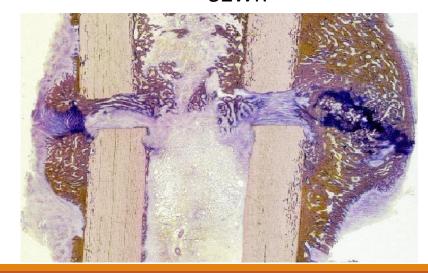
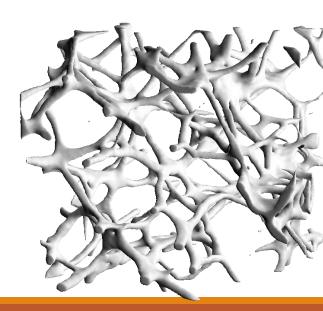
Mechanische Grundlagen der Biomechanik und

Biomechanische Prinzipe des Knochenbaus

M.Sc. Lucas Engelhardt

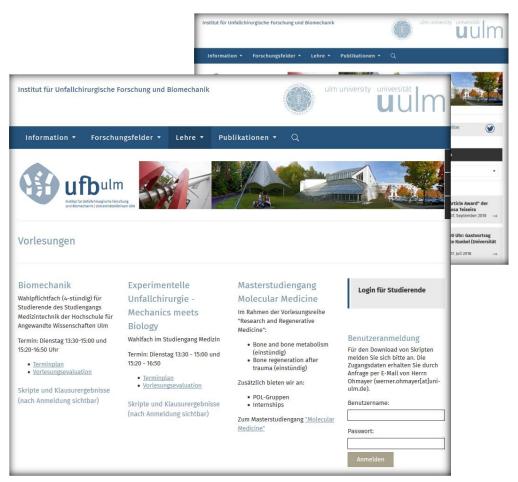
UZWR





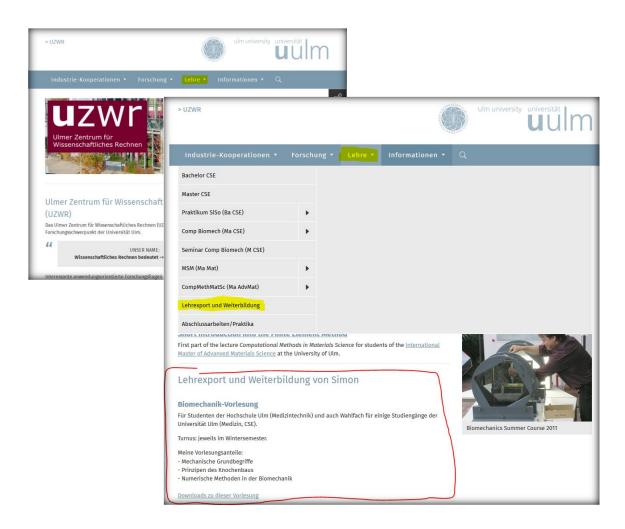
Was ich mache:

www.biomechanics.de

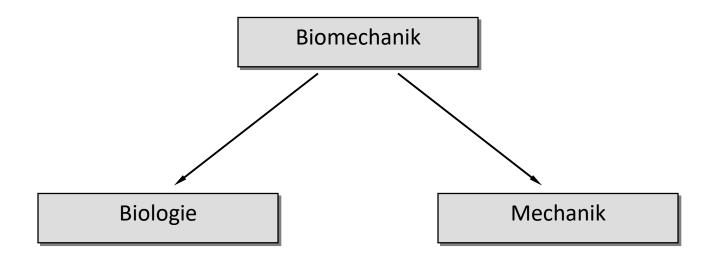


Benutzername: vorlesung
Passwort: Bio2020mechanik

www.uzwr.de



Allgemeines



Ziel der Vorlesung:

Mechanische Grundlagen in anschaulicher Form auffrischen.

Gliederung Vorlesung 1

1.4. Statik starrer Körper

- 1.4.1. Die Kraft
- 1.4.2. Das Schnittprinzip (von Euler)
- 1.4.3. Zusammenfassen und Zerlegen von Kräften
- 1.4.4. Das Moment
- 1.4.5. Moment einer Kraft bezüglich eines Punkts
- 1.4.6. Freikörperbild
- 1.4.7. Statisches Gleichgewicht
- 1.4.8. Rezept zum Lösen von Aufgaben aus der Statik
- 1.4.9. Rechenbeispiel "Bizepskraft"

1.5. Elastostatik / Festigkeitslehre

- 1.5.1. Die Spannung
- 1.5.2. Beispiel: Zugspannung im Muskel
- 1.5.3. Normal- und Schubspannungen
- 1.5.4. Dehnungen
- 1.5.5. Materialgesetze
- 1.5.6. Einfache Lastfälle

1.6. Kinematik

- 1.6.1. Koordinatensysteme
- 1.6.2. Translation und Rotation
- 1.6.3. Weg und Winkel
- 1.6.4. Geschwindigkeit
- 1.6.5. Beschleunigung
- 1.6.6. Zusammenfassung

1.7. Kinetik / Dynamik

- 1.7.1. d'Alembertsches Prinzip
- 1.7.2. Energie, Arbeit, Leistung

Größen, Dimensionen, Einheiten

Standard: ISO 31, DIN 1313

```
Größe = Zahlenwert · Einheit
```

Länge $L = 2 \cdot m = 2 m$

{Größe} = Zahlenwert

[Größe] = Einheit

falsch: Länge L[m]

richtig: Länge L / m

oder Länge L in m

SI-Basiseinheiten (Mechanik):

m (Meter), kg (Kilogramm), s (Sekunde)

Einheitensysteme

Basis	seinhei	iten	Abgeleitete Einheiten					Bemerkung
Länge	Masse	Zeit	Kraft	Spannung	Dichte	Beschl.		
m	kg	sec						SI-Einheiten
mm		sec	N					Organ-Level
								Tissue-Level

```
Zu Zeile 2:
[...] bedeutet Einheit von ...
                                                           1. Wahl:
                                                                       mm
                                                           2. Wahl: N
Zu Zeile 1:
                                                           3. Wahl: sec
[Kraft]
                = [Masse]*[Länge]/[Zeit]<sup>2</sup>
[Spannung]
               = [Kraft]/[Länge]<sup>2</sup>
                                                           [Masse]
                                                                       = ?
               = [Masse]/[Länge]<sup>3</sup>
[Dichte]
                                                           [Kraft]
                                                                       = [Masse]*[Länge]/[Zeit]<sup>2</sup>
                                                           [Masse]
                                                                       = [Kraft]*[Zeit]<sup>2</sup>/[Länge]
                                                                       = (kg*m/sec^2)*sec^2/mm
                                                                       = 1000 \text{ kg}
                                                                       = t
```

Die Kraft

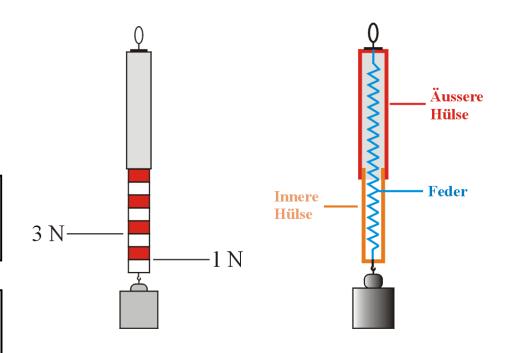
- Der Kraft-Begriff ist aus dem Alltag gut bekannt: Antriebskraft, Muskelkraft, Arbeitskraft, ...
- aber eigentlich axiomatisch, d.h. ohne strenge Definition
- "Kraft" ist eine Erfindung, keine Entdeckung
- Kräfte können nicht direkt gemessen werden.

