathematician says “weak formulation” of 

the PDE) and 

• From this derive a system of equations for the unknown nodal variables 

• Solve the system of equations 

Summary 

Many of these steps will no longer be apparent when using a commercial FE program.  With 

the selection of an analysis and an element type the underlying PDE and the ansatz functions 

are implicitly already chosen.  The mechanical principle was only being used during the 

development of the program code in order to determine the template structure of the stiffness 

matrix.  During the solution run the program first creates the(big) linear system of equations 

based on that known template structure and than solves the system in terms of nodal 

displacements.  



General Hints and Warnings 

 

• FEA is a tool, not an solution 

 

• Take care about nice pictures („GiGo“) 

 

• Parameter 

     needs experiments 

• Verification 

 

• FE models are case (question) specific 

 



Literature and Links reg. FEM 

Books: 

 

• Zienkiewicz, O.C.: „Methode der finiten Elemente“; Hanser 1975 (engl. 2000).  

The bible of FEM (German and English) 

 

• Bathe, K.-J.: „Finite-Elemente-Methoden“; erw. 2. Aufl.; Springer 2001   

Textbook (theory) 

 

• Dankert, H. and Dankert, J.: „Technische Mechanik“; Statik, Festigkeitslehre, 

Kinematik/Kinetik, mit Programmen; 2. Aufl.; Teubner, 1995.  

German mechanics textbook incl. FEM, with nice homepage 

http://www.dankertdankert.de/ 

 

• Müller, G. and Groth, C.: „FEM für Praktiker, Band 1: Grundlagen“, mit 

ANSYS/ED-Testversion (CD). (Band 2: Strukturdynamik; Band 3: 

Temperaturfelder)  

ANSYS Intro with examples (German) 

 

• Smith, I.M. and Griffiths, D.V.: „Programming the Finite Element Method“  

From engineering introduction down to programming details (English) 

 

• Young, W.C. and Budynas, G.B: „Roark’s Formulas for Stress and Strain “  

Solutions for many simplified cases of structural mechanics (English) 

 

Links: 

 

• Z88  Free FE-Software:  http://z88.uni-bayreuth.de/ 

http://www.dankertdankert.de/
http://z88.uni-bayreuth.de/
http://z88.uni-bayreuth.de/
http://z88.uni-bayreuth.de/

