Computational Fluid Dynamics

Theory, Numerics, Modelling

Lucas Engelhardt

Computational Biomechanics

Summer Term 2017

03.07.2017

Fluid phase system

- Density ρ (1d)
- Velocity \vec{u} (3d)

03.07.2017

Fluid phase system

- Density ρ (1d)
- Velocity \vec{u} (3d)
- Pressure *p* (1d)

- Density ρ (1d)
- Velocity \vec{u} (3d)
- Pressure *p* (1d)
- Energy *e* (1d)
- Temperature T (1d)

State variables:

- Density ρ (1d)
- Velocity \vec{u} (3d)
- Pressure *p* (1d)
- Energy *e* (1d)
- Temperature T (1d)

Physical laws:

State variables:

- Density ρ (1d)
- Velocity \vec{u} (3d)
- Pressure p (1d)
- Energy *e* (1d)
- Temperature T (1d)

Physical laws:

- Mass conservation
- Momentum conservation
- Energy conservation

State variables:

- Density ρ (1d)
- Velocity \vec{u} (3d)
- Pressure p (1d)
- Energy *e* (1d)
- Temperature T (1d)

Physical laws:

- Mass conservation
- Momentum conservation
- Energy conservation
- Equation of state

Example for the equations of state:

$$p = \rho R_s T$$
 and $e = c_{\nu} T$

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{\Omega(t)} f(x,t) \, \mathrm{d}\Omega = \int_{\Omega(t)} \left\{ \frac{\partial f}{\partial t}(x,t) + \nabla \cdot (f \, \vec{u}) \right\} \, \mathrm{d}\Omega$$

$$\frac{\mathrm{d}}{\mathrm{d}t} \int\limits_{\Omega(t)} f(x,t) \, \mathrm{d}\Omega = \int\limits_{\Omega(t)} \left\{ \frac{\partial f}{\partial t}(x,t) + \nabla \cdot (f \, \vec{u}) \right\} \, \mathrm{d}\Omega$$

Look at the mass m inside of an arbitrary volume $\Omega(t)$

$$\frac{\mathrm{d}m}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t} \int_{\Omega(t)} \rho \, \mathrm{d}\Omega$$

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{\Omega(t)} f(x,t) \, \mathrm{d}\Omega = \int_{\Omega(t)} \left\{ \frac{\partial f}{\partial t}(x,t) + \nabla \cdot (f \, \vec{u}) \right\} \, \mathrm{d}\Omega$$

Look at the mass m inside of an arbitrary volume $\Omega(t)$

$$\frac{\mathrm{d}m}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t} \int\limits_{\Omega(t)} \rho \, \mathrm{d}\Omega \stackrel{\mathrm{rtt}}{=} \int\limits_{\Omega(t)} \left\{ \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \, \vec{u} \,) \right\} \, \mathrm{d}\Omega$$

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{\Omega(t)} f(x,t) \, \mathrm{d}\Omega = \int_{\Omega(t)} \left\{ \frac{\partial f}{\partial t}(x,t) + \nabla \cdot (f \, \vec{u}) \right\} \, \mathrm{d}\Omega$$

Look at the mass m inside of an arbitrary volume $\Omega(t)$

$$\frac{\mathrm{d}m}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t} \int_{\Omega(t)} \rho \, \mathrm{d}\Omega \stackrel{\mathrm{rtt}}{=} \int_{\Omega(t)} \left\{ \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \, \vec{u}) \right\} \, \mathrm{d}\Omega \stackrel{!}{=} 0$$

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{\Omega(t)} f(x,t) \, \mathrm{d}\Omega = \int_{\Omega(t)} \left\{ \frac{\partial f}{\partial t}(x,t) + \nabla \cdot (f \, \vec{u}) \right\} \, \mathrm{d}\Omega$$

Look at the mass m inside of an arbitrary volume $\Omega(t)$

$$\frac{\mathrm{d}\boldsymbol{m}}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t} \int\limits_{\Omega(t)} \rho \; \mathrm{d}\Omega \stackrel{\mathit{rtt}}{=} \int\limits_{\Omega(t)} \left\{ \frac{\partial \rho}{\partial t} + \nabla \cdot \left(\rho \, \vec{u} \, \right) \right\} \; \mathrm{d}\Omega \stackrel{!}{=} 0$$

Continuity equation:

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \, \vec{u}\,) = 0$$

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{\Omega(t)} f(x,t) \, \mathrm{d}\Omega = \int_{\Omega(t)} \left\{ \frac{\partial f}{\partial t}(x,t) + \nabla \cdot (f \, \vec{u}) \right\} \, \mathrm{d}\Omega$$

Look at the momentum \vec{p} inside of an arbitrary volume $\Omega(t)$

$$\frac{\mathrm{d}\vec{p}}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t} \int\limits_{\Omega(t)} \rho \vec{u} \; \mathrm{d}\Omega \stackrel{\mathit{rtt}}{=} \int\limits_{\Omega(t)} \left\{ \frac{\partial \rho \vec{u}}{\partial t} + \nabla \cdot \left(\rho \, \vec{u} \, \vec{u} \, \right) \right\} \; \mathrm{d}\Omega =$$

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{\Omega(t)} f(x,t) \, \mathrm{d}\Omega = \int_{\Omega(t)} \left\{ \frac{\partial f}{\partial t}(x,t) + \nabla \cdot (f \, \vec{u}) \right\} \, \mathrm{d}\Omega$$

Look at the momentum \vec{p} inside of an arbitrary volume $\Omega(t)$

$$\frac{\mathrm{d}\vec{p}}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t} \int_{\Omega(t)} \rho \vec{u} \, \mathrm{d}\Omega \stackrel{\mathit{rtt}}{=} \int_{\Omega(t)} \left\{ \frac{\partial \rho \vec{u}}{\partial t} + \nabla \cdot (\rho \, \vec{u} \, \vec{u}) \right\} \, \mathrm{d}\Omega = \vec{F}$$

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{\Omega(t)} f(x,t) \, \mathrm{d}\Omega = \int_{\Omega(t)} \left\{ \frac{\partial f}{\partial t}(x,t) + \nabla \cdot (f \, \vec{u}) \right\} \, \mathrm{d}\Omega$$

Look at the momentum \vec{p} inside of an arbitrary volume $\Omega(t)$

$$\frac{\mathrm{d}\vec{p}}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t} \int\limits_{\Omega(t)} \rho \vec{u} \, \mathrm{d}\Omega \stackrel{\mathit{rtt}}{=} \int\limits_{\Omega(t)} \left\{ \frac{\partial \rho \vec{u}}{\partial t} + \nabla \cdot \left(\rho \, \vec{u} \, \vec{u} \, \right) \right\} \, \mathrm{d}\Omega = \vec{F}$$

Force:

$$F = F_{\Omega} + F_{\partial\Omega}$$

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{\Omega(t)} f(x,t) \, \mathrm{d}\Omega = \int_{\Omega(t)} \left\{ \frac{\partial f}{\partial t}(x,t) + \nabla \cdot (f \, \vec{u}) \right\} \, \mathrm{d}\Omega$$

Look at the momentum \vec{p} inside of an arbitrary volume $\Omega(t)$

$$\frac{\mathrm{d}\vec{\rho}}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t} \int\limits_{\Omega(t)} \rho \vec{u} \, \mathrm{d}\Omega \stackrel{\mathit{rtt}}{=} \int\limits_{\Omega(t)} \left\{ \frac{\partial \rho \vec{u}}{\partial t} + \nabla \cdot \left(\rho \, \vec{u} \, \vec{u} \, \right) \right\} \, \mathrm{d}\Omega = \vec{F}$$