Zweites Newtonsches Axiom:

Kraft = Masse \cdot Beschleunigung oder $F = m \cdot a$

Zum Merken:

Die Kraft ist die Ursache für eine Beschleunigung (Bewegungsänderung) oder eine Verformung (Dehnung) eines Körpers.



Die Einheit der Kraft

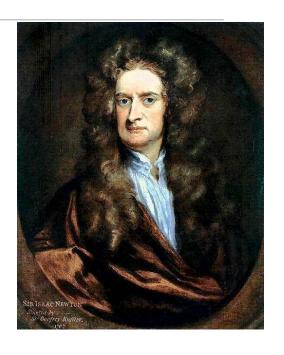
Newton

$$N = kg \cdot m/s^2$$

$$F_G = m \cdot g$$

$$= 0.102 \text{kg} \cdot 9.81 \text{N/kg}$$

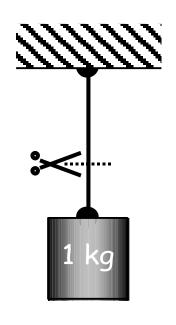
$$= 1 \text{N}$$

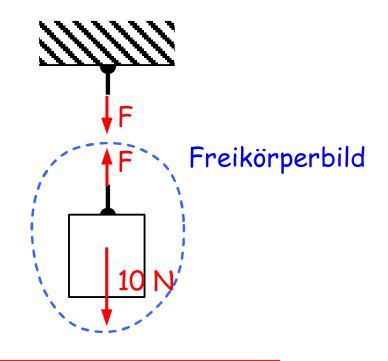


Zum Merken:

Gewichtskraft einer Tafel Schokolade ≈ 1 Newton

Schnittprinzip (Euler) und Freikörperbild





Zum Merken:

Erst schneiden dann Kräfte und Momente eintragen.

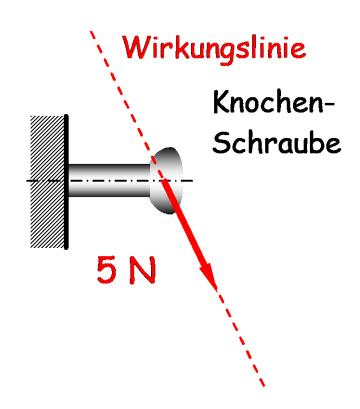
Freikörperbild = völlig freigeschnittenes Teilsystem

Darstellen von Kräften

... mit Pfeilen

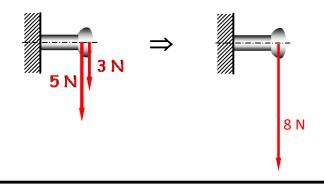
Kräfte sind *vektorielle* Größen

- Betrag
- Richtung
- Richtungssinn

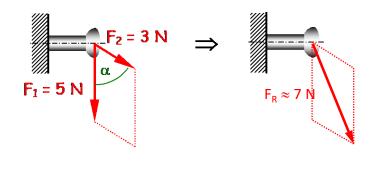


Zusammenfassen und Zerlegen von Kräften

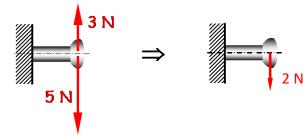
Addition der Beträge



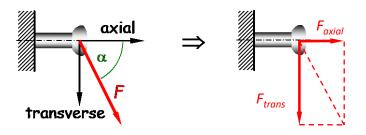
Vectoraddition



Subtraktion der Beträge



Zerlegung in Komponenten



Das Moment

Schlitzschraube mit
SchraubenzieherKlinge (belastet)

Klinge Schraube

M = F-a

Kräftepaar (*F*, *a*)

Moment *M*

Zum Merken:

Ein Moment ist die Ursache für eine Dreh-Beschleunigung (Bewegungsänderung) oder eine (Dreh-) Verformung (Torsion, Biegung) eines Körpers.

Zum Denken:

Moment gleich "Drehkraft"

Das Moment

Einheit des Moments

Newton-Meter

 $N \cdot m = kg \cdot m^2/s^2$

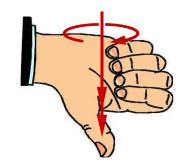
Darstellung von Momenten

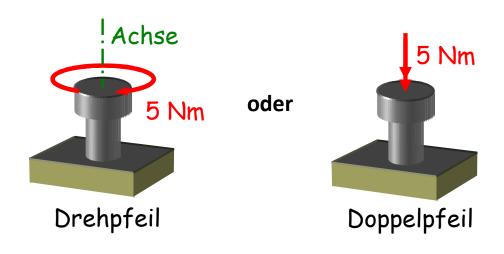
... mit Drehpfeilen oder Doppelpfeilen

Momente sind vektorielle Größen

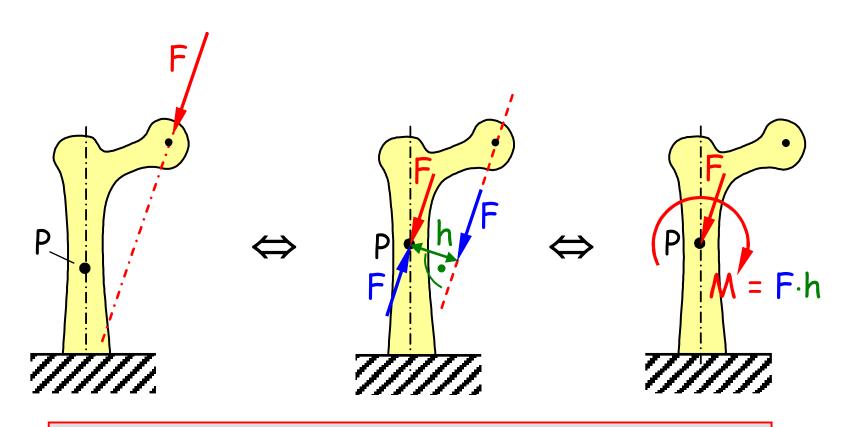
- Betrag
- Richtung
- Richtungssinn

Rechte-Hand-Regel:





Moment einer Kraft bezüglich eines Punktes P



Zum Merken:

Moment = Kraft mal Hebelarm (Hebelarm senkrecht zur Wirkungslinie)

Statisches Gleichgewicht

Wichtig:

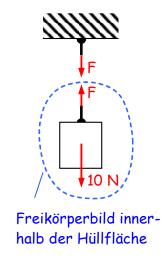
Gleichgewicht nur an "Freikörperbildern"

Für ein ebenes (2D) Problem gelten drei Gleichungen:

Summealler Kräfte in x - Richtung: $F_{1,x} + F_{2,x} + \dots = 0$,

Summealler Kräfte in y-Richtung: $F_{1,y} + F_{2,y} + ... = 0$,

Summealler Momente bezüglich P: $M_{1,z}^P + M_{2,z}^P + ... = 0.$



(Für ein räumliches (3D) Problem gelten sechs Gleichungen)

Lösungsrezept

Schritt 1: Modellbildung. Generieren eines Ersatzmodells (Skizze mit Geometrie, Lasten, Einspannungen). Weglassen unwichtiger Dinge. Das "reale System" muss abstrahiert werden.

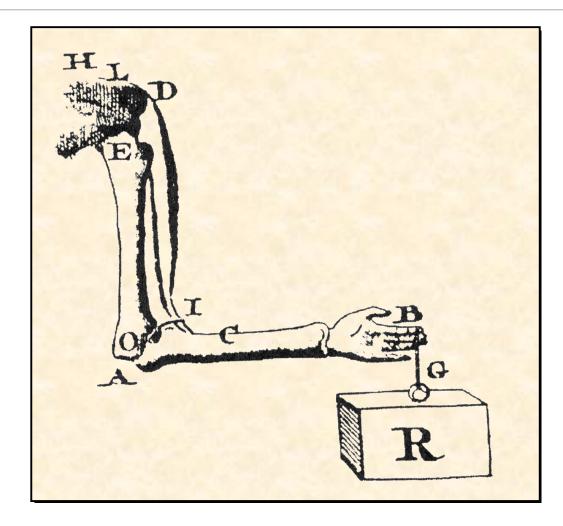
Schritt 2: Schneiden, Freikörperbilder. System aufschneiden, Schnittkräfte und Schnittmomente eintragen,

Schritt 3: Gleichgewicht. Kräfte- und Momentengleichgewichte für Freikörper anschreiben.

Schritt 4: Gleichungen lösen.

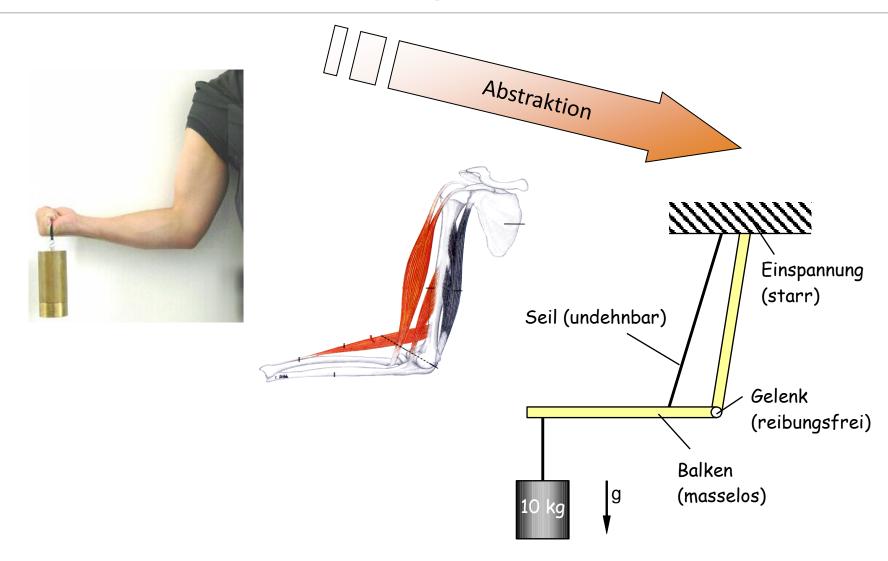
Schritt 5: Ergebnis deuten, verifizieren, mit Experiment vergleichen; Plausibilität prüfen.

Klassisches Rechenbeispiel: "Bizeps-Kraft"

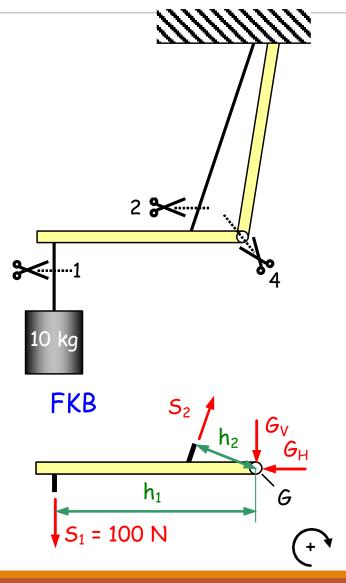


Aus: "De Motu Animalium" von G.A. BORELLI (1608-1679)

Schritt 1: Modellbildung



Schritt 2: Schneiden und Freikörperbilder



Schritt 3: Gleichgewicht

Schritt 4: Gleichungen lösen

Summe aller Momente bezügl. Punkt G = 0

$$-S_1 \cdot h_1 + S_2 \cdot h_2 \stackrel{!}{=} 0$$

$$-100 \,\mathrm{N} \cdot 35 \,\mathrm{cm} + S_2 \cdot 5 \,\mathrm{cm} \stackrel{!}{=} 0$$

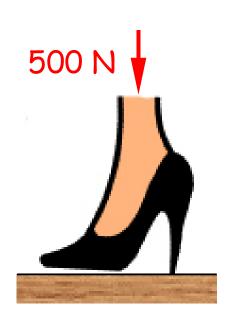
$$\Rightarrow S_2 = 100 \,\mathrm{N} \cdot \frac{35 \,\mathrm{cm}}{5 \,\mathrm{cm}} = \frac{700 \,\mathrm{N}}{5 \,\mathrm{cm}}$$

Das ist das siebenfache der Last!

Elastostatik

FESTIGKEITSLEHRE

Spannungen



Zum Merken:

Spannung = "verschmierte" Schnittkraft,

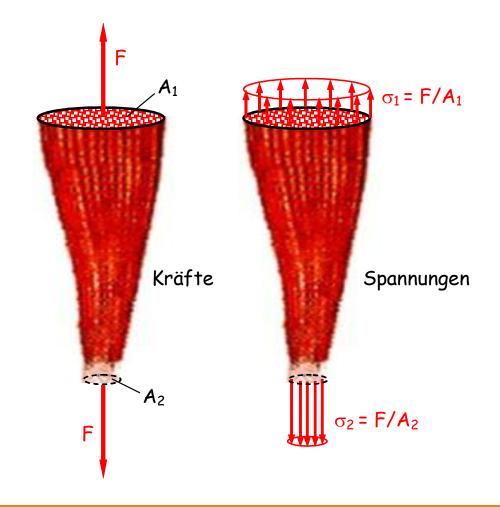
Spannung = Kraft pro Fläche oder σ = F/A

Einheit der Spannung

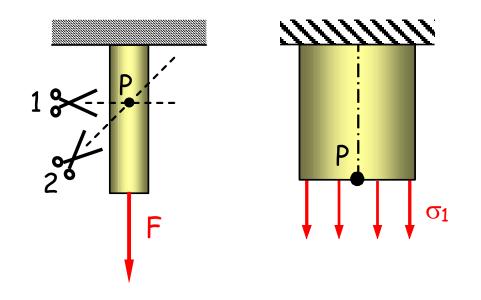
Mega-Pascal: $1 \text{ MPa} = 1 \text{ N/mm}^2$

Pascal: $1 \text{ Pa} = 1 \text{ N/m}^2$

Beispiel: Zugspannung im Muskel

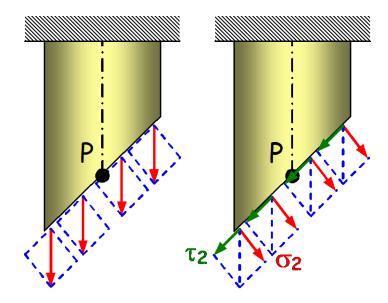


Normal- und Schubspannungen



Zugstab

Schnitt 1: mit Normalspannung σ_1



Schnitt 2: mit Normalspannung σ_2 und Schubspannung τ_2

Normal- und Schubspannungen

Zum Merken:

Erst Schnitt, dann Art und Größe der Spannung.

