Computational Biomechanics 2018

Lecture I: Introduction, Basic Mechanics 1

Ulli Simon, Martin Pietsch, Lucas Engelhardt, Matthias Kost, Frank Niemeyer

> Scientific Computing Centre Ulm, UZWR Ulm University

0 Organisation

Scientific Computing Centre Ulm

- \rightarrow www.uzwr.de
- English
- Rerun
- Times and Room
- Exam
- Max. 12 students
- Moodle
- Login to MAC

<u>Contents</u>

Detailed Schedule Summer 2018						
No	Day	Date	Topics of Lecture and Laboratory			
01	Мо	16 Apr	Lec: Intro to Biomechanics; Mechanical Basics 1 Lab: Intro to Ansys WB, Simple Bone Model	Ulli		
02	Мо	23 Apr	Lec: Mechanical Basics 2 Lab: Loadcases, Stresses and Strains	Ulli		
03	Мо	30 Apr	Lec: Material Properties of Biol. Tissues, Intro FEA Lab: Trabecular Bone Structural Model	Ulli		
04	Мо	07 May	Lec: Forward Dynamics Lab: Forward Dyn., Multi Body Model with ADAMS	Lucas		
05	Мо	14 May	Lec: Inverse Dynamics, Muscuoloskelettal Modells Lab: Inverse Dyn. Model with ANYBODY	Lucas		
	Мо	21 May	- Pentecost -			
06	Мо	28 May	? Lab: KI, Medizin 4.0 ? ? Lec: Neuronales Netz ?	? Frank ?		
07	Мо	04 Jun	Lec: From Clinical Imag Data to FE Model, Part 1 Lab: FE from CT Data	Matze		
08	Мо	11 Jun	Lec: Bone Remodeling Lab: Remodeling of Trabecular Grid	Martin		
09	Мо	18 Jun	Lec: Fracture Healing, Part 1 Lab: Implant Degradation and Bone Remodeling	Martin		
10	Мо	25 Jun	Lec: Fracture Healing, Part 2 Lab: Healing Simulation Bone Chamber	Martin		
11	Мо	02 Jul	Lec: Computational Fluid Dynamics Lab: Human Nose Air Flow Simulation	Lucas		
12	Мо	09 Jul	Lec: From Clinical Imag Data to FE Model, Part 2 Lab: FE from CT Data 2	Matze		
-	Мо	16 Jul	Oral Examinations A, 14:00, Office Simon, UZWR	All		
-	Do	19 Jul	Oral Examinations B, 14:00, Office Simon, UZWR	All		

1 General Information

<u>Biomechanics</u>: Solving biological questions using methods of mechanical engineering (Technische Mechanik), incl. experiments.

<u>Mechanobiology</u>: Reaction of biological structures on mechanical signals. Mechanotransduction: Molecular cell reactions.

Research Fields

<u>Orthopaedic Biomechanics</u>: Bone-implant contact, fracture healing, (artificial) joints, musculoskeletal systems, ...

<u>Dental Biomechanics</u>: Dental implants, orthodontics, dental movements, brackets, ...

<u>Cell Biomechanics</u>: Cell experiments (cell gym) and simulations to study mechenotransduction

<u>Fluid Biomechanics</u>: Respiratory systems, blood flow, heart, ...

<u>Sport Biomechanics</u>: Optimizing performance, techniques and equipment of competitive sports

<u>Tree Biomechanics</u>, <u>Traffic Safety</u>, <u>Accident</u> <u>Research</u>, ...

Numerical Methods

<u>Boundary Value Problems</u>: Finite Elements: static structural analyses, displacements, stresses & strains, Finite Volumes: CFD

<u>Initial Value Problems</u>: Forward dynamics problems (biological and/or mechanical), multi-body systems, musculoskeletal systems, movements, inverse dynamics problem: calculating muscle forces from measured movements

<u>Multiscale Modeling</u>: To handle higly complex systems

Model Reduction: dito

...

<u>Fuzzy Logic</u>: Fracture healing in Ulm

Mechanical Basics

1.3 Variables, Dimensions and Units

Standard: ISO 31, DIN 1313

Variable	Ξ	Number · Unit
Length L	Ξ	$2 \cdot m = 2 m$

{Variable} = Number [Variable] = Unit

Three mechanical SI-Units:

- m (Meter)
- kg (Kilogram)
- s (Seconds)

2 STATICS OF RIGID BODIES

2.1 Force

- We all believe to know what a force is.
- But, force is an invention not a discovery!
- ... it can not be measured directly.

Newton's 2nd Law [Axiom]:

Force = Mass times Acceleration or $F = m \cdot a$

Note to Remember:

"A force is the cause of acceleration or deformation of a body"

Representation of Forces

... with arrows

Forces are Vectors with

- Magnitude
- Direction
- Sense of Direction

Units of Force

Newton

 $N = kg \cdot m/s^2$

Note to Remember: 1 Newton \approx Weight of a bar of chocolate (100 g)

Note to Remember:

First, cut the system, then include forces and moments.

Free-body diagram = <u>completely</u> isolated part.

2.3 Combining and Decomposing Forces

2.4 The Moment [Das Moment]

Note to remember:

The moment $M = F \cdot a$ is equivalent to a force couple (F, a).

A moment is the cause for angular acceleration or angular deformation (Torsion, Bending) of a body.

Units for Moment

Newton-Meter

N·m = $kg \cdot m^2/s^2$

Rechte-Hand-Regel:

Representation of Moments

2.5 Moment of a Force about a Point [Versetzungsmoment]

Note to Remember:

Moment = Force times lever-arm

2.7 Static Equilibrium

Important:

Free-body diagram (FBD) first, then equilibrium!

Free-body diagram (FBD)

For 2D Problems max. 3 equations for each FBD:

The sum of all forces in *x*-direction equals zero:

The sum of all forces in *y*-direction equals zero:

The sum of Moments with respect to P equals zero:

$$F_{1,x} + F_{2,x} + \dots = 0$$

$$F_{1,y} + F_{2,y} + \dots = 0$$

$$M_{1,z}^{P} + M_{2,z}^{P} + \dots = 0$$

(For 3D Problems max. 6 equations for each FBD)

2.7 Static Equilibrium

Important:

Free-body diagram (FBD) first, then equilibrium!

Free-body diagram (FBD)

3 equations of equilibrium for each FBD in **2D**:

Sum of all forces in x - direction: $F_{1,x} + F_{2,x} + ... = 0$,

Sum of all forces in y-direction: $F_{1,y} + F_{2,y} + \dots = 0$,

Sum of all moments w.resp. to P: $M_{1,z}^{P} + M_{2,z}^{P} + \dots = 0$.

- Force EEs can be substituted by moment EEs
- 3 moment reference points should not lie on one line

6 equilbrium equations for one FBD in 3D:

 $\sum F_{ix} = 0,$ Summealler Kräfte in x - Richtung: $\sum_{i} F_{iy} \stackrel{!}{=} 0,$ Summealler Kräfte in y-Richtung: $\sum F_{iz} \stackrel{!}{=} 0,$ Summealler Kräfte in z-Richtung: $\sum_{i} M_{ix}^{P} \stackrel{!}{=} 0.$ $\sum_{i} M_{iy}^{Q} \stackrel{!}{=} 0.$ Summealler Momenteum x - Achsebezüglich Punkt P: Summealler Momente um y - Achse bezüglich Punkt Q: $\sum M_{iz}^{R} \stackrel{!}{=} 0.$ Summealler Momente um z - Achse bezüglich Punkt R :

- Force EEs can be substituted by moment EEs
- Max. 2 moment axis parallel to each other
- Determinant of coef. matrix not zero

2.8 Recipe for Solving Problems in Statics

- **Step 1: Model building.** Generate a simplified replacement model (diagram with geometry, forces, constraints).
- **Step 2: Cutting, Free-body diagram.** Cut system and develop free-body diagrams. Include forces and moments at cut, as well as weight.
- **Step 3: Equilibrium equations.** Write the force- and moment equilibrium equations (<u>only</u> for free-body diagrams).
- **Step 4: Solve the equations.** One can only solve for as many unknowns as equations, at most.
- **Step 5: Display results**, explain, confirm with experimental comparisons. Are the results reasonable?

2.9 Classical Example: "Biceps Force"

<u>From</u>: "De Motu Animalium" G.A. BORELLI (1608-1679)

<u>Step 1</u>: Model building

Schritt 2: Schneiden und Freikörperbilder

More to Step 2: Cutting and Free-Body Diagrams

Step 3 and 4: Equilibrium and Solving the Equations

Sum of all forces in vertical direction = 0	Sum of all forces in "rope" direction = 0	Sum of all moments with respect to Point G = 0
$100 \text{ N} + (-S_1) \stackrel{!}{=} 0$ $\Rightarrow \underline{S_1 = 100 \text{ N}}$	$S_{2} + (-S_{3}) \stackrel{!}{=} 0$ $\implies S_{3} = S_{2}$	$-S_1 \cdot h_1 + S_2 \cdot h_2 \stackrel{!}{=} 0$ -100 N \cdot 35 cm + S_2 \cdot 5 cm \stackrel{!}{=} 0 $\Rightarrow S_2 = 100 \text{ N} \cdot \frac{35 \text{ cm}}{5 \text{ cm}} = \frac{700 \text{ N}}{5 \text{ cm}}$

ELASTOSTATICS

3.1 Stresses

... to account for the loading of the material !

Fotos: Lutz Dürselen

Note to Remember:

```
Stress = "smeared" force

Stress = Force per Area or \sigma = F/A

(Analogy: "Nutella bread teast ")
```


Units of Stress

Pascal: $1 Pa = 1 N/m^2$ Mega-Pascal: $1 MPa = 1 N/mm^2$

3.2 Example:

"Tensile stress in Muscle:

$$\sigma_{1} = \frac{F}{A_{1}} = \frac{700 \text{ N}}{7000 \text{ mm}^{2}} = 0.1 \frac{\text{N}}{\text{mm}^{2}} = \underbrace{0.1 \text{ MPa}}_{\text{mm}^{2}} = \underbrace{0.1 \text{ MPa}}_{\text{mm}^{2}} = \underbrace{\frac{F}{A_{2}}}_{0} = \frac{700 \text{ N}}{70 \text{ mm}^{2}} = 10 \frac{\text{N}}{\text{mm}^{2}} = \underbrace{10 \text{ MPa}}_{\text{mm}^{2}} = \underbrace{10 \text{ MPa}$$

3.3 Normal and Shear Stresses

Tensile bar

Cut 1: Normal stress σ_1

Cut 2: Normal stress σ_2 Shear stress τ_2

Note to Remember:

- First, you must choose a point and a cut through the point, then you can specify (type of) stresses at this point in the body.
- **Normal stresses** (tensile and compressive stress) are oriented perpendicular to the cut-surface.

Shear stresses lie tangential to the cut-surface.

General (3D) Stress State: Stress Tensor

... in one point of the body: How much numbers do we need?

- <u>3</u> stress components in one cut (normal str., 2x shear str.) times
- <u>3</u> cuts (e.g. frontal, sagittal, transversal) results in
- <u>9</u> stress components for the full stress state in the point.
- <u>But only 6</u> components are linear independent ("equality of shear stresses")

"Stress Tensor"

$$\underline{\boldsymbol{\sigma}} = \begin{bmatrix} \boldsymbol{\sigma}_{xx} & \boldsymbol{\sigma}_{xy} & \boldsymbol{\sigma}_{xz} \\ \boldsymbol{\sigma}_{yx} & \boldsymbol{\sigma}_{yy} & \boldsymbol{\sigma}_{yz} \\ \boldsymbol{\sigma}_{zx} & \boldsymbol{\sigma}_{zy} & \boldsymbol{\sigma}_{zz} \end{bmatrix}$$

Symmetry of the Stress Tensor

Boltzmann Continua: Only volume forces (f_x und f_y), no volume moments assumed \rightarrow "Equality of corresponding shear stresses"

$$\sum M^{(C)} = 2 \cdot \underbrace{\tau_{xy} \Delta y \Delta z}_{\text{Kraft}} \cdot \underbrace{\frac{1}{2} \Delta x}_{\text{Hebelarm}} - 2 \cdot \underbrace{\tau_{yx} \Delta x \Delta z}_{\text{Kraft}} \cdot \underbrace{\frac{1}{2} \Delta y}_{\text{Hebelarm}} = 0.$$

<u>General 3D Stress State</u>

Max.

Problem:

- How to produce nice Pictures?
- Which component should I use?
- Do I need 6 pictures at the same time?
- So called "Invariants" are "smart mixtures" of the components
- ⁹σ Vergleichs- (von Mises)
 ⁹σ Max. im Hauptachsensystem
 ⁹σ Mittlere im Hauptachsensystem
 ⁹σ Min. im Hauptachsensystem
 ⁹σ Max. Schub
 ⁹σ Vergleichs- (Tresca)
 ⁹σ Normal
 ⁹σ Schub

 $\sigma_{Mises} = \sqrt{\sigma_{xx}^{2} + \sigma_{yy}^{2} + \sigma_{zz}^{2} - \sigma_{xx}\sigma_{yy} - \sigma_{xx}\sigma_{zz} - \sigma_{yy}\sigma_{zz} + 3\tau_{xy}^{2} + 3\tau_{xz}^{2} + 3\tau_{yz}^{2}}$

3.4 Strains

• Global, (external) strains

 $\epsilon \coloneqq \frac{\text{Change in length}}{\text{Original length}} = \frac{\Delta L}{L_0}$

Local, (internal) strains

<u>Units of Strain</u>

without a unit 1 1/100 = % 1/1.000.000 = με (micro strai = 0,1 %

<u>3D Local Strain State: Strain Tensor</u>

<u>3D Local Strain State: Strain Tensor</u>

Definition:
$$\mathcal{E}_{xx} = \lim_{x_0 \to 0} \frac{\Delta x}{x_0}, \quad \mathcal{E}_{yy} = \lim_{y_0 \to 0} \frac{\Delta y}{y_0}, \quad \mathcal{E}_{zz} = \lim_{z_0 \to 0} \frac{\Delta z}{z_0}$$

 $\mathcal{E}_{xy} = \frac{1}{2} \cdot \Delta \gamma, \quad \mathcal{E}_{xz} = \frac{1}{2} \cdot \Delta \beta, \quad \mathcal{E}_{yz} = \frac{1}{2} \cdot \Delta \alpha$

Universal Strain Definition:

$$\varepsilon_{ij} = \frac{1}{2} (u_{i,j} + u_{j,i}), \quad i, j = \{x, y, z\}$$

Note to Remember:

Strain is relative change in length (and shape)

Strain Tensor "

Displacement vs. Strain

Anisotropic Properties

Material	E Moduli	Strength	Fracture strain
	in MPa	in MPa	in %
Spongy bone			
Vertebra	60 (male) 35 (female)	4,6 (male) 2,7 (female)	6
prox. Femur	240	2.7	2.8
Tibia	450	510	2
Bovine	2002000	10	1,73,8
Ovine	4001500	15	
Cortical bone			
Longitudinal	17000	200	2,5
Transversal	11500	130	