Force:

$$F = F_{\Omega} + F_{\partial \Omega} = \int_{\Omega(t)} \rho \, \vec{f} \, d\Omega + \int_{\partial \Omega(t)} \underline{\underline{\sigma}} \, \vec{n} \, dS$$

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{\Omega(t)} f(x,t) \, \mathrm{d}\Omega = \int_{\Omega(t)} \left\{ \frac{\partial f}{\partial t}(x,t) + \nabla \cdot (f \, \vec{u}) \right\} \, \mathrm{d}\Omega$$

$$\frac{\mathrm{d}}{\mathrm{d}t}\int\limits_{\Omega(t)} \left\{ \frac{1}{2}\rho \left| \vec{u} \right|^2 + \rho e \right\} \; \mathrm{d}\Omega$$

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{\Omega(t)} \left\{ \frac{1}{2} \rho \, |\vec{u}|^2 + \rho \mathbf{e} \right\} \, \mathrm{d}\Omega = \int_{\Omega(t)} \left\{ \right. \qquad \left. \right\} \, \mathrm{d}\Omega$$

$$+ \int_{\partial\Omega(t)} \left\{ \right. \qquad \left. \right\} \, \mathrm{d}S$$

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{\Omega(t)} \left\{ \frac{1}{2} \rho \left| \vec{u} \right|^2 + \rho e \right\} \, \mathrm{d}\Omega = \int_{\Omega(t)} \left\{ \rho \vec{f} \cdot \vec{u} \right\} \, \mathrm{d}\Omega$$
$$+ \int_{\partial \Omega(t)} \left\{ \right\} \, \mathrm{d}S$$

According to:

• volume force: $\int_{\Omega(t)} \rho \ \vec{f} \cdot \vec{u} \ d\Omega$

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{\Omega(t)} \left\{ \frac{1}{2} \rho \left| \vec{u} \right|^2 + \rho e \right\} \, \mathrm{d}\Omega = \int_{\Omega(t)} \left\{ \rho \vec{f} \cdot \vec{u} + \rho \, Q \right\} \, \mathrm{d}\Omega$$
$$+ \int_{\partial \Omega(t)} \left\{ \right\} \, \mathrm{d}S$$

According to:

- volume force: $\int_{\Omega(t)} \rho \ \vec{f} \cdot \vec{u} \ d\Omega$
- energy source: $\int_{\Omega(t)} \rho \ Q \ d\Omega$

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{\Omega(t)} \left\{ \frac{1}{2} \rho |\vec{u}|^2 + \rho e \right\} d\Omega = \int_{\Omega(t)} \left\{ \rho \vec{f} \cdot \vec{u} + \rho Q \right\} d\Omega + \int_{\partial\Omega(t)} \left\{ \left(\underline{\underline{\sigma}} \ \vec{n} \right) \cdot \vec{u} \right\} dS$$

According to:

- volume force: $\int_{\Omega(t)} \rho \ \vec{f} \cdot \vec{u} \ d\Omega$
- energy source: $\int_{\Omega(t)} \rho \ Q \ d\Omega$
- surface force: $\int_{\partial \Omega(t)} (\underline{\sigma} \ \vec{n}) \cdot \vec{u} \ dS$

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{\Omega(t)} \left\{ \frac{1}{2} \rho \, |\vec{u}|^2 + \rho e \right\} \, \mathrm{d}\Omega = \int_{\Omega(t)} \left\{ \rho \vec{f} \cdot \vec{u} + \rho \, Q \right\} \, \mathrm{d}\Omega + \int_{\partial\Omega(t)} \left\{ \left(\underline{\underline{e}} \, \vec{n} \right) \cdot \vec{u} + \kappa \, \nabla \, T \cdot \vec{n} \right\} \, \mathrm{d}S$$

According to:

- volume force: $\int_{\Omega(t)} \rho \ \vec{f} \cdot \vec{u} \ d\Omega$
- energy source: $\int_{\Omega(t)} \rho \ Q \ d\Omega$
- surface force: $\int_{\partial \Omega(t)} (\underline{\sigma} \ \vec{n}) \cdot \vec{u} \ dS$
- heat flux: $\int_{\partial\Omega(t)} \kappa \nabla T \cdot \vec{n} \, dS$

mass conservation

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \, \vec{u}\,) = 0$$

mass conservation

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \, \vec{u}\,) = 0$$

momentum conservation

$$\rho \frac{\partial \vec{u}}{\partial t} + (\rho \, \vec{u} \cdot \nabla) \, \vec{u} = \rho \, \vec{f} + \nabla \cdot \underline{\underline{\sigma}}$$

mass conservation

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \, \vec{u}\,) = 0$$

momentum conservation

$$\rho \frac{\partial \vec{u}}{\partial t} + (\rho \, \vec{u} \cdot \nabla) \, \vec{u} = \rho \, \vec{f} + \nabla \cdot \underline{\underline{\sigma}}$$

energy conservation

$$\rho \frac{\partial e}{\partial t} = \rho \ Q + \nabla \cdot (\kappa \ \nabla \ T) + \nabla \cdot (\underline{\underline{\sigma}} \ \underline{\vec{u}}) - (\nabla \cdot \underline{\underline{\sigma}}) \ \underline{\vec{u}}$$

mass conservation

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \, \vec{u}\,) = 0$$

momentum conservation

$$\rho \frac{\partial \vec{u}}{\partial t} + (\rho \, \vec{u} \cdot \nabla) \, \vec{u} = \rho \, \vec{f} + \nabla \cdot \underline{\underline{\sigma}}$$

energy conservation

$$\rho \frac{\partial e}{\partial t} = \rho \ Q + \nabla \cdot (\kappa \ \nabla \ T) + \nabla \cdot (\underline{\underline{\sigma}} \ \underline{\vec{u}}) - (\nabla \cdot \underline{\underline{\sigma}}) \ \underline{\vec{u}}$$

equation of state (e.g. ideal gas equation)

Seite 8

The stress tensor $\underline{\underline{\sigma}}$:

The stress tensor $\underline{\underline{\sigma}}$:

$$\underline{\underline{\sigma}} = -p \cdot \mathbb{1} + \underline{\underline{\tau}}$$
 with $\underline{\underline{\tau}}$ is the viscous stress tensor

The stress tensor $\underline{\underline{\sigma}}$:

$$\underline{\underline{\sigma}} = -p \cdot \mathbb{1} + \underline{\underline{\tau}} \qquad \text{with } \underline{\underline{\tau}} \text{ is the viscous stress tensor}$$

The viscosity term:

General viscous stress tensor:

$$\underline{\underline{\tau}} = F(D(t,x),t)$$

The stress tensor $\underline{\sigma}$:

$$\underline{\underline{\sigma}} = -p \cdot \mathbbm{1} + \underline{\underline{\tau}}$$
 with $\underline{\underline{\tau}}$ is the viscous stress tensor

The viscosity term:

General viscous stress tensor:

$$\underline{\underline{\tau}} = F(D(t,x),t)$$

Strain rate tensor:

$$D := rac{\partial \underline{\epsilon}}{\partial t} = rac{1}{2} \left[\left(
abla \; ec{u}
ight) + \left(
abla \; ec{u}
ight)^T
ight]$$

Behaviour of the viscous stress tensor:

$$\underline{\underline{\tau}} = F(D(t,x),t)$$

Behaviour of the viscous stress tensor:

$$\underline{\underline{\tau}} = F(D(t,x),t)$$

Time-dependent

 $\label{time-independent} \textbf{Time-independent}$

Behaviour of the viscous stress tensor:

$$\underline{\underline{\tau}} = F(D(t,x),t)$$

Time-dependent

Time-independent

increase with time printer ink, synovial fluid

$$\underline{\underline{\tau}} = F(D(t,x),t)$$

Time-dependent

Time-independent

- increase with time printer ink, synovial fluid
- decrease with time gelatin gels, yogurt

$$\underline{\underline{\tau}} = F(D(t,x),t)$$

Time-dependent

- increase with time printer ink, synovial fluid
- decrease with time gelatin gels, yogurt