Normalspannungen (Zug- und Drucksp.) senkrecht zur Schnittfläche

Schubspannungen stehen parallel zur Schnittfläche.

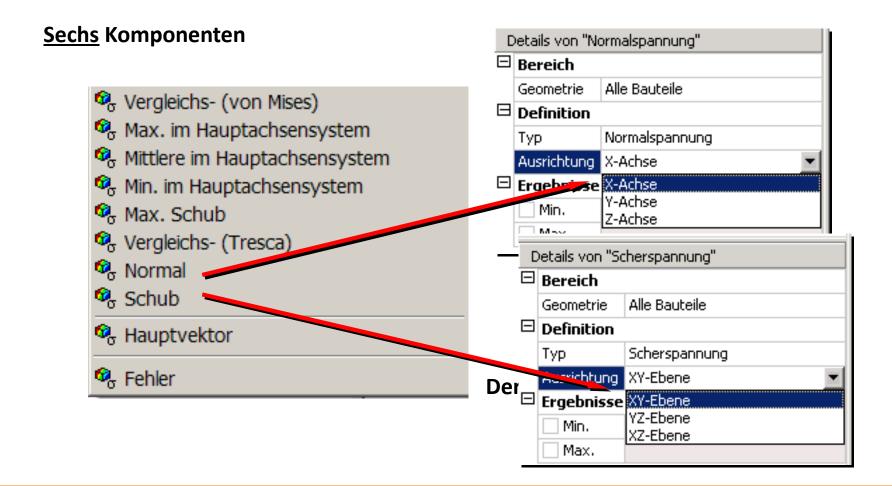
Allgemeiner (3D) Spannungszustand ...

... in einem Punkt des Körpers:

- <u>Drei</u> Spannungskomponenten in einem Schnitt (Normalsp., 2x Schubsp.)
 mal
- <u>Drei</u> Schnitte (z.B. frontal, sagittal, transversal) gleich
- <u>Neun</u> Spannungskomponenten, die den vollständigen 3d Spannungszustand in einem Punkt im Körper kennzeichnen.
- Sechs Komponenten davon sind unabhängig ("Gleichheit der Schubsp.")

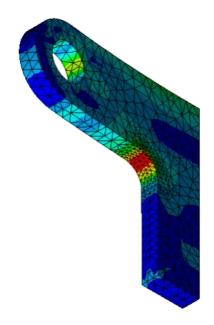
$$\underline{\underline{\sigma}} = \begin{bmatrix} \sigma_{xx} & \sigma_{xy} & \sigma_{xz} \\ \sigma_{yx} & \sigma_{yy} & \sigma_{yz} \\ \sigma_{zx} & \sigma_{zy} & \sigma_{zz} \end{bmatrix} = \begin{bmatrix} \sigma_{xx} & \tau_{xy} & \tau_{xz} \\ \tau_{xy} & \sigma_{yy} & \tau_{yz} \\ \tau_{xz} & \tau_{yz} & \sigma_{zz} \end{bmatrix}$$
Der "Spannungstensor"

Allgemeiner Spannungszustand



Darstellung des Spannungszustandes

- Problem: Will man bunte Bilder machen, muss man sich für eine Komponente entscheiden.
- Aber welche soll man nehmen?
- Man kann statt einer einzelnen auch "Mischungen" der Komponentenverwenden.
- So genannte "Invarianten" sind nichts weiter als besonders "schlaue"
 Mischungen bei denen unabhängig von der Orientierung des
 Koordinatensystems das selbe rauskommt: "Hauptspannungen", "VonMises-Spannung", "Hydrostatischer Spannungsanteil", "OktaederSchubspannung", …



```
Vergleichs- (von Mises)
```

Max. Schub

Vergleichs- (Tresca)

Normal 9

Schub

$$\sigma_{Mises} = \sqrt{\sigma_{xx}^{2} + \sigma_{yy}^{2} + \sigma_{zz}^{2} - \sigma_{xx}\sigma_{yy} - \sigma_{xx}\sigma_{zz} - \sigma_{yy}\sigma_{zz} + 3\tau_{xy}^{2} + 3\tau_{xz}^{2} + 3\tau_{yz}^{2}}$$

Max. im Hauptachsensystem

[♠] Mittlere im Hauptachsensystem

Dehnungen

DETAILS

• **Seiltyp:** Einfachseil

• **Durchmesser:** 10.5 mm

• Imprägnierung: ohne

• **Gewicht:** 72 g pro Meter

• Fangstoß: 9.6 kN

• Anz. Stürze: 10

• Mantelverschiebung: 0 mm

• Dehnung statisch: 7.7 %

• Dehnung dynamisch: 32 %

• Knotbarkeit: 0.7

• Farbe: mix

Zum Merken:

Dehnung = relative Längenänderung (Winkeländerung)

Dehnung

Definition der Dehnung

Dehnung
$$\coloneqq \frac{\text{Längenänderung}}{\text{Ursprungslänge}}$$

$$\varepsilon \coloneqq \frac{\Delta L}{L_0}$$

Einheit der Dehnung

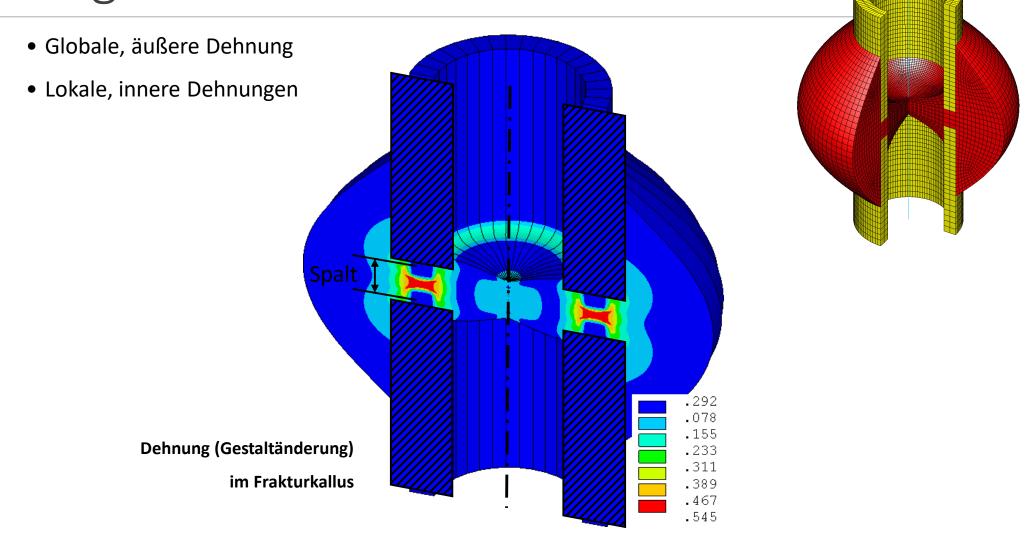
Ohne Einheit, also z.B.:

1

1/100 = %

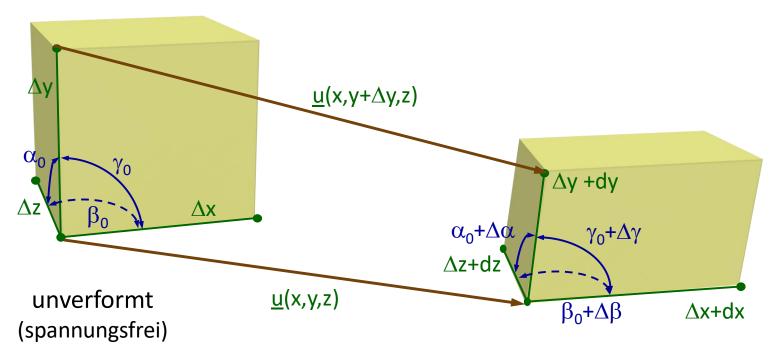
 $1/1.000.000 = \mu\epsilon$ (micro strain) = 0,1 %

Dehnungen



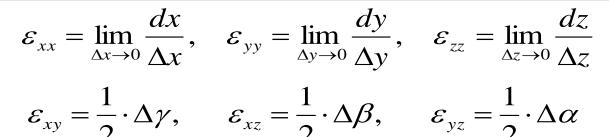
Definition des lokalen Dehnungszustands

Infinitesimales Testvolumen $\Delta V = \Delta x \bullet \Delta y \bullet \Delta z$



Verschoben und verformt (Spannungen an allen Oberflächen)

Definition des lokalen Dehnungszustands



Längenänderung aus Verschiebungszustand u

$$\varepsilon_{xx} = \lim_{\Delta x \to 0} \frac{dx}{\Delta x} = \lim_{\Delta x \to 0} \frac{u_x(x + \Delta x) - u_x(x)}{\Delta x} = \frac{\partial u_x}{\partial x} = u_{x,x}$$

Universelle Definition der Dehnungskomponenten

$$\varepsilon_{ij} = \frac{1}{2} \left(u_{i,j} + u_{j,i} \right), \quad i, j = \{x, y, z\}$$

$$\underline{\mathcal{E}} = \begin{bmatrix} \mathcal{E}_{xx} & \mathcal{E}_{xy} & \mathcal{E}_{xz} \\ \mathcal{E}_{xy} & \mathcal{E}_{yy} & \mathcal{E}_{yz} \\ \mathcal{E}_{xz} & \mathcal{E}_{yz} & \mathcal{E}_{zz} \end{bmatrix}$$
 Der "Dehnungstensor"

Werkstoffgesetze

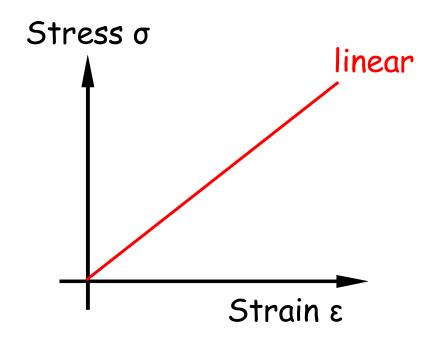
... verknüpfen Spannungen und Dehnungen miteinander

Lineares Werkstoffgesetz:

$$\sigma = E \cdot \varepsilon$$

$$\underline{\sigma} = \underline{E} \cdot \underline{\varepsilon}$$

$$\sigma_{ij} = E_{ijkl} \cdot \varepsilon_{kl}$$



- Voll besetzter Tensor 4. Stufe f
 ür drei Dimensionen
- 81 Parameter (9x9)
- Gleichheit einander zugeordneter Schubspannungen (Boltzmann Kontinua) und Scherdehnungen
- 36 Parameter (6x6)

$$\underline{\sigma} = \underline{\underline{E}} \cdot \underline{\varepsilon}$$

- Maxwellscher Reziprozitätssatz (Satz von Betty)
- Orthotrop (trabekulärer Knochen)
- Transverse Isotrop (kortikaler Knochen)
- Isotrop

- 9 Parameter
- 5 Parameter
- 2 Parameter

$$\begin{bmatrix} \sigma_{xx} \\ \sigma_{yy} \\ \sigma_{zz} \\ \tau_{xy} \\ \tau_{yz} \\ \tau_{zx} \end{bmatrix} = \frac{E}{(1+v)\cdot(1-2v)} \cdot \begin{bmatrix} (1-v) & v & v & 0 & 0 & 0 \\ & (1-v) & v & 0 & 0 & 0 \\ & & (1-v) & 0 & 0 & 0 \\ & & & \frac{(1-2v)}{2} & 0 & 0 \\ & & & & \frac{(1-2v)}{2} & 0 \\ sym & & & & \frac{(1-2v)}{2} \end{bmatrix} \cdot \begin{bmatrix} \varepsilon_{xx} \\ \varepsilon_{yy} \\ \varepsilon_{zz} \\ \gamma_{xy} \\ \gamma_{yz} \\ \gamma_{zx} \end{bmatrix}$$

- Ε - Elastizitätsmodul, E-Modul [Young's modulus]
- Querkontraktionszahl [Poisson's ratio] (0 ... 0.3 ... 0.5)

Zum Merken:

Ein linear-elastisches, isotropes Werkstoffverhalten wird durch zwei Werkstoffparameter gekennzeichnet:

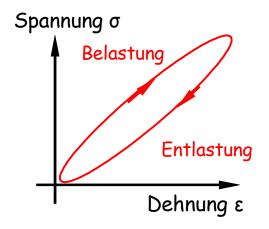
z.B.: E und ν

Ein allgemeines anisotropes Werkstoffgesetz besitzt 21 Werkstoffparameter.

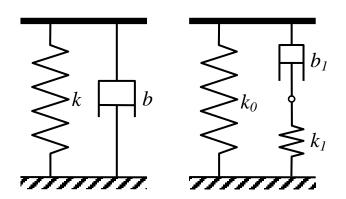
Zwei von:

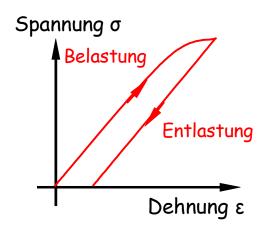
- *E* Elastizitätsmodul, E-Modul [Young's modulus]
- v Querkontraktionszahl [Poisson's ratio] (0 ... <u>0.3</u> ... 0.5)
- *G* Schubmodul [Shear modulus]
- K Kompressionsmodul [Bulk modulus]
- μ , λ Lamesche Konstanten [Lame Constants]

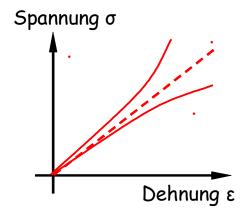
Kompliziertere Werkstoffgesetze:

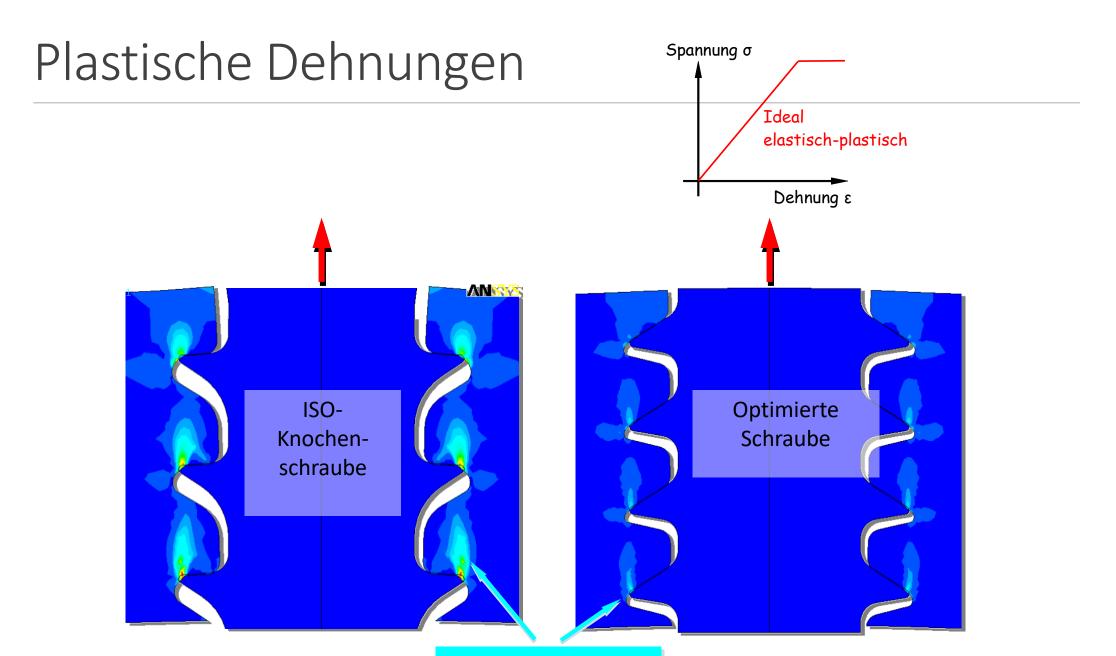


- Nicht-linear
- Nicht-elastisch
- Anisotrop
- Viskoelastisch, Typ: innere Dämpfung
- Viskoelastisch, Typ: Gedächtniseffekt

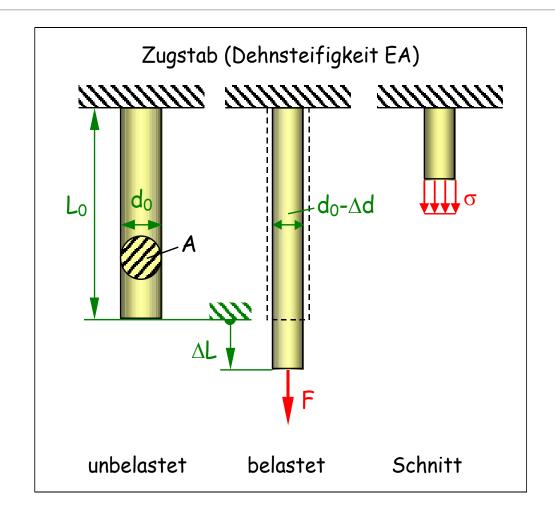






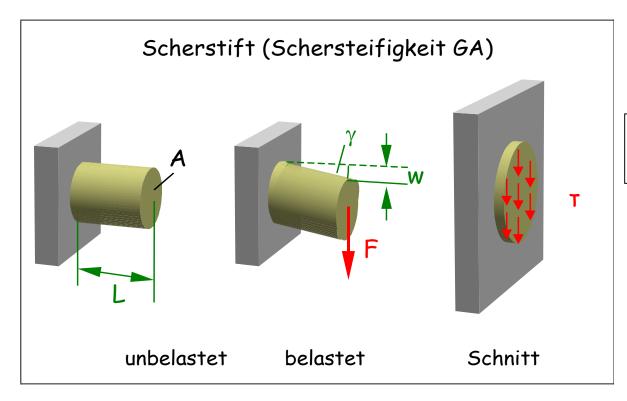


Einfache Lastfälle: 1. Zug und Druck



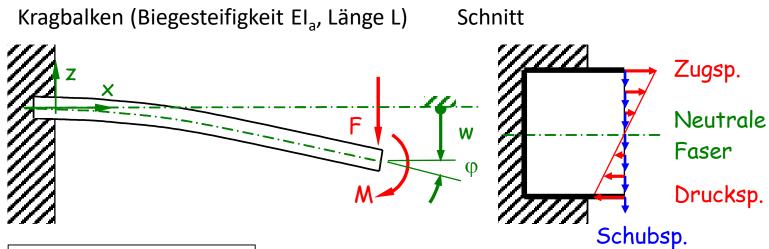
$$F = \frac{EA}{L_0} \Delta L, \quad k = \frac{EA}{L_0}$$

2. Scherung



$$F = \frac{GA}{L}w, \quad k = \frac{GA}{L}$$

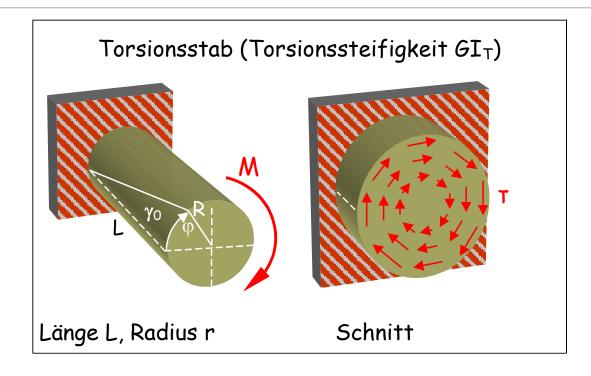
3. Biegung (Kragbalken)



$$w = \frac{L^3}{3EI_a}F + \frac{L^2}{2EI_a}M,$$

$$\varphi = \frac{L^2}{2EI_a}F + \frac{L}{EI_a}M.$$

4. Torsion

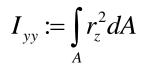


$$M = \frac{GI_T}{L} \varphi, \quad c = \frac{GI_T}{L}$$

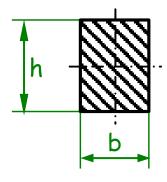
Zum Merken:

Der Röhrenknochen hat eine günstige (materialsparende) Gestalt bei Torsionsund Biegebeanspruchungen.

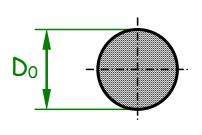
Flächenmoment 2. Grades (früher: "Flächenträgheitsmomente") [Second Moment of Area] $I_{yy} := \int_A r_z^2 dA$



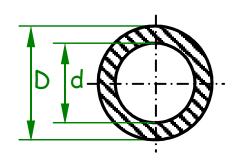
Rechteck:



Vollkreis:



Rohr:



Axiales Flächenmoment zweiten Grades (Biegung)

$$I_a = \frac{b \cdot h^3}{12}$$

$$I_a = \frac{\pi}{64} D_0^4$$

$$I_a = \frac{b \cdot h^3}{12}$$
 $I_a = \frac{\pi}{64} D_0^4$ $I_a = \frac{\pi}{64} (D^4 - d^4)$

Polares Flächenmoment zweiten Grades (Torsion)

$$I_T = I_P = \frac{\pi}{32} D_0^4$$
 $I_T = I_p = \frac{\pi}{32} (D^4 - d^4)$

Kinematik und Dynamik

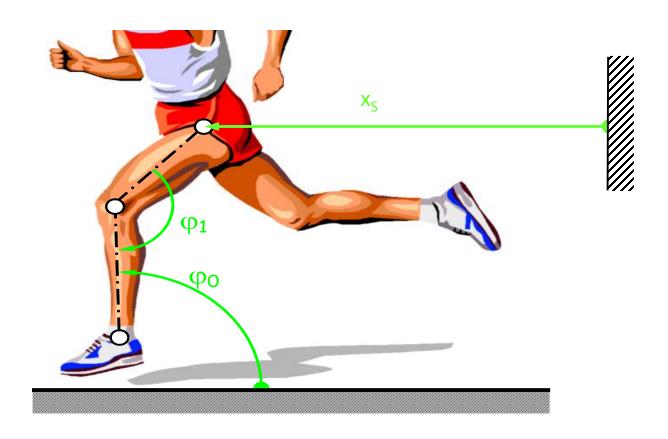
Kinematik

- Beschreibt und analysiert Bewegungen, ohne Kräfte zu betrachten.
- Bei starren Körpern genügen endlich viele Koordinaten zur Beschreibung.
- Koordinaten beschreiben die Lage der Körper zu jedem Zeitpunkt.
- In der Biomechanik: Ganganalyse, Gelenkkinematik.

Zum Merken:

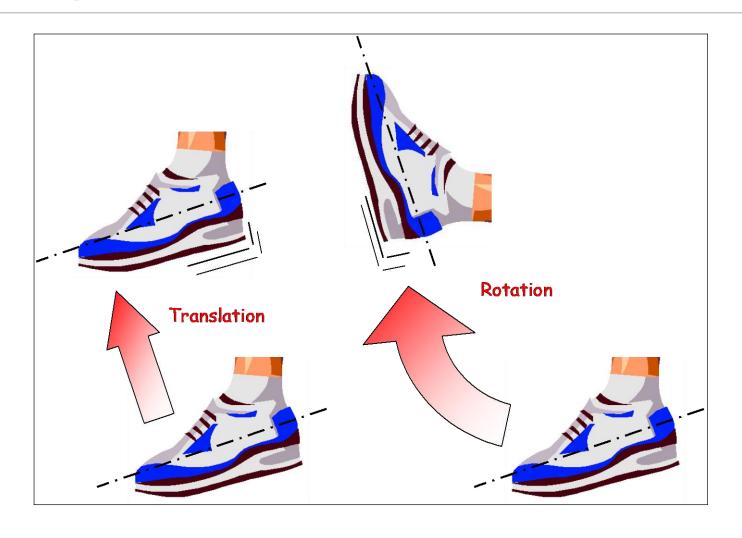
Kinematik = zeitveränderliche Geometrie

Koordinaten



- Translatorisch vs. rotatorisch
- Absolut vs. relativ

Bewegungsarten: Translation, Rotation

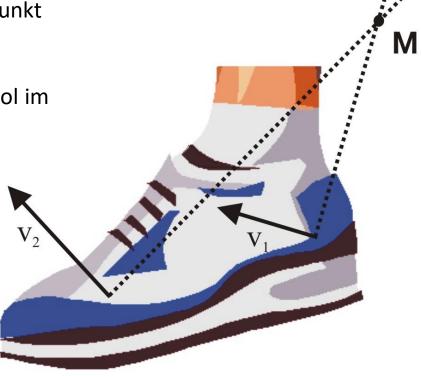


Momentanpol / Momentane Drehachse

 Körperfester Punkt der augenblicklich keine Geschwindigkeit hat.

• Der Körper dreht sich augenblicklich um diesen Punkt (um diese Achse).

• Bei einer reinen Translation liegt der Momentanpol im Unendlichen.



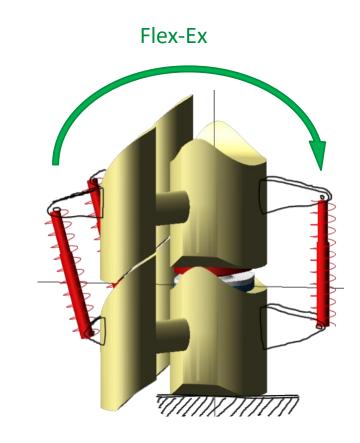
Anwendungsbeispiel zum Momentanpol

Kinematisches MKS-Modell von C5-C6-Wirbelsegment mit Bandscheibenimplantat

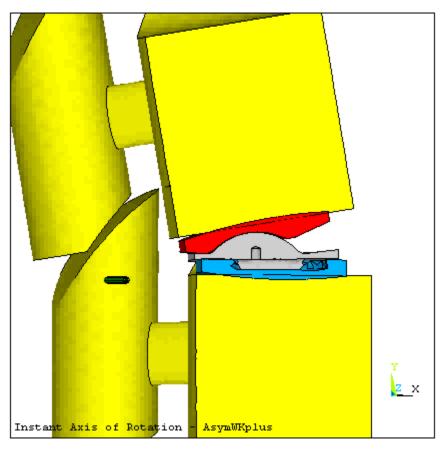
- 3D, idealisierte Geometrie
- Bandscheibenimplantat
- Bänder mit Zugkräften
- Erzwungene Flex-Ex-Bewegung

→ Berechnung der Momentanen Drehachse

→ Ziel: Implantat soll möglichst physiologische Kinematik zeigen, also z.B. die unsymmetrische Lage der momentanen Drehachse unterhalb des Bandscheibenzentrums ermöglichen.

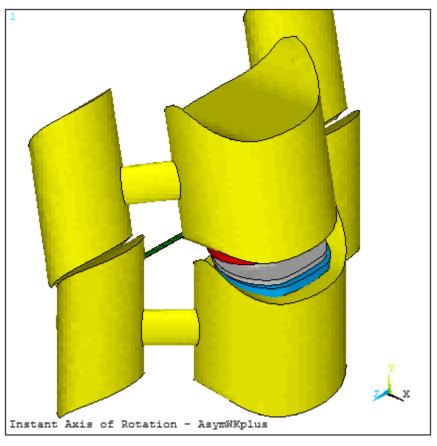


Anwendungsbeispiel zum Momentanpol



ANSYS 13.0
MAR 18 2011
07:21:01
DISPLACEMENT
STEP=7
SUB =1
TIME=1.03
PowerGraphics
EFACET=1
AVRES=Mat
DMX =15.3965

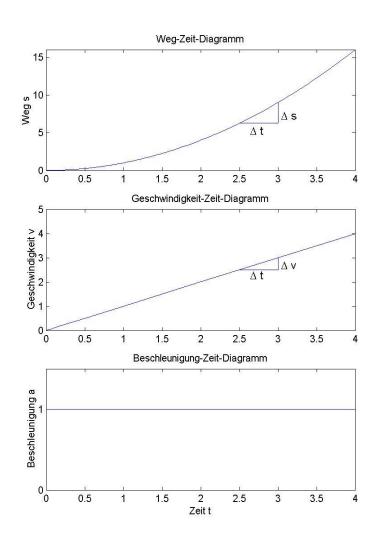
Anwendungsbeispiel zum Momentanpol



ANSYS 13.0
MAR 18 2011
11:44:34
DISPLACEMENT
STEP=7
SUB =1
TIME=1.03
PowerGraphics
EFACET=1
AVRES=Mat
DMX =15.3965

Weg, Geschwindigkeit, Beschleunigung

Translation	Weg: Abstand zwischen <u>zwei</u> Punkten.	$\boldsymbol{\mathcal{X}}$	m
	Geschwindigkeit: Die Änderung des Weges mit der Zeit.	$v = \dot{x}$	m sec
	Beschleunigung: Die Änderung der Geschwindigkeit mit der Zeit (Betrag und/oder Richtung).	$a = \dot{v}$	$\frac{\mathrm{m}}{\mathrm{sec}^2}$
Rotation	Winkel: Neigung zwischen <u>zwei</u> Achsen.	arphi	Grad
	Winkelgeschwindigkeit: Die Änderung des Winkels mit der Zeit.	$\omega = \dot{\varphi}$	Grad sec
	Winkelbeschleunigung: Die Änderung der Winkel- geschwindigkeit mit der Zeit.	$\alpha = \dot{\omega}$	$\frac{\text{Grad}}{\text{sec}^2}$

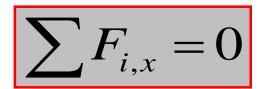


Dynamik

- Wechselwirkung zwischen Bewegung und Kräften.
- Dämpfungs-, Reibungs-, Trägheitskräfte.

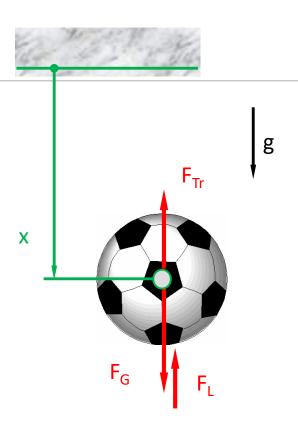
d'Alembertsches Prinzip:

- Trägheitskräfte und -momente genau wie sonstigen äußere Kräfte und Momente behandeln. Im FKB eintragen.
- **Dynamisches Gleichgewicht** genau so wie statisches Gleichgewicht verwenden.



$$-F_{Tr} - F_L + F_G = 0$$

$$m\ddot{x} - F_L + mg = 0$$
 $\Rightarrow \ddot{x} = g - \frac{F_L}{m}(\dot{x})$



Beispiel: "Fallender Fußball" mit Gewichtskraft, Luftwiderstandskraft und Trägheitskraft

Energie E

Einheit: Joule

$$J = N \cdot m$$

Kinetische Energie:

$$E_{kin} = \frac{1}{2} \cdot m \cdot v^2$$

Potentielle Energie:

$$E_{pot} = m \cdot g \cdot h$$

Lageenergie

$$E_{pot} = \frac{1}{2} \cdot k \cdot x^2$$

Federenergie

Zum Merken:

Energie bleibt erhalten.

Arbeit W

- ändert den Energieinhalt von Systemen.
- Kräfte können mechanische Arbeit verrichten, wenn sich der Kraftangriffspunkt in Richtung der Kraft verschiebt.
- Bei konstanter Kraft gilt dann:

Zum Merken:

Arbeit = Kraft mal Weg

Einheit (wie Energie): Joule

$$J = N \cdot m$$

Beispiel Hubarbeit:

$$W_{Hub} = F_G \cdot h$$

Beispiel Reibungsarbeit:

$$W_{\text{Re}\,ib} = -F_R \cdot S$$

Leistung P

Zum Merken:

Leistung = Arbeit pro Zeit

Einheit: Watt

$$W = \frac{J}{\sec} = \frac{N \cdot m}{\sec}$$

Literatur

Zur Technischen Mechanik:

<u>Dankert, H. und Dankert, J.</u>: "Technische Mechanik - computerunterstützt".

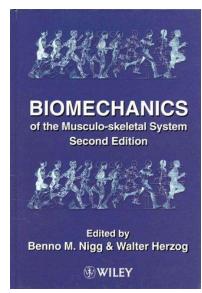
Sehr gutes Lehrbuch

Kessel, S. und Fröhling, D.: "Technische Mechanik / Technical Mechanics" Deutsch-englische Fachbegriffe im Kontext.

Zur Kinetik und Kinematik des Bewegungsapparates:

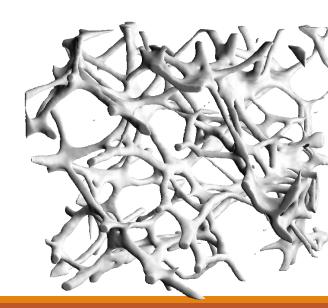
Nigg, B.M. und Herzog, W.: "Biomechanics of the Musculo-skeletal System"

Gut, Schwerpunkte: Messung und Modellierung des Gangs.



Biomechanische Prinzipien des Knochenbaus

M.Sc. Lucas Engelhardt UZWR



Übergeordnetes Prinzip:

Roux (1895) und Wolff (1892): "Funktionelle Anpassung"

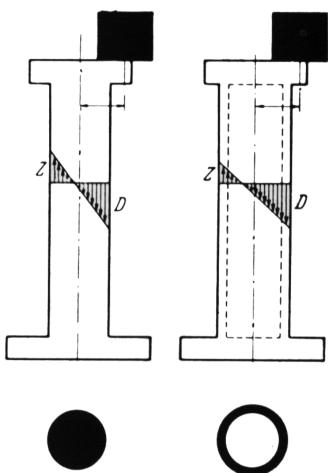
Pauwels (1965):

"Minimum-Maximum-Prinzip"

Mit minimalem Aufwand an Material (Energie) eine maximale Steifigkeit und Festigkeit erreichen

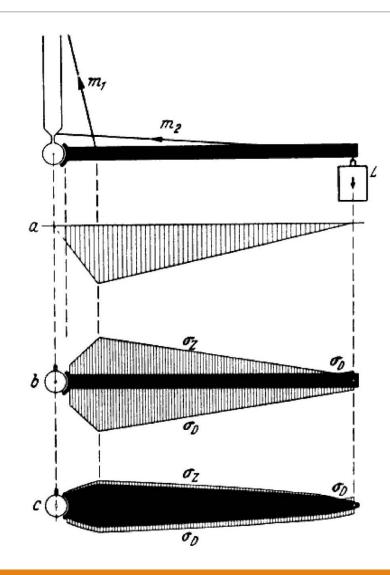
Prinzip: Röhrenknochen

Bei Biegung und Torsion ist Röhre bei gleichem Flächeninhalt (d.h. gleiche Masse) steifer und fester als Vollkreis. Vgl. axiale und polare Flächenmomente

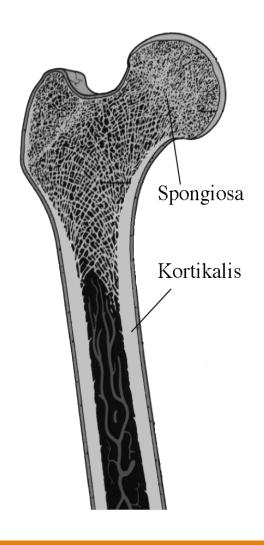


Prinzip: Angepasster Querschnittsverlauf

Knochenquerschnitt an Biegemomentenverlauf angepasst.

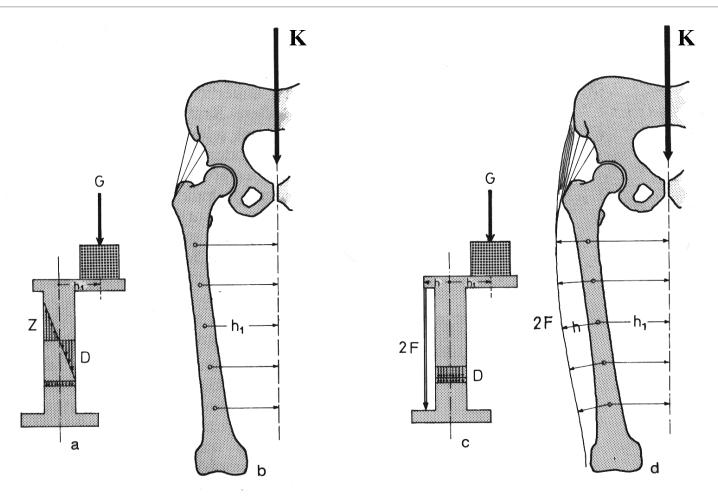


Prinzip: Spongiöser Knochen



→ Knorpel erfordert große Fläche. Epiphysen habe größeren Durchmesser als Diaphysen. Kompakