Computational Biomechanics 2018

Lecture I: Introduction, Basic Mechanics 1

Ulli Simon, Martin Pietsch, Lucas Engelhardt, Matthias Kost, Frank Niemeyer

Scientific Computing Centre Ulm, UZWR
Ulm University

0 Organisation

Scientific Computing Centre Ulm
 \rightarrow www.uzwr.de

- English
- Rerun
- Times and Room
- Exam
- Max. 12 students
- Moodle
- Login to MAC

Contents

Detailed Schedule Summer 2018

No	Day	Date	Topics of Lecture and Laboratory	Lecturer
01	Mo	16 Apr	Lec: Intro to Biomechanics; Mechanical Basics 1 Lab: Intro to Ansys WB, Simple Bone Model	Ulli
02	Mo	23 Apr	Lec: Mechanical Basics 2 Lab: Loadcases, Stresses and Strains	Ulli
03	Mo	30 Apr	Lec: Material Properties of Biol. Tissues, Intro FEA Lab: Trabecular Bone Structural Model	Ulli
04	Mo	07 May	Lec: Forward Dynamics Lab: Forward Dyn., Multi Body Model with ADAMS	Lucas
05	Mo	14 May	Lec: Inverse Dynamics, Muscuoloskelettal Modells Lab: Inverse Dyn. Model with ANYBODY	Lucas
--	Mo	21 May	- Pentecost -	--
06	Mo	28 May	$\begin{aligned} & \text { ? Lab: KI, Medizin } 4.0 \text { ? } \\ & \text { ? Lec: Neuronales Netz ? } \end{aligned}$? Frank?
07	Mo	04 Jun	Lec: From Clinical Imag Data to FE Model, Part 1 Lab: FE from CT Data	Matze
08	Mo	11 Jun	Lec: Bone Remodeling Lab: Remodeling of Trabecular Grid	Martin
09	Mo	18 Jun	Lec: Fracture Healing, Part 1 Lab: Implant Degradation and Bone Remodeling	Martin
10	Mo	25 Jun	Lec: Fracture Healing, Part 2 Lab: Healing Simulation Bone Chamber	Martin
11	Mo	02 Jul	Lec: Computational Fluid Dynamics Lab: Human Nose Air Flow Simulation	Lucas
12	Mo	09 Jul	Lec: From Clinical Imag Data to FE Model, Part 2 Lab: FE from CT Data 2	Matze
-	Mo	16 Jul	Oral Examinations A, 14:00, Office Simon, UZWR	All
-	Do	19 Jul	Oral Examinations B, 14:00, Office Simon, UZWR	All

1 General Information

Biomechanics: Solving biological questions using methods of mechanical engineering (Technische Mechanik), incl. experiments.
Mechanobiology: Reaction of biological structures on mechanical signals. Mechanotransduction: Molecular cell reactions.

Research Fields

Orthopaedic Biomechanics: Bone-implant contact, fracture healing, (artificial) joints, musculoskeletal systems, ...

Dental Biomechanics: Dental implants, orthodontics, dental movements, brackets, ...

Cell Biomechanics: Cell experiments (cell gym) and simulations to study mechenotransduction

Fluid Biomechanics: Respiratory systems, blood flow, heart, ...

Sport Biomechanics: Optimizing performance, techniques and equipment of competitive sports

Tree Biomechanics, Traffic Safety, Accident Research, ...

Numerical Methods

Boundary Value Problems: Finite Elements: static structural analyses, displacements, stresses \& strains, Finite Volumes: CFD

Initial Value Problems: Forward dynamics problems (biological and/or mechanical), multi-body systems, musculoskeletal systems, movements, inverse dynamics problem: calculating muscle forces from measured movements

Multiscale Modeling: To handle higly complex systems
Model Reduction: dito
Fuzzy Logic: Fracture healing in Ulm

Mechanical Basics

1.3 Variables, Dimensions and Units

Standard: ISO 31, DIN 1313
Variable $=$ Number. Unit
Length $L=2 \cdot m=2 m$
$\{$ Variable $\}=$ Number
[Variable] = Unit

Three mechanical SI-Units:
m (Meter)
kg (Kilogram)
s (Seconds)

2 STATICS OF RIGID BODIES

2.1 Force

- We all believe to know what a force is.
- But, force is an invention not a discovery!
- ... it can not be measured directly.

Newton's $2^{\text {nd }}$ Law [Axiom]:
Force $=$ Mass times Acceleration or $F=m \cdot a$

Note to Remember:

"A force is the cause of acceleration or deformation of a body"

Representation of Forces

... with arrows

Forces are Vectors with

- Magnitude
- Direction
- Sense of Direction

Units of Force

Newton
$N=\mathrm{kg} \cdot \mathrm{m} / \mathrm{s}^{2}$
$F_{G}=m \cdot g=0,1 \mathrm{~kg} \cdot 9,81 \mathrm{~m} / \mathrm{s}^{2}$
$=0,981 \mathrm{~kg} \mathrm{~m} / \mathrm{s}^{2}$
$\approx 1 \mathrm{~N}$

Note to Remember:
1 Newton \approx Weight of a bar of chocolate (100 g)

2.2 Method of Sections (Euler)[Schnittprinzip]

Free-Body Diagramm (FBD) [Freikörper-Bild]

Note to Remember:
First, cut the system, then include forces and moments. Free-body diagram = completely isolated part.
2.2 Method of Sections

2.2 Method of Sections

2.3 Combining and Decomposing Forces

Summation of Magnitudes

Subtraction of Magnitudes

Vector Addition

Decomposition into Components

2.4 The Moment [Das Moment]

Slotted screw with screwdriver blade

Force Couples (F, a)

Moment M

Note to remember:
The moment $M=F$. a is equivalent to a force couple (F, a). A moment is the cause for angular acceleration or angular deformation (Torsion, Bending) of a body.

Units for Moment

Newton-Meter
$\mathrm{N} \cdot \mathrm{m}=\mathrm{kg} \cdot \mathrm{m}^{2} / \mathrm{s}^{2}$

Representation of Moments

... with rotation arrows or double arrows

Moments are Vectors with ...

- Magnitude
- Direction
- Sense of Direction

Drehpfeil

Rechte-Hand-Regel:

Doppelpfeil

2.5 Moment of a Force about a Point

[Versetzungsmoment]

"Versetzungsmoment"

Note to Remember:
Moment $=$ Force times lever-arm

2.7 Static Equilibrium

```
Important:
Free-body diagram (FBD) first, then equilibrium!
```

For 2D Problems max. 3 equations for each FBD:

The sum of all forces in x-direction equals zero:	$F_{1, x}+F_{2, x}+\ldots=0$
The sum of all forces in y-direction equals zero:	$F_{1, y}+F_{2, y}+\ldots=0$
The sum of Moments with respect to P equals zero:	$M_{1, z}^{P}+M_{2, z}^{P}+\ldots=0$

(For 3D Problems max. 6 equations for each FBD)

2.7 Static Equilibrium

Important:
 Free-body diagram (FBD) first, then equilibrium!

Free-body diagram (FBD)
3 equations of equilibrium for each FBD in 2D:
Sum of all forcesin x -direction : $F_{1, x}+F_{2, x}+\ldots=0$,
Sum of all forcesin y -direction : $F_{1, y}+F_{2, y}+\ldots=0$,
Sum of all moments w .resp.toP : $\quad M_{1, z}^{P}+M_{2, z}^{P}+\ldots=0$.

- Force EEs can be substituted by moment EEs
- 3 moment reference points should not lie on one line

6 equlibrium equations for one FBD in 3D:

$$
\begin{array}{ll}
\text { Summealler Kräfte in } \mathrm{x} \text { - Richtung: } & \sum_{i} F_{i x} \stackrel{!}{=} 0, \\
\text { Summealler Kräfte in y-Richtung: } & \sum_{i} F_{i y} \stackrel{!}{=} 0, \\
\text { Summealler Kräfte in z - Richtung: } & \sum_{i} F_{i z} \stackrel{!}{=} 0,
\end{array}
$$

$$
\text { Summealler Momente um x - Achse bezüglich Punkt P: } \quad \sum_{i} M_{i x}^{P}=0 .
$$

$$
\text { Summealler Momente um y - Achse bezüglich Punkt Q: } \quad \sum_{i} M_{i y}^{Q}=0 .
$$

Summealler Momente um z - Achse bezüglich Punkt R : $\quad \sum_{i} M_{i z}^{R} \stackrel{!}{=} 0$.

- Force EEs can be substituted by moment EEs
- Max. 2 moment axis parallel to each other
- Determinant of coef. matrix not zero

2.8 Recipe for Solving Problems in Statics

Step 1: Model building. Generate a simplified replacement model (diagram with geometry, forces, constraints).
Step 2: Cutting, Free-body diagram. Cut system and develop free-body diagrams. Include forces and moments at cut, as well as weight.
Step 3: Equilibrium equations. Write the force- and moment equilibrium equations (only for free-body diagrams).
Step 4: Solve the equations. One can only solve for as many unknowns as equations, at most.
Step 5: Display results, explain, confirm with experimental comparisons. Are the results reasonable?

2.9 Classical Example: "Biceps Force"

From:
"De Motu Animalium" G.A. BORELLI (1608-1679)

Step 1: Model building

Schritt 2: Schneiden und Freikörperbilder

More to Step 2: Cutting and Free-Body Diagrams

Step 3 and 4: Equilibrium and Solving the Equations

Sum of all forces in vertical direction $=0$	Sum of all forces in "rope" direction = 0	Sum of all moments with respect to Point $G=0$
$\begin{aligned} & 100 \mathrm{~N}+\left(-S_{1}\right)=0 \\ & \Rightarrow S_{1}=100 \mathrm{~N} \end{aligned}$	$\begin{aligned} & S_{2}+\left(-S_{3}\right)=0 \\ & \Rightarrow S_{3}=S_{2} \end{aligned}$	$\begin{aligned} & -S_{1} \cdot h_{1}+S_{2} \cdot h_{2}=0 \\ & -100 \mathrm{~N} \cdot 35 \mathrm{~cm}+S_{2} \cdot 5 \mathrm{~cm}=0 \\ & \Rightarrow S_{2}=100 \mathrm{~N} \cdot \frac{35 \mathrm{~cm}}{5 \mathrm{~cm}}=700 \mathrm{~N} \end{aligned}$

ELASTOSTATICS

3.1 Stresses

... to account for the loading of the material!

Fotos: Lutz Dürselen

Note to Remember:
Stress = "smeared" force
Stress = Force per Area or $\sigma=F / A$
(Analogy: ,Nutella bread teast ")

Units of Stress

Pascal:	$1 \mathrm{~Pa}=1 \mathrm{~N} / \mathrm{m}^{2}$
Mega-Pascal:	$1 \mathrm{MPa}=1 \mathrm{~N} / \mathrm{mm}^{2}$

3.2 Example:

"Tensile stress in Muscle:

$$
\begin{aligned}
& \sigma_{1}=\frac{F}{A_{1}}=\frac{700 \mathrm{~N}}{7000 \mathrm{~mm}^{2}}=0,1 \frac{\mathrm{~N}}{\mathrm{~mm}^{2}}=\underline{\underline{0,1 \mathrm{MPa}}} \\
& \sigma_{2}=\frac{F}{A_{2}}=\frac{700 \mathrm{~N}}{70 \mathrm{~mm}^{2}}=10 \frac{\mathrm{~N}}{\mathrm{~mm}^{2}}=\underline{\underline{\mathrm{MPa}}}
\end{aligned}
$$

3.3 Normal and Shear Stresses

Tensile bar

Cut 2:
Normal stress σ_{2} Shear stress τ_{2}

Note to Remember:
First, you must choose a point and a cut through the point, then you can specify (type of) stresses at this point in the body.
Normal stresses (tensile and compressive stress) are oriented perpendicular to the cut-surface.
Shear stresses lie tangential to the cut-surface.

General (3D) Stress State: Stress Tensor

... in one point of the body:
How much numbers do we need?

- $\underline{3}$ stress components in one cut (normal str., $2 x$ shear str.)
times
- $\underline{3}$ cuts (e.g. frontal, sagittal, transversal)
results in
- $\underline{9}$ stress components for the full stress state in the point.
- But only 6 components are linear independent (,equality of shear stresses")
"Stress Tensor"

$$
\underline{\underline{\sigma}}=\left[\begin{array}{lll}
\left.\begin{array}{|lll}
\sigma_{x x} & \sigma_{x y} & \sigma_{x z} \\
\sigma_{y x} & \sigma_{y y} & \sigma_{y z} \\
\sigma_{z x} & \sigma_{z y} & \sigma_{z z}
\end{array}\right]
\end{array}\right]
$$

Symmetry of the Stress Tensor

Boltzmann Continua: Only volume forces (f_{x} und f_{y}), no volume moments assumed \rightarrow "Equality of corresponding shear stresses"

General 3D Stress State

6 Components $\rightarrow 6$ Pictures

Details von "Normalspannung"	
\square Bereich	
Geometrie	Alle Bauteile
\square Definition	
Typ	Normalspannung
Aus.-itung	X-Achse \quad -
∇ Ergebnisse	悩-Achse
\square Min.	Y-Achse Z-Achse
\square Max.	

Max. Schub
Ti Vergleichs- (Trec/i)
Normal
Schub
Details von "Scherspannung"
Vergleichs- (von Mises)
Max. im Hauptachsensystem Mittlere im Hauptachsensystem
Min. im Hauptachsensystem

Hauptvektor
Fehler

Details von "Scherspannung"			
\square Bereich			
	Geometrie	Alle Bauteile	
\square Definition			
	TyP \longrightarrow	Scherspannung	
	Ausrichtung	XY-Ebene	-
\square	Ergebnisse	䁌-Ebene	
	\square Min.	YZ-Ebene XZ-Ebene	
	\square Max.		

Problem:

- How to produce nice Pictures?
- Which component should I use?
- Do I need 6 pictures at the same time?

So called „Invariants" are „smart mixtures" of the components
Vergleichs- (von Mises)
Max. im Hauptachsensystem
Mittlere im Hauptachsensystem
Max. Schub
Vergleichs- (Tresca)
Normal
Schub

$$
\sigma_{\text {Mises }}=\sqrt{\sigma_{x x}^{2}+\sigma_{y y}^{2}+\sigma_{z z}^{2}-\sigma_{x x} \sigma_{y y}-\sigma_{x x} \sigma_{z z}-\sigma_{y y} \sigma_{z z}+3 \tau_{x y}^{2}+3 \tau_{x z}^{2}+3 \tau_{y z}^{2}}
$$

3.4 Strains

Finite element model

- Global, (external) strains

$$
\varepsilon:=\frac{\text { Change in length }}{\text { Original length }}=\frac{\Delta L}{L_{0}}
$$

- Local, (internal) strains

Units of Strain
 without a unit
 1
 $1 / 100=\%$
 $1 / 1.000 .000=\mu \varepsilon$ (micro strai
 = 0,1 \%

3D Local Strain State: Strain Tensor

3D Local Strain State: Strain Tensor

Definition: $\quad \begin{aligned} \varepsilon_{x x} & =\lim _{x_{0} \rightarrow 0} \frac{\Delta x}{x_{0}}, \quad \varepsilon_{y y}=\lim _{y_{0} \rightarrow 0} \frac{\Delta y}{y_{0}}, \quad \varepsilon_{z z}=\lim _{z_{0} \rightarrow 0} \frac{\Delta z}{z_{0}} \\ \varepsilon_{x y} & =\frac{1}{2} \cdot \Delta \gamma, \quad \varepsilon_{x z}=\frac{1}{2} \cdot \Delta \beta, \quad \varepsilon_{y z}=\frac{1}{2} \cdot \Delta \alpha\end{aligned}$
Universal Strain Definition:

$$
\varepsilon_{i j}=\frac{1}{2}\left(u_{i, j}+u_{j, i}\right), \quad i, j=\{x, y, z\}
$$

$$
\underline{\underline{\varepsilon}}=\left\lvert\, \begin{array}{lll}
\varepsilon_{x x} & \varepsilon_{x y} & \varepsilon_{x z} \\
\hdashline \varepsilon_{x y} & \varepsilon_{y y} & \varepsilon_{y z} \\
\varepsilon_{x z} & \varepsilon_{y z} & \varepsilon_{z z} \\
\hline
\end{array}\right.
$$

Note to Remember:

Strain is relative change in length (and shape)

Strain Tensor "

Displacement vs. Strain

Displacement u_x
Strain, eps_xx

Anisotropic Properties

Material	E Moduli in MPa	Strength in MPa	Fracture strain in \%
Spongy bone			
Vertebra	60 (male) 35 (female)	$\begin{gathered} \hline 4,6 \text { (male) } \\ 2,7 \text { (female) } \end{gathered}$	6
prox. Femur	240	2.7	2.8
Tibia	450	5... 10	2
Bovine	200... 2000	10	1,7...3,8
Ovine	400... 1500	15	
Cortical bone			
Longitudinal	17000	200	2,5
Transversal	11500	130	