Time-independent

shear thickening corn starch in water

$$\underline{\underline{\tau}} = F(D(t,x),t)$$

Time-dependent

- increase with time printer ink, synovial fluid
- decrease with time gelatin gels, yogurt

Time-independent

03.07.2017

- shear thickening corn starch in water
- shear thinning ketchup, blood

$$\underline{\underline{\tau}} = F(D(t,x),t)$$

Time-dependent

- increase with time printer ink, synovial fluid
- decrease with time gelatin gels, yogurt

Time-independent

- shear thickening corn starch in water
- shear thinning ketchup, blood
- generalized newonian fluids water, blood plasma

$$\underline{\tau} = F(D(t, x), t)$$

Time-dependent

- increase with time printer ink, synovial fluid
- decrease with time gelatin gels, yogurt

Time-independent

- shear thickening corn starch in water
- shear thinning ketchup, blood
- generalized newonian fluids water, blood plasma

Newtonian fluid:

$$\underline{\underline{\tau}} = \mu \cdot \left[(\nabla \ \vec{u}) + (\nabla \ \vec{u})^T \right] - \left(\frac{2}{3} \mu \nabla \cdot \vec{u} \right) \ \mathbb{1}$$

with the dynamic viscosity μ

$$0 = \frac{\mathrm{d}\rho}{\mathrm{d}t}(x,t)$$

$$0 = \frac{\mathrm{d}\rho}{\mathrm{d}t}(x,t) = \frac{\partial}{\partial t}\rho(x,t) + \nabla\rho(x,t) \cdot \vec{u}$$

$$0 = \frac{\mathrm{d}\rho}{\mathrm{d}t}(x,t) = \frac{\partial}{\partial t}\rho(x,t) + \nabla\rho(x,t) \cdot \vec{u}$$

Continuity equation:

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \, \vec{u} \,)$$

$$0 = \frac{\mathrm{d}\rho}{\mathrm{d}t}(x,t) = \frac{\partial}{\partial t}\rho(x,t) + \nabla\rho(x,t) \cdot \vec{u}$$

Continuity equation:

$$rac{\partial
ho}{\partial t} +
abla \cdot (
ho \, ec{u} \,) = rac{\partial
ho}{\partial t} +
abla
ho \cdot ec{u} +
ho
abla \cdot ec{u}$$

$$0 = \frac{\mathrm{d}\rho}{\mathrm{d}t}(x,t) = \frac{\partial}{\partial t}\rho(x,t) + \nabla\rho(x,t) \cdot \vec{u}$$

Continuity equation:

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \, \vec{u}) = \frac{\partial \rho}{\partial t} + \nabla \rho \cdot \vec{u} + \rho \nabla \cdot \vec{u}$$
$$= \rho \nabla \cdot \vec{u} = 0$$

• It follows: $\nabla \cdot \vec{u} = 0$ (divergency free velocity field)

$$0 = \frac{\mathrm{d}\rho}{\mathrm{d}t}(x,t) = \frac{\partial}{\partial t}\rho(x,t) + \nabla\rho(x,t) \cdot \vec{u}$$

Continuity equation:

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \, \vec{u}) = \frac{\partial \rho}{\partial t} + \nabla \rho \cdot \vec{u} + \rho \nabla \cdot \vec{u}$$
$$= \rho \nabla \cdot \vec{u} = 0$$

- It follows: $\nabla \cdot \vec{u} = 0$ (divergency free velocity field)
- Viscous stress tensor: (Newtonian fluid)

$$\underline{\underline{\tau}} = \mu \cdot \left[(\nabla \ \vec{u}) + (\nabla \ \vec{u})^T \right] - \left(\frac{2}{3} \mu \nabla \cdot \vec{u} \right) \mathbb{1}$$

From T = const. with $\frac{d}{dt}\rho = 0$ follows:

From T = const. with $\frac{d}{dt}\rho = 0$ follows:

① Pressure is given with $p \sim \rho$ (equation of state)

From T = const. with $\frac{d}{dt}\rho = 0$ follows:

- ① Pressure is given with $p \sim \rho$ (equation of state)
- ② Energy is a function of ρ and \vec{u} \Rightarrow the energy conservation contains no extra information

From T = const. with $\frac{d}{dt}\rho = 0$ follows:

- Pressure is given with $p \sim \rho$ (equation of state)
- ② Energy is a function of ρ and \vec{u} ⇒ the energy conservation contains no extra information

For a newtonian fluid we get the Navier-Stokes equations as

Navier-Stokes equations

$$\nabla \cdot \vec{u} = 0 \tag{1}$$

$$\rho \frac{\partial \vec{u}}{\partial t} + \rho (\vec{u} \cdot \nabla) \vec{u} = \rho \vec{f} - \nabla \rho + \mu \nabla \cdot \underline{\tau}$$
 (2)

Note: often, the kinematic viscosity $\nu := \frac{\mu}{\rho}$ is used if $\rho = const$

03.07.2017

Application to biofluid systems

- Human air system
 - Fluid-particle interaction
 - Fluid-structure interaction
 - Blood-air barrier

Application to biofluid systems

- Human air system
 - Fluid-particle interaction
 - Fluid-structure interaction
 - Blood-air barrier
- Human blood system
 - Oxygen transportation
 - Fluid-structure interaction
 - Transport of medicine

Application to biofluid systems

- Human air system
 - Fluid-particle interaction
 - Fluid-structure interaction
 - Blood-air barrier
- Human blood system
 - Oxygen transportation
 - Fluid-structure interaction
 - Transport of medicine

Break

5 min

mass conservation

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \, \vec{u}\,) = 0$$

mass conservation

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \, \vec{u}\,) = 0$$

momentum conservation

$$\rho \frac{\partial \vec{u}}{\partial t} + (\rho \, \vec{u} \cdot \nabla) \, \vec{u} = \rho \, \vec{f} + \nabla \cdot \underline{\underline{\sigma}}$$

mass conservation

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \, \vec{u}\,) = 0$$

momentum conservation

$$\rho \frac{\partial \vec{u}}{\partial t} + (\rho \, \vec{u} \cdot \nabla) \, \vec{u} = \rho \, \vec{f} + \nabla \cdot \underline{\underline{\sigma}}$$

energy conservation

$$\rho \frac{\partial e}{\partial t} = \rho \ Q + \nabla \cdot (\kappa \ \nabla \ T) + \nabla \cdot (\underline{\underline{\sigma}} \ \underline{\vec{u}}) - (\nabla \cdot \underline{\underline{\sigma}}) \ \underline{\vec{u}}$$

mass conservation

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \, \vec{u}\,) = 0$$

momentum conservation

$$\rho \frac{\partial \vec{u}}{\partial t} + (\rho \, \vec{u} \cdot \nabla) \, \vec{u} = \rho \, \vec{f} + \nabla \cdot \underline{\underline{\sigma}}$$

energy conservation

$$\rho \frac{\partial e}{\partial t} = \rho \ Q + \nabla \cdot (\kappa \ \nabla \ T) + \nabla \cdot (\underline{\underline{\sigma}} \ \underline{\vec{u}}) - (\nabla \cdot \underline{\underline{\sigma}}) \ \underline{\vec{u}}$$

equation of state (e.g. ideal gas equation)

From T = const. with $\frac{d}{dt}\rho = 0$ follows:

From T = const. with $\frac{d}{dt}\rho = 0$ follows:

 $\P \text{ Pressure is given with } p \sim \rho \text{ (equation of state)}$

From T = const. with $\frac{d}{dt}\rho = 0$ follows:

- $\textbf{ } \textbf{ Pressure is given with } \textbf{ } p \sim \rho \text{ (equation of state)}$
- ② Energy is a function of ρ and \vec{u} \Rightarrow the energy conservation contains no extra information

From T = const. with $\frac{d}{dt}\rho = 0$ follows:

- **①** Pressure is given with $p \sim \rho$ (equation of state)
- ② Energy is a function of ρ and \vec{u} \Rightarrow the energy conservation contains no extra information

For a newtonian fluid we get the Navier-Stokes equations as

Navier-Stokes equations

$$\nabla \cdot \vec{u} = 0 \tag{3}$$

$$\frac{\partial \vec{u}}{\partial t} + (\vec{u} \cdot \nabla) \ \vec{u} = \vec{f} - \frac{1}{\rho} \nabla \rho + \nu \nabla \cdot \underline{\tau}$$
 (4)

Note: often, the kinematic viscosity $\nu := \frac{\mu}{\rho}$ is used

Navier-Stokes momentum equation

$$rac{\partial ec{u}}{\partial t} + (ec{u} \cdot
abla) \ ec{u} = ec{f} - rac{1}{
ho}
abla
ho + rac{\mu}{
ho}
abla \cdot \underline{\tau}$$

Navier-Stokes momentum equation

$$rac{\partial ec{u}}{\partial t} + (ec{u} \cdot
abla) \ ec{u} = ec{f} \ - rac{1}{
ho}
abla
ho \ + rac{\mu}{
ho}
abla \cdot \underline{ au}$$

Define characteristic time T, length L and velocity U with $L = U \cdot T$:

$$au = rac{t}{T}$$
 $\vec{v} = rac{\vec{u}}{U}$ $\vec{\xi} = rac{\vec{x}}{I}$

Navier-Stokes momentum equation

$$rac{\partial \vec{u}}{\partial t} + (\vec{u} \cdot \nabla) \ \vec{u} = \vec{f} \ - rac{1}{
ho} \nabla \rho \ + rac{\mu}{
ho} \nabla \cdot \underline{\tau}$$

Define characteristic time T, length L and velocity U with $L = U \cdot T$:

$$\tau = \frac{t}{T} \qquad \vec{v} = \frac{\vec{u}}{U} \qquad \vec{\xi} = \frac{\vec{x}}{U}$$

Dimensionless representation of the momentum equation:

$$rac{\partial ec{v}}{\partial au} + (ec{v} \cdot
abla) \ ec{v} = rac{L}{U^2} ec{f} - rac{1}{
ho U^2}
abla
ho + rac{\mu}{
ho UL}
abla \cdot rac{ ilde{ ilde{ ilde{ ilde{T}}}}{ec{ ilde{V}}} = rac{\mu}{
ho UL}
abla \cdot rac{ ilde{ ilde{T}}}{ec{ ilde{V}}} = rac{\mu}{
ho UL}
abla \cdot rac{ ilde{ ilde{T}}}{ec{ ilde{V}}} = rac{\mu}{
ho UL}
abla \cdot rac{ ilde{T}}{ec{V}} = rac{\mu}{
ho UL}
abla \cdot rac{ ilde{T}}{
ho UL}
abla \cdot rac{ ilde{T}}{
ho UL}
abla \cdot rac{ ilde{T}}{
ho UL}
abla \cdot rac{$$

Navier-Stokes momentum equation

$$\frac{\partial \vec{u}}{\partial t} + (\vec{u} \cdot \nabla) \ \vec{u} = \vec{f} \ - \frac{1}{\rho} \nabla p \ + \frac{\mu}{\rho} \nabla \cdot \underline{\underline{\tau}}$$

Define characteristic time T, length L and velocity U with $L = U \cdot T$:

$$au = rac{t}{T}$$
 $\vec{v} = rac{\vec{u}}{U}$ $\vec{\xi} = rac{\vec{x}}{L}$

Dimensionless representation of the momentum equation:

$$rac{\partial ec{v}}{\partial au} + (ec{v} \cdot
abla) \ ec{v} = rac{L}{U^2} ec{f} - rac{1}{
ho U^2}
abla
ho + rac{\mu}{
ho UL}
abla \cdot rac{ ilde{ ilde{ ilde{ ilde{T}}}}{ec{ ilde{V}}} = rac{\mu}{
ho UL}
abla \cdot rac{ ilde{ ilde{T}}}{ec{ ilde{V}}} = rac{\mu}{
ho UL}
abla \cdot rac{ ilde{ ilde{T}}}{ec{ ilde{V}}} = rac{\mu}{
ho UL}
abla \cdot rac{ ilde{T}}{ec{V}} = rac{\mu}{
ho UL}
abla \cdot rac{ ilde{T}}{
ho UL}
abla \cdot rac{ ilde{T}}{
ho UL}
abla \cdot rac{ ilde{T}}{
ho UL}
abla \cdot rac{$$

• dimensionless forcedensity $\vec{\kappa} := \frac{L}{II^2} \vec{f}$ (look for Froude number)

Navier-Stokes momentum equation

$$\frac{\partial \vec{u}}{\partial t} + (\vec{u} \cdot \nabla) \ \vec{u} = \vec{f} \ - \frac{1}{\rho} \nabla p \ + \frac{\mu}{\rho} \nabla \cdot \underline{\tau}$$

Define characteristic time T, length L and velocity U with $L = U \cdot T$:

$$au = rac{t}{T}$$
 $\vec{v} = rac{\vec{u}}{U}$ $\vec{\xi} = rac{\vec{x}}{L}$

Dimensionless representation of the momentum equation:

$$rac{\partial ec{v}}{\partial au} + (ec{v} \cdot
abla) \ ec{v} = rac{L}{U^2} ec{f} \ - rac{1}{
ho U^2}
abla
ho \ + rac{\mu}{
ho UL}
abla \cdot rac{ ilde{ au}}{ ilde{ au}}$$

- dimensionless forcedensity $\vec{\kappa} := \frac{L}{II^2} \vec{f}$ (look for Froude number)
- pressure rescaling $\tilde{p} := \frac{p}{aU^2}$ (NOTE: only for inc. fluid)

Diffusion term & Reynolds number:

$$\frac{\partial \vec{v}}{\partial \tau} + (\vec{v} \cdot \nabla) \vec{v} = \vec{\kappa} - \nabla \tilde{p} + \frac{\mu}{\rho U L} \nabla \cdot \tilde{\underline{\tau}}$$

Diffusion term & Reynolds number:

$$\frac{\partial \vec{v}}{\partial \tau} + (\vec{v} \cdot \nabla) \vec{v} = \vec{\kappa} - \nabla \tilde{p} + \frac{\mu}{\rho UL} \nabla \cdot \tilde{\underline{\tau}}$$

Definition of the Reynolds number:

$$Re := \frac{\textit{inertia forces}}{\textit{viscous forces}}$$

$$\frac{\partial \vec{v}}{\partial \tau} + (\vec{v} \cdot \nabla) \vec{v} = \vec{\kappa} - \nabla \tilde{p} + \frac{\mu}{\rho U L} \nabla \cdot \tilde{\underline{\tau}}$$

Definition of the Reynolds number:

$$Re := \frac{inertia\ forces}{viscous\ forces}$$

• inertia force:
$$F_{in} = \frac{\rho L^3 \cdot U}{T}$$
 (momentum transfer)

$$\frac{\partial \vec{v}}{\partial \tau} + (\vec{v} \cdot \nabla) \vec{v} = \vec{\kappa} - \nabla \tilde{p} + \frac{\mu}{\rho U L} \nabla \cdot \tilde{\underline{\tau}}$$

Definition of the Reynolds number:

$$Re := \frac{inertia\ forces}{viscous\ forces}$$

- inertia force: $F_{in} = \frac{\rho L^3 \cdot U}{T}$ (momentum transfer)
- viscous force: $F_{vis} = \mu L^2 \cdot \frac{U}{L}$ ("velocity diffusion")

$$\frac{\partial \vec{v}}{\partial \tau} + (\vec{v} \cdot \nabla) \vec{v} = \vec{\kappa} - \nabla \tilde{p} + \frac{\mu}{\rho U L} \nabla \cdot \tilde{\underline{\tau}}$$

Definition of the Reynolds number:

$$\textit{Re} := \frac{\textit{inertia forces}}{\textit{viscous forces}} = \frac{\rho \textit{UL}}{\mu}$$

- inertia force: $F_{in} = \frac{\rho L^3 \cdot U}{T}$ (momentum transfer)
- viscous force: $F_{vis} = \mu L^2 \cdot \frac{U}{L}$ ("velocity diffusion")

$$rac{\partial ec{v}}{\partial au} + (ec{v} \cdot
abla) \ ec{v} = ec{\kappa} \ -
abla ilde{p} \ + rac{\mu}{
ho UL}
abla \cdot ilde{ au}$$

Definition of the Reynolds number:

$$Re := \frac{\textit{inertia forces}}{\textit{viscous forces}} = \frac{\rho \textit{UL}}{\mu}$$

- inertia force: $F_{in} = \frac{\rho L^3 \cdot U}{T}$ (momentum transfer)
- viscous force: $F_{vis} = \mu L^2 \cdot \frac{U}{I}$ ("velocity diffusion")

Dimensionless Navier-Stokes equations

$$\nabla \cdot \vec{\mathbf{v}} = \mathbf{0} \tag{5}$$

$$\frac{\partial \vec{v}}{\partial \tau} + (\vec{v} \cdot \nabla) \ \vec{v} = \vec{\kappa} - \nabla \tilde{p} + \frac{1}{Re} \nabla \cdot \tilde{\underline{\tau}}$$
 (6)

Pressure equation:

$$\frac{\partial \vec{v}}{\partial \tau} + (\vec{v} \cdot \nabla) \vec{v} = \vec{\kappa} - \nabla \tilde{p} + \frac{1}{Re} \nabla \cdot \tilde{\underline{\tau}}$$

Divergency free velocity field implies

$$\nabla \cdot \left(\frac{\partial \vec{v}}{\partial \tau} + (\vec{v} \cdot \nabla) \ \vec{v} \right) = \nabla \cdot \left(\vec{\kappa} \ - \nabla \tilde{p} \ + \frac{1}{Re} \nabla \cdot \tilde{\underline{\tau}} \right)$$

Pressure equation:

$$\frac{\partial \vec{v}}{\partial \tau} + (\vec{v} \cdot \nabla) \vec{v} = \vec{\kappa} - \nabla \tilde{p} + \frac{1}{Re} \nabla \cdot \tilde{\underline{\tau}}$$

Divergency free velocity field implies

$$\nabla \cdot \left(\frac{\partial \vec{v}}{\partial \tau} + (\vec{v} \cdot \nabla) \ \vec{v} \right) = \nabla \cdot \left(\vec{\kappa} \ - \nabla \tilde{p} \ + \frac{1}{Re} \nabla \cdot \tilde{\underline{\tau}} \right)$$

with $\frac{\partial}{\partial x} \nabla \cdot \vec{v} = 0$, we get the Poissin-Pressure equation:

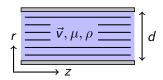
$$\Delta ilde{p} =
abla \cdot \left(ec{\kappa} \, - (ec{v} \cdot
abla) \, \, ec{v} \, + rac{1}{Re}
abla \cdot ilde{ au}
ight.$$

- \bullet If Re<<1, the diffusion time scale is much smaller as the time scale for momentum transportation
 - velocity field perturbations smooth out quickly
 - velocity field <u>tends</u> to be laminar

- If $Re \ll 1$, the diffusion time scale is much smaller as the time scale for momentum transportation
 - velocity field perturbations smooth out quickly
 - velocity field tends to be laminar
- If Re >> 1, momentum transportation is the main effect for the fluid flow description
 - velocity field perturbations increase quickly
 - velocity field tends to be turbulent

- If Re << 1, the diffusion time scale is much smaller as the time scale for momentum transportation
 - velocity field perturbations smooth out quickly
 - velocity field <u>tends</u> to be laminar
- If Re >> 1, momentum transportation is the main effect for the fluid flow description
 - velocity field perturbations increase quickly
 - velocity field tends to be turbulent

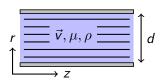
Example: (flow in pipe)



- If Re << 1, the diffusion time scale is much smaller as the time scale for momentum transportation
 - velocity field perturbations smooth out quickly
 - velocity field <u>tends</u> to be laminar
- If Re >> 1, momentum transportation is the main effect for the fluid flow description
 - velocity field perturbations increase quickly
 - velocity field tends to be turbulent

Example: (flow in pipe)

- Reynolds number: $Re = \frac{\rho d v_z}{\mu}$
- Observation: Julius Rotta (at 1950) $Re_{krit} \approx 2300$



Kolmogorov scales:

The smallest scales that influences the turbulent flow by dissipation effects.

Kolmogorov scales:

The smallest scales that influences the turbulent flow by dissipation effects.

Note:

To retain energy conservation at the numerical domain, one have to resolve also the dissipative scales in the Navier-Stokes equation!

Kolmogorov scales:

The smallest scales that influences the turbulent flow by dissipation effects.

Note:

To retain energy conservation at the numerical domain, one have to resolve also the dissipative scales in the Navier-Stokes equation!

The scales are given as: (ϵ is the average dissipation rate)

$$\textit{length}: \ \eta = \left(\frac{\mu^3}{\epsilon \, \rho^3}\right)^{\frac{1}{4}} \quad \textit{vel}: \ \textit{u}_{\eta} = \left(\frac{\mu}{\rho} \, \epsilon\right)^{\frac{1}{4}} \quad \textit{time}: \ \tau_{\eta} = \left(\frac{\mu}{\rho \, \epsilon}\right)^{\frac{1}{2}}$$

with

$$extit{Re}_{\eta} = rac{\eta \ extit{u}_{\eta} \ \mu}{
ho} = 1$$

$$\epsilon \sim \frac{\textit{kinetic energy}}{\textit{time}}$$

$$\epsilon \sim \frac{\textit{kinetic energy}}{\textit{time}} \sim \frac{\textit{U}^2}{\textit{T}}$$

$$\epsilon \sim \frac{\textit{kinetic energy}}{\textit{time}} \sim \frac{\textit{U}^2}{\textit{T}} = \frac{\textit{U}^3}{\textit{L}}$$

$$\epsilon \sim rac{ ext{kinetic energy}}{ ext{time}} \sim rac{U^2}{T} = rac{U^3}{L}$$

Therefore we get the relation:

$$\frac{L}{\eta} = L \cdot \left(\frac{\mu^3}{\epsilon \, \rho^3}\right)^{-\frac{1}{4}} \sim L \cdot \left(\frac{U^3 \, \rho^3}{L \, \mu^3}\right)^{\frac{1}{4}}$$

Resolution problem:

Approximation of the dissipation rate (from large scales):

$$\epsilon \sim rac{ ext{kinetic energy}}{ ext{time}} \sim rac{U^2}{T} = rac{U^3}{L}$$

Therefore we get the relation:

$$\frac{L}{\eta} = L \cdot \left(\frac{\mu^3}{\epsilon \, \rho^3}\right)^{-\frac{1}{4}} \sim L \cdot \left(\frac{U^3 \, \rho^3}{L \, \mu^3}\right)^{\frac{1}{4}} = Re^{\frac{3}{4}}$$

Resolution problem:

Approximation of the dissipation rate (from large scales):

$$\epsilon \sim rac{ ext{kinetic energy}}{ ext{time}} \sim rac{U^2}{T} = rac{U^3}{L}$$

Therefore we get the relation:

$$\frac{L}{\eta} = L \cdot \left(\frac{\mu^3}{\epsilon \, \rho^3}\right)^{-\frac{1}{4}} \sim L \cdot \left(\frac{U^3 \, \rho^3}{L \, \mu^3}\right)^{\frac{1}{4}} = Re^{\frac{3}{4}}$$

Example: $(L \approx 10^3 \mathrm{m}$, $v \approx 1 \frac{\mathrm{m}}{\mathrm{s}}$, $\rho \approx 1.3 \frac{\mathrm{kg}}{\mathrm{m}^3}$, $\mu \approx 17.1 \ \mu \mathrm{Pa \cdot s})$

$$Re \approx 7.5 \cdot 10^9$$
 $\eta \approx 4 \cdot 10^{-5} \,\mathrm{m}$

Resolution problem:

Approximation of the dissipation rate (from large scales):

$$\epsilon \sim rac{ ext{kinetic energy}}{ ext{time}} \sim rac{U^2}{T} = rac{U^3}{L}$$

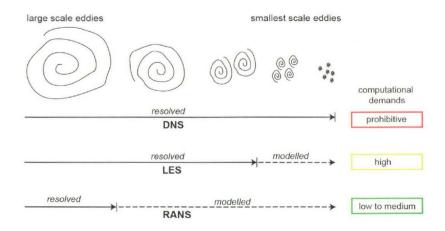
Therefore we get the relation:

$$\frac{L}{\eta} = L \cdot \left(\frac{\mu^3}{\epsilon \rho^3}\right)^{-\frac{1}{4}} \sim L \cdot \left(\frac{U^3 \rho^3}{L \mu^3}\right)^{\frac{1}{4}} = Re^{\frac{3}{4}}$$

Example:
$$(L\approx 10^{-3} {
m m}$$
 , $v\approx 0.1~{
m m\over s}$, $\rho\approx 1060~{
m kg\over m^3}$, $\mu\approx 3~{
m mPa\cdot s})$ $Re\approx 35$

$$\eta \approx 7 \cdot 10^{-5} \,\mathrm{m}$$

Simulation approaches:



Simulation approaches:

Direct numerical simulation (DNS):

Assumption that the flow inside of a volume element is purely laminar and no dissipation effect occurs. (Note: If this is not true, the energy conservation results in a different flow field.)

Simulation approaches:

Direct numerical simulation (DNS):

Assumption that the flow inside of a volume element is purely laminar and no dissipation effect occurs. (Note: If this is not true. the energy conservation results in a different flow field.)

Eddy dissipation modelling on small scales:

- Reynolds-Averaged Navier Stokes (RANS)
- Large-Eddy Simulation

$$v = \langle v \rangle + v'$$
 and $p = \langle p \rangle + p'$

with the mean value $\langle \cdot \rangle$ of \cdot and the fluctuating part \cdot' .

- Special cases: temporal or spatial averaging
- In general: $\langle f(\vec{x},t)\rangle = \lim_{N\to\infty} \sum_{n=1}^{N} f(\vec{x},t)$
- Fluctuating part: $\langle f' \rangle = 0$

- Special cases: temporal or spatial averaging
- In general: $\langle f(\vec{x},t)\rangle = \lim_{N\to\infty} \sum_{n=1}^{N} f(\vec{x},t)$
- Fluctuating part: $\langle f' \rangle = 0$

Reynolds equations:

$$\nabla \cdot \langle \vec{v} \rangle = 0$$

- Special cases: temporal or spatial averaging
- In general: $\langle f(\vec{x},t) \rangle = \lim_{N \to \infty} \sum_{n=1}^{N} f(\vec{x},t)$
- Fluctuating part: $\langle f' \rangle = 0$

Reynolds equations:

$$abla \cdot \langle ec{v}
angle = 0$$

$$\frac{\partial \left\langle \vec{v} \right\rangle}{\partial t} + \left(\left\langle \vec{v} \right\rangle \cdot \nabla \right) \, \left\langle \vec{v} \right\rangle = \vec{f} \, - \nabla \left\langle p \right\rangle \, + \frac{1}{\textit{Re}} \nabla \cdot \left\langle \underline{\tilde{\tau}} \right\rangle - \underbrace{\left\langle \left(\vec{v}' \cdot \nabla \right) \, \vec{v}' \right\rangle}_{\textit{correlation property}}$$

- Special cases: temporal or spatial averaging
- In general: $\langle f(\vec{x},t) \rangle = \lim_{N \to \infty} \sum_{n=1}^{N} f(\vec{x},t)$
- Fluctuating part: $\langle f' \rangle = 0$

Reynolds equations:

$$abla \cdot \langle ec{v}
angle = 0$$

$$\frac{\partial \left\langle ec{v} \right\rangle}{\partial t} + \left(\left\langle ec{v} \right\rangle \cdot \nabla \right) \, \left\langle ec{v} \right\rangle = ec{f} \, - \nabla \left\langle p \right\rangle \, + \frac{1}{Re} \nabla \cdot \left\langle \underline{\tilde{\tau}} \right\rangle - \underbrace{\left\langle \left(ec{v}' \cdot \nabla \right) \, ec{v}' \right\rangle}_{correlation \, property}$$

$$\nabla \cdot \left\langle \vec{v}' \vec{v}' \right\rangle = \nabla \cdot \left(\begin{array}{ccc} \left\langle v_x' v_x' \right\rangle & \left\langle v_x' v_y' \right\rangle & \left\langle v_x' v_z' \right\rangle \\ \left\langle v_y' v_x' \right\rangle & \left\langle v_y' v_y' \right\rangle & \left\langle v_y' v_z' \right\rangle \\ \left\langle v_z' v_x' \right\rangle & \left\langle v_z' v_y' \right\rangle & \left\langle v_z' v_z' \right\rangle \end{array} \right)$$

• Zero equation models $\nu_T = \xi^2 |\partial_\perp \langle \nu \rangle|$ (mixing length ξ)

- Zero equation models $\nu_T = \xi^2 |\partial_\perp \langle v \rangle|$ (mixing length ξ)
- One equation models (example: Spalart and Allmaras)

$$\frac{\partial \nu_T}{\partial t} + \langle \vec{v} \rangle \nabla \nu_T = \nabla \left(\frac{\nu_T}{\sigma_T} \nabla \nu_T \right) + S_{\nu}$$

- Zero equation models $\nu_T = \xi^2 |\partial_\perp \langle v \rangle|$ (mixing length ξ)
- One equation models (example: Spalart and Allmaras)

$$\frac{\partial \nu_T}{\partial t} + \langle \vec{v} \rangle \nabla \nu_T = \nabla \left(\frac{\nu_T}{\sigma_T} \nabla \nu_T \right) + S_{\nu}$$

- Two equation models $(k \epsilon, k \omega, SST)$
 - $k = \frac{1}{2} \operatorname{tr} \langle \vec{v}' \vec{v}' \rangle$ (mean of the fluctuating kinetic energy)
 - dissipation rate ϵ
 - \bullet eddy frequency ω

- Zero equation models $\nu_T = \xi^2 |\partial_\perp \langle v \rangle|$ (mixing length ξ)
- One equation models (example: Spalart and Allmaras)

$$\frac{\partial \nu_T}{\partial t} + \langle \vec{v} \rangle \nabla \nu_T = \nabla \left(\frac{\nu_T}{\sigma_T} \nabla \nu_T \right) + S_{\nu}$$

- Two equation models $(k \epsilon, k \omega, SST)$
 - $k = \frac{1}{2} \operatorname{tr} \langle \vec{v}' \vec{v}' \rangle$ (mean of the fluctuating kinetic energy)
 - dissipation rate ϵ
 - \bullet eddy frequency ω
 - **1** $k \epsilon$: good on free flow fields with no walls

- Zero equation models $\nu_T = \xi^2 |\partial_\perp \langle v \rangle|$ (mixing length ξ)
- One equation models (example: Spalart and Allmaras)

$$\frac{\partial \nu_T}{\partial t} + \langle \vec{v} \rangle \nabla \nu_T = \nabla \left(\frac{\nu_T}{\sigma_T} \nabla \nu_T \right) + S_{\nu}$$

- Two equation models $(k \epsilon, k \omega, SST)$
 - $k = \frac{1}{2} \operatorname{tr} \langle \vec{v}' \vec{v}' \rangle$ (mean of the fluctuating kinetic energy)
 - dissipation rate ϵ
 - \bullet eddy frequency ω
 - **1** $k \epsilon$: good on free flow fields with no walls
 - 2 $k \omega$: near wall approximation is good

- Zero equation models $\nu_T = \xi^2 |\partial_\perp \langle v \rangle|$ (mixing length ξ)
- One equation models (example: Spalart and Allmaras)

$$\frac{\partial \nu_T}{\partial t} + \langle \vec{v} \rangle \nabla \nu_T = \nabla \left(\frac{\nu_T}{\sigma_T} \nabla \nu_T \right) + S_{\nu}$$

- Two equation models $(k \epsilon, k \omega, SST)$
 - $k = \frac{1}{2} \operatorname{tr} \langle \vec{v}' \vec{v}' \rangle$ (mean of the fluctuating kinetic energy)
 - dissipation rate ϵ
 - \bullet eddy frequency ω
 - **1** $k \epsilon$: good on free flow fields with no walls

 - SST brings the advantage of booth together

Large-Eddy simulations (LES):

spatial averaging method

$$\langle \vec{v}(\vec{x},t) \rangle := \int_{V} \vec{v}(\vec{x}',t) \cdot G(\vec{x},\vec{x}',\Delta) \ dV'$$

with

step-function

$$G := egin{cases} rac{1}{\Delta^3}, & \textit{if } |\vec{x} - \vec{x}'| < \Delta/2 \\ 0, & \textit{else} \end{cases}$$

gauss-filter

$$G := \mathcal{A}(\Delta) \; \exp\left\{rac{-eta \, |ec{x} - ec{x}'|}{\Delta^2}
ight\}$$

Large-Eddy simulations (LES):

LES equation:

with $\tau^{S} := \langle \vec{v}\vec{v} \rangle - \langle \vec{v} \rangle \langle \vec{v} \rangle$.

Large-Eddy simulations (LES):

LES equation:

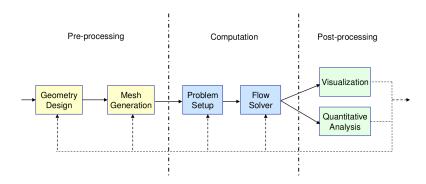
with $\tau^S := \langle \vec{v} \vec{v} \rangle - \langle \vec{v} \rangle \langle \vec{v} \rangle$. Detailed look:

$$\tau^{S} = \underbrace{\left\langle \left\langle \vec{v} \right\rangle \left\langle \vec{v} \right\rangle \right\rangle - \left\langle \vec{v} \right\rangle \left\langle \vec{v} \right\rangle}_{L} + \underbrace{\left\langle \left\langle \vec{v} \right\rangle \vec{v}' \right\rangle - \left\langle \vec{v}' \left\langle \vec{v} \right\rangle \right\rangle}_{C} + \underbrace{\left\langle \vec{v}' \vec{v}' \right\rangle}_{\tau^{SR}}$$

- Leonard-strain: creation of small eddys through large eddys
- Cross-stress: interaction of the different scales
- Subgrid-scale Reynolds stress tensor

Break

5 min



Not as easy

Geometry

- Not as easy
- complicated

03.07.2017

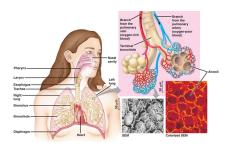
Geometry

- Not as easy
- complicated
- often simplified

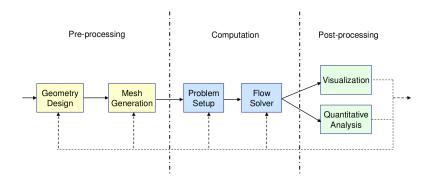
03.07.2017

Geometry

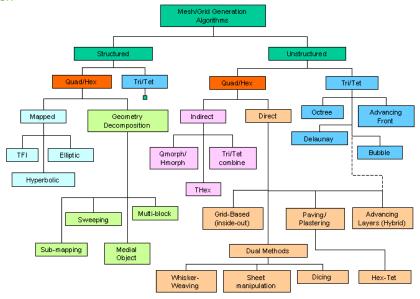
- Not as easy
- complicated
- often simplified



Application



03.07.2017



03.07.2017

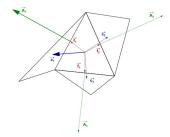
Mesh quality determined by:

- area
- aspect ratio
- diagonal ratio
- edge ratio
- skewness
- orthogonal quality
- stretch
- taper
- volume

$$OQ = \min_{i} \left\{ \frac{A_{i} \dot{f}_{i}}{|\vec{A}_{i}||\vec{f}_{i}|}, \frac{A_{i} \dot{c}_{i}}{|\vec{A}_{i}||\vec{c}_{i}|} \right\}, \tag{7}$$

A; face normal vector

 f_i vector from the centroid of the cell to the centroid of that face c; vector from the centroid of the cell to the adjacent cell

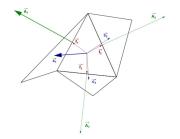


Mesh - Orthogonal Quality

$$OQ = \min_{i} \left\{ \frac{A_{i} \dot{f}_{i}}{|\vec{A}_{i}||\vec{f}_{i}|}, \frac{A_{i} \dot{c}_{i}}{|\vec{A}_{i}||\vec{c}_{i}|} \right\}, \tag{7}$$

A; face normal vector

 f_i vector from the centroid of the cell to the centroid of that face c_i vector from the centroid of the cell to the adjacent cell



Unacceptable	Bad	Acceptable	Good	Very good	Excellent
0-0.001	0.001-0.14	0.15-0.20	0.20-0.69	0.70-0.95	0.95-1.00
0 0.001	0.001 0.14	0.15 0.20	0.20 0.05	0.70 0.55	0.55 1.00

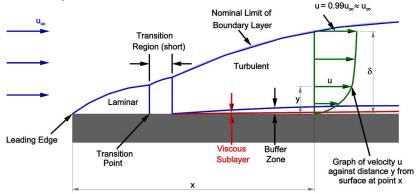
Boundary layer mesh for flows with high Reynold's number, strong gradients exist within the boundary layer close to a solid wall (with a no-slip boundary condition)

03.07.2017

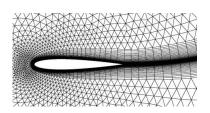
Boundary layer mesh

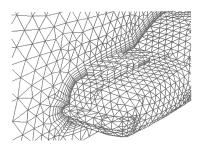
for flows with high Reynold's number, strong gradients exist within the boundary layer close to a solid wall (with a no-slip boundary condition)

03.07.2017



Inflation layer examples:





Hints for mesh generation

- minimize mesh complexity
 - use structured mesh when appropriate
 - use quad / hex elements when appropriate
 - use tri /tet elements for complex geometries

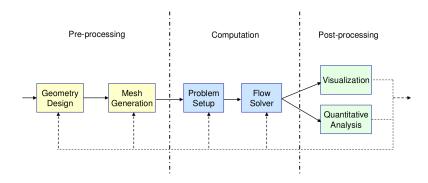
Hints for mesh generation

- minimize mesh complexity
 - use structured mesh when appropriate
 - use quad / hex elements when appropriate
 - use tri /tet elements for complex geometries
- minimize number of mesh elements
 - do not use too many (or too few) elements
 - use quad / hex elements when appropriate (e.g. boundary layers, long pipes)

Hints for mesh generation

- minimize mesh complexity
 - use structured mesh when appropriate
 - use quad / hex elements when appropriate
 - use tri /tet elements for complex geometries
- minimize number of mesh elements
 - do not use too many (or too few) elements
 - use quad / hex elements when appropriate (e.g. boundary layers, long pipes)
- maximize solution accuracy
 - concentrate mesh elements in critical regions (e.g. boundary layers, wakes, shocks)
 - align quad / hex meshes with flow direction
 - avoid poor quality elements (e.g. twisted, skewed)

Application



Problem Definition - Boundary conditions

Choosing appropriate boundary conditions:

- nature of flow incompressible / compressible ...
- physical models turbulence, species transport …
- position of boundary
- what is known
- convergence of solution may (strongly) depend on choice of boundary conditions

Problem Definition- Numerical solver

two basic solver approaches:

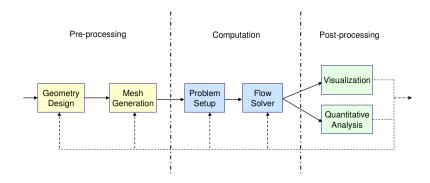
- pressure-based solver
 - originally developed for low-speed flows
 - pressure determined from pressure or pressure-correction equation (obtained from manipulating continuity and momentum equations)
- density-based solver
 - originally developed for high-speed flows
 - density determined from continuity equation
 - pressure determined from equation of state

similar discretization method is used for both pressure-based and density-based solvers.

linearization and solving of the discrete equations is different for two approaches.

03.07.2017

Application



- at convergence :
 - all discretized conservation equations are satisfied in all cells to a specified tolerance
 - solution no longer changes significantly with more iterations
 - overall mass, momentum, energy and scalar balances are obtained

Calculation - Convergence of the iterative numerical scheme

- at convergence :
 - all discretized conservation equations are satisfied in all cells to a specified tolerance
 - solution no longer changes significantly with more iterations
 - overall mass, momentum, energy and scalar balances are obtained
- monitoring convergence with residuals
 - \bullet generally decrease in residuals by 10^{-3} indicates basic global convergence - major flow features have been established
 - scaled energy residual must decrease by 10^{-6} for segregated solver
 - \bullet scaled species residual may need to decrease by 10^{-5} to achieve species balance

Calculation - Convergence of the iterative numerical scheme

- at convergence :
 - all discretized conservation equations are satisfied in all cells to a specified tolerance
 - solution no longer changes significantly with more iterations
 - overall mass, momentum, energy and scalar balances are obtained
- monitoring convergence with residuals
 - generally decrease in residuals by 10^{-3} indicates basic global convergence - major flow features have been established
 - scaled energy residual must decrease by 10^{-6} for segregated solver
 - ullet scaled species residual may need to decrease by 10^{-5} to achieve species balance
- monitoring convergence with physical quantities
 - important surface quantities should exhibit convergence

Calculation - Convergence of the iterative numerical scheme

- at convergence :
 - all discretized conservation equations are satisfied in all cells to a specified tolerance
 - solution no longer changes significantly with more iterations
 - overall mass, momentum, energy and scalar balances are obtained
- monitoring convergence with residuals
 - generally decrease in residuals by 10^{-3} indicates basic global convergence major flow features have been established
 - ullet scaled energy residual must decrease by 10^{-6} for segregated solver
 - \bullet scaled species residual may need to decrease by 10^{-5} to achieve species balance
- monitoring convergence with physical quantities
 - important surface quantities should exhibit convergence
- checking for property conservation
 - overall heat and mass balances should be within 0.1% of net flux through domain

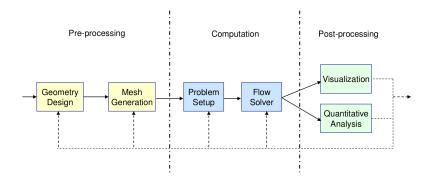
Convergence difficulties

- numerical instabilities can arise due to :
 - ill-posed problem (no physical solution)
 - poor quality mesh
 - inappropriate boundary conditions
 - inappropriate solver settings
 - inappropriate initial conditions

Convergence difficulties

- numerical instabilities can arise due to :
 - ill-posed problem (no physical solution)
 - poor quality mesh
 - inappropriate boundary conditions
 - inappropriate solver settings
 - inappropriate initial conditions
- trouble-shooting
 - ensure problem is physically realizable
 - compute an initial solution with a first-order discretization scheme
 - decrease under-relaxation for equations having convergence problems (segregated)
 - reduce CFL number (unsteady flow)
 - re-mesh or refine mesh regions with high aspect ratio or highly skewed cells

Application



Post Processing

- qualitative analysis (visualization):
 - displaying the mesh
 - contours of flow fields (e.g. pressure, velocity, temperature, concentrations ...)
 - contours of derived field quantities
 - velocity vectors
 - animation (using keyframes or frame-by-frame)
- quantitative analysis:
 - XY plots (e.g. pressure, velocity, temperature vs position)
 - forces and moments on surfaces
 - surface and volume integrals
 - Flow solvers may contain a complete post-processing environment
 - generally not necessary to use external post-processing software

Model:

A representation of a physical system or process intended to enhance our ability to understand, predict, or control its behaviour.

Verification & Validation

Model:

A representation of a physical system or process intended to enhance our ability to understand, predict, or control its behaviour.

Code:

A code is a set of computer instructions and data inputs and definitions.

Verification & Validation

Model:

A representation of a physical system or process intended to enhance our ability to understand, predict, or control its behaviour.

Code:

A code is a set of computer instructions and data inputs and definitions.

Simulation:

The exercise or use of a model.

Verification & Validation

Model:

A representation of a physical system or process intended to enhance our ability to understand, predict, or control its behaviour.

Code:

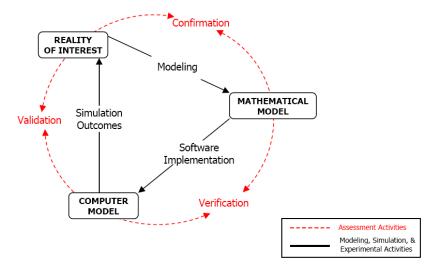
A code is a set of computer instructions and data inputs and definitions.

Simulation:

The exercise or use of a model.

Essentially, one implements a model into a computer code and then uses the code to perform a CFD simulation which yields values used in the engineering analysis.

Verification & Validation - Level 1



Verification & Validation - Level 2

