Mechanical Basics of Biomechanics

and

Biomechanical Principles of Bone Structure

UZWR

- Effects of global force distribution to the fracture healing process
- Local mechanoregulations in metaphyseal fractures in healthy, old and osteoporotic humans

www.biomechanics.de

User name: Vorlesung Password: Bio2020mechanik

www.uzwr.de

> UZWR	ulm university u		n		
Industrie-Kooperationen 🔹 Forschung 👻	Lehre • Informationen • C	٩			
	> UZWR			Ć	
Wissenschaftliches Rechnen	Industrie-Kooperationen 🔻	Forschur	ng 🔹 📕 Lehre 🔹	Informationen 🔻	Q
	Bachelor CSE				
Illmar Zantrum für Wissanschaft	Master CSE				
(UZWR)	Praktikum SiSo (Ba CSE)	•			
Das Ulmer Zentrum für Wissenschaftliches Rechnen (UZ Forschungsschwerpunkt der Universität Ulm.	Comp Biomech (Ma CSE)	•			
UNSER NAME: Wissenschaftliches Rechnen bedeutet ->	Seminar Comp Biomech (M CSE)				
Interessante anwendungsorientierte Forschundsfragen	MSM (Ma Mat)	+			
increasing anwendingsmenteric ronacionganagen	CompMethMatSc (Ma AdvMat)	•			
	Lehrexport und Weiterbildung				
	Abschlussarbeiten/Praktika				
	First part of the lecture Computational Master of Advanved Materials Science a	Methods in Mate	erials Science for studer of Ulm.	nts of the <u>International</u>	
ſ	Lehrexport und Weiterbildung von Simon				
	Biomechanik-Vorlesung				
	Für Studenten der Hochschule Ulm (Me Universität Ulm (Medizin, CSE).	edizintechnik) ur	d auch Wahlfach für ei	nige Studiengänge der	Biomechanics Summer Course 2011
	Turnus: jeweils im Wintersemester.				
	Meine Vorlesungsanteile: - Mechanische Grundbegriffe - Prinzipen des Knochenbaus - Numerische Methoden in der Biomecl	hanik			
	Downloads zu dieser Vorlesung				J

General

The aim of the Lecture:

Brush up mechanical knowledge in an illustrative form.

Outline Lecture 1

1.4. Statics of rigid bodies

- 1.4.1. the force
- 1.4.2. The cutting principle (Euler)
- 1.4.3. Assembling and disassembling of forces
- 1.4.4. The moment
- 1.4.5. Moment of a force with respect to a point
- 1.4.6. Free body diagram
- 1.4.7. Static equilibrium
- 1.4.8. Recipe for solving problems of statics
- 1.4.9. Sample calculation "biceps force"

1.5. Elastostatics / Strength of Materials

- 1.5.1. The Stress
- 1.5.2. For example, tension in the muscle
- 1.5.3. Normal and shear stresses
- 1.5.4. Strains
- 1.5.5. Material laws
- 1.5.6. Simple load cases

1.6. kinematics

- 1.6.1. Coordinate systems
- 1.6.2. Translation and rotation
- 1.6.3. And angle
- 1.6.4. Speed
- 1.6.5. Acceleration
- 1.6.6. Summary

1.7. Kinetics / dynamics

- 1.7.1. d'Alembert principle
- 1.7.2. Energy, work, power

Measure, Dimensions, Units

Standard: ISO 31, DIN 1313

Measure = Data · unit

Length $L = 2 \cdot m = 2 m$

{Measure} is the numerical value

[Measure] = Unit

not correct: Length L [m]

<u>right</u>: Length L / m or the length L in m

<u>SI base units (mechanism)</u>:

m (meter), kg (kilogram), s (second)

Unit Systems

base	units		derived ur	nits			_	comment
length	mass	time	force	tension	density	accel.		
m	kg	sec						SI units
mm		sec	Ν					Organ Level
								tissue-level

[...] means unity of ...

<u>To line 1</u>: [Force] = [mass] * [length] / [time] ² [Stress] = [force] / [length] ² [Density] = [mass] / [length] ³

•••

<u>To line 2</u>:

- 1. Choice: mm
- 2. Choice: N
- 3. Choice: sec

[Mass] =? [Force] = [mass] * [length] / [time] ² [Mass] = [force] * [time] ² / [length] = (Kg * m / sec²) * sec² / mm = 1000 kg

```
= t
```

The Force

- The force-term is well known from everyday life: driving force, muscleforce, laborforce, ...
- but actually axiomatic, without strict definition
- "Force" is an invention, not a discovery
- Forces can not be measured directly.

Newton's axiom:

Force = Mass \cdot Acceleration or F = m \cdot a

Remember to:

The force is the cause of an acceleration (change in velocity) or deformation (strain) of a body.

The Unit of Force

Newton

 $N = kg \cdot m/s^2$

 $F_G = m \cdot g$ = 0,102 kg \cdot 9,81 N/kg = 1 N

Remember to:

Weight of a chocolate bar \approx 1 Newton

Cutting principle (Euler) and free-body diagram

Remember to:

First to cut then Enter forces and moments.

Free body diagram = completely cutted subsystem

Presenting Forces

... with arrows

forces are *vectorial* sizes

- amount
- direction
- sense of direction

Assembling and disassembling of forces

The Moment

or a (rotary) deformation (torsion, bending) of a body.

To think:

Moment is "Roational Force"

The Moment

Unit of the moment

Newton-meters

N·m = kg·m²/ s²

Representation of moments

... with turning arrows or double arrows

moments vectorial sizes

- amount
- direction
- sense of direction

Right-hand rule:

Moment of a Force with respect to a Point P

Remember to:

Moment = force times lever arm

(Lever arm perpendicular to the line of action)

Static Equilibrium

Important:

Balance only to "free body diagrams"

For a flat (2D) apply problem three equations:

Summealler Kräfte in x - Richtung: $F_{1,x} + F_{2,x} + ... = 0$,

Summealler Kräfte in y - Richtung: $F_{1,y} + F_{2,y} + ... = 0$, Summealler Momente bezüglich P: $M_{1,z}^{P} + M_{2,z}^{P} + ... = 0$.

FBD inside the blue bubble

(For a spatial (3D) apply problem six equations)

Step 1: Modeling, Generate a replacement model (sketch geometry, loads, restraints). Omitting unimportant things. The "real system" must be abstracted.

Step 2: To cut, Free-body diagrams. System slice, add internal forces and internal moments,

Step 3: Balance, write force and moment equilibria for free body.

Step 4: Equations to solve,

Step 5: Result interpret, Verify, compare with experiment; Check validity.

Classical Calculation: "Biceps Force"

<u>Out</u>: "De Motu Animalium" from GA Borelli (1608-1679)

Step 1: Modeling

Step 2: Cutting and Free-Body Diagrams

step 3: balance

step 4: Solve equations

Sum of all moments with respect to Point G = 0

$$-S_1 \cdot h_1 + S_2 \cdot h_2 \stackrel{!}{=} 0$$

-100 N \cdot 35 cm + S_2 \cdot 5 cm \stackrel{!}{=} 0
$$\Rightarrow S_2 = 100 \text{ N} \cdot \frac{35 \text{ cm}}{5 \text{ cm}} = \frac{700 \text{ N}}{5 \text{ cm}}$$

This is seven times the load!

Elastostatics

STRENGTH OF MATERIALS

Stress

to Remember:

Stress = "smeared" cutting force,

Stress = force per area or σ = F / A

Unit of the Stress

Mega-Pascal 1 Mpa = $1 \text{ N} / \text{mm}^2$ Pascal: 1 Pa = $1 \text{ N} / \text{m}^2$

Example: Tension in the muscle

Normal and Shear Stresses

Cut 1: \rightarrow Normal stresses σ_1 Cut 2: \rightarrow Normal σ_2 and shear stresses τ_2

Normal and Shear Stresses

Remember to:

First cut, then the type and magnitude of the stress.

normal stresses (Tensile and Compression) Perpendicular to the sectional area

shear stresses Parallel to the cut surface.

General (3D) Stress State ...

... at one point of the body:

• <u>Three</u> Stress components in a section (Normal., 2x Shear.)

times

• <u>Three</u> Sections (eg frontal, sagittal, transverse)

equal

- <u>nine</u> Stress components that characterize the full 3D stress state at one point in the body.
- <u>six</u> Components thereof are independent ("Equality of Shearstresses")

$$\underline{\underline{\sigma}} = \begin{bmatrix} \sigma_{xx} & \sigma_{xy} & \sigma_{xz} \\ \sigma_{yx} & \sigma_{yy} & \sigma_{yz} \\ \sigma_{zx} & \sigma_{zy} & \sigma_{zz} \end{bmatrix} = \begin{bmatrix} \sigma_{xx} & \tau_{xy} & \tau_{xz} \\ \tau_{xy} & \sigma_{yy} & \tau_{yz} \\ \tau_{xz} & \tau_{yz} & \sigma_{zz} \end{bmatrix}$$

The "stress tensor"

General State of Stress

six components

Details von "Normalspannung"

Representation of the Stress State

σ

- Problem: If you want to make colorful pictures, you have to decide for a component.
- But which should we take?
- Can be used instead of a single well "mixtures" of the component.
- So-called "Invariants" are nothing more where the same comes out regardless of the orientation of the coordinate system as particularly "smart" mixtures "Principal Stresses," "Von-Mises-Stress "," Hydrostatic Stress Component "," Octahedral Shear Stress ", ...

$$Mises = \sqrt{\sigma_{xx}^{2} + \sigma_{yy}^{2} + \sigma_{zz}^{2} - \sigma_{xx}\sigma_{yy} - \sigma_{xx}\sigma_{zz} - \sigma_{yy}\sigma_{zz}^{2} + 3\tau_{xy}^{2} + 3\tau_{xz}^{2} + 3\tau_{yz}^{2}}$$

Strains

DETAILS

- Rope type: Single rope
- Diameter: 10.5 mm
- Impregnation: without
- Weight: 72 g per meter
- Impact force: 9.6 kN
- Num. falls: 10
- Sheath slippage: 0 mm
- Strain static: 7.07%
- Strain dynamic: 32%
- knotability: 0.7
- Colour: mix

Remember to:

Strain = relative length change (angle change)

Strains

Definition of strain

Strain $\coloneqq \frac{\text{Elongation}}{\text{Original Length}}$

$$\varepsilon \coloneqq \frac{\Delta L}{L_0}$$

Unit of strain

Without unit. so eg:

1

1/100 =%

1 / 1,000,000 = με (micro strain) = 0.1%

Strains

Defining the local strain state

Infinitesimal test volume $\Delta V = \Delta x \bullet \Delta y \bullet \Delta z$

Defining the local strain state

$$\varepsilon_{xx} = \lim_{\Delta x \to 0} \frac{dx}{\Delta x}, \quad \varepsilon_{yy} = \lim_{\Delta y \to 0} \frac{dy}{\Delta y}, \quad \varepsilon_{zz} = \lim_{\Delta z \to 0} \frac{dz}{\Delta z}$$
$$\varepsilon_{xy} = \frac{1}{2} \cdot \Delta \gamma, \quad \varepsilon_{xz} = \frac{1}{2} \cdot \Delta \beta, \quad \varepsilon_{yz} = \frac{1}{2} \cdot \Delta \alpha$$

Normal strain based on displacement field u

$$\varepsilon_{xx} = \lim_{\Delta x \to 0} \frac{dx}{\Delta x} = \lim_{\Delta x \to 0} \frac{u_x(x + \Delta x) - u_x(x)}{\Delta x} = \frac{\partial u_x}{\partial x} = u_{x,x}$$

Universal definition of normal AND shear strain components

$$\varepsilon_{ij} = \frac{1}{2} (u_{i,j} + u_{j,i}), \quad i, j = \{x, y, z\}$$

The "strain tensor"

Material Laws

... linking stresses and strains together

- Fully occupied tensor 4th stage for three dimensions 81 parameters (9x9)
- Equality of associated shear stresses

(Boltzmann continua) and shear strains 36 parameters (6x6)

$$\underline{\sigma} = \underline{\underline{E}} \cdot \underline{\underline{\varepsilon}}$$

Maxwell's reciprocity theorem (Betty's theorem)	21 parameter
Orthotrop (trabecular bone)	9 parameter
Transverse Isotropic (cortical bone)	5 parameter
isotropic	2 parameter

- *E* elasticity modulus [Young's modulus]
- v Poisson's ratio (0 ... <u>0.3</u> ... 0.5)

to Remember:

A linear-elastic, isotropic material behavior is two Material parameters in:

eg: E and ν

A general anisotropic material law 21 has material parameters.

Two from:

- **E** modulus of elasticity, Modulus of elasticity [Young's modulus]
- v Poisson's ratio [Poisson's ratio] (0 ... 0.3 ... 0.5)
- G shear modulus [Shear modulus]
- K bulk modulus [Bulk modulus]
- μ , λ Lame constants [Lame Constant]

Complex Material Laws:

- Nonlinearly
- Non-elastic
- anisotropic
- Viscoelastic, type: internal damping
- Viscoelastic, type: memory effect

Simple load cases: 1. Tension and Compresion

Global behavior, stiffness

$$F = \frac{EA}{L_0} \Delta L, \quad k = \frac{EA}{L_0}$$

Stresses in transverse cut

2. Shear

Global behavior, stiffness

$$F = \frac{GA}{L}w, \quad k = \frac{GA}{L}$$

Stresses in transverse cut

3. Bending (cantilever)

Cantilever (bending stiffness El_a, Length L) section

 $\varphi = \frac{L^2}{2EI_a}F + \frac{L}{EI_a}M.$

$$\sigma_{xx}(x,z) = \frac{M + F(x-l)}{I_a} z$$

4. Torsion

Global behavior, stiffness

$$M = \frac{GI_T}{L}\phi, \quad c = \frac{GI_T}{L}$$

Stresses in transverse cut

$$\tau = \frac{M}{I_T} \rho$$

$$\rho = \text{Distance from Center}$$

to Remember:

The bones has a favorable (material saving) shape in torsional and bending stresses.

2nd Moment of Area (Formerly "Moment of inertia") [Second Moment of Area]

Axial Second moment of area (bending)

$$I_{a} = \frac{b \cdot h^{3}}{12} \qquad \qquad I_{a} = \frac{\pi}{64} D_{0}^{4} \qquad \qquad I_{a} = \frac{\pi}{64} (D^{4} - d^{4})$$

Polar moment of area of the second degree (torsion)

$$I_T = I_P = \frac{\pi}{32} D_0^4$$
 $I_T = I_P = \frac{\pi}{32} (D^4 - d^4)$

 $I_{yy} \coloneqq \int r_z^2 dA$

Kinematics and Dynamics

Kinematics

- Describes and analyzes movements without considering forces.
- For rigid bodies a final amount of coordinates satisfy a description.
- Coordinates describe the position of the body at any time.
- In biomechanics: Gait analysis, joint kinematics,

to Remember:

Kinematics = time-varying geometry

Coordinates

- Translationally vs. rotatory
- Absolutely vs. relative

Types of movement: translation, rotation

Instantaneous / Current axis of rotation

- Body Fixed point of the moment has no speed.
- The body rotates instantaneously around this point (about the axis).
- In a pure translation of the instantaneous center is located at infinity.

Example of use for instantaneous center

Kinematic MBS model of C5-C6

Vertebral segment with spinal disc implant

- 3D, idealized geometry
- Intervertebral disc implant
- Belts with tensile forces
- forced Flex-Ex-motion

ightarrow Calculating the instantaneous axis of rotation

- → Aim: Implant is possible
 physiological kinematics show
 So for example, the unbalanced situation
 the instantaneous axis of rotation below
 - allow the disc center.

Flex-Ex

Example of use for instantaneous center

Example of use for instantaneous center

Distance, speed, acceleration

	Path: distance between <u>two</u> Points.	x	m
slation	Speed: The change of the way in time.	$v = \dot{x}$	m sec
Tran	Acceleration: The change of velocity with time (magnitude and / or direction).	$a = \dot{v}$	$\frac{m}{\sec^2}$
	Angle: inclination between <u>two</u> Axes.	arphi	Grad
tion	Angular velocity: The change of angle with time.	$\omega = \dot{\varphi}$	Grad sec
rota	Angular acceleration: The change of anglespeed with time.	$\alpha = \dot{\omega}$	$\frac{\text{Grad}}{\text{sec}^2}$

Dynamics

- Interaction between movement and forces.
- damping, friction . inertial forces,

d'Alembert principle:

- Inertial forces and moments just like other external forces and moments treat. Enter the FKB.
- **dynamic equilibrium** just use as static equilibrium.

$$-F_{Tr} - F_L + F_G = 0$$

$$m\ddot{x} - F_L + mg = 0 \qquad \Rightarrow \ddot{x} = g - \frac{F_L}{m}(\dot{x})$$

Example: "Falling Football" with force of gravity, air resistance was powerful and inertial force

Energy E

unit : Joule	$J = N \cdot m$	
Kinetic energy:	$E_{kin} = \frac{1}{2} \cdot m \cdot v^2$	
Potential energy:	$E_{pot} = m \cdot g \cdot h$	potential energy
	$E_{pot} = \frac{1}{2} \cdot k \cdot x^2$	spring energy

to Remember: Energy is conserved.

Work W

- changes the energy content of systems.
- Forces can perform mechanical work when the force application point moves in the direction of the force.
- At constant force then:

Remember to: Work = force times distance

unit (Such as energy): Joule $\mathbf{J} = \mathbf{N} \cdot \mathbf{m}$

Example lifting work: $W_{Hub} = F_G \cdot h$

Example frictional work: $W_{\text{Re}\,ib} = -F_R \cdot s$

Power P

,

to Remember:

Power = energy per second

unit: Watt $W = \frac{J}{sec} = \frac{N \cdot m}{sec}$

Literature

For technical mechanics: <u>Dankert, H. and Dankert, J.</u>"Engineering Mechanics - computer assistance". <u>Very good textbook</u>

<u>Kessel, S. and Fröhling, D.</u>"Engineering Mechanics / Technical Mechanics" *German-English technical terms in context.*

The kinetics and kinematics of the musculoskeletal system: <u>Nigg, BM and Herzog, W.</u>"Biomechanics of the musculo-skeletal system" *Well, focus: Measurement and Modeling of the aisle.* Technische Mechanik computerunterstützt Statik Festigkeitslehre Kinematik/Kinetik

H. Dankert/J. Dankert

B.G. Teubner Stuttgart

BIOMECHANICS of the Musculo-skeletal System Second Edition

Edited by Benno M. Nigg & Walter Herzog

WILEY

Biomechanical Principles

The Bone Structure

M.Sc. Lucas Engelhardt UZWR

The overriding principle:

Roux (1895) and Wolff (1892): "Functional adaptation"

Pauwels (1965):

"Minimum-maximum principle"

With minimal amount of material (energy) a achieve maximum rigidity and strength

Principle: Bones

→

In bending and torsion tube (ie same mass) stiffer and stronger than a full circle with the same surface area. See.<u>axial and polar</u> <u>moments of area</u>

Principle: Adapted cross-sectional profile

→

Bone cross-section adapted to bending moment.

Principle: Cancellous bone

→ cartilage requires large area. epiphyseal have larger diameter than diaphysis. Compact bone would be waste of material here. See. Lightweight principle "sandwich board".

Principle: Tension band

→ bones "like" no tensile stresses! Train is therefore partially (tapestract illiotibial) accepted. See. Prestressed concrete.

Principle: stem curvature

→

Bone axis is partially tilted so that bone is mainly loaded in compression, rather than bending. As a result, especially the tensile stresses are reduced.

Questions and Feedback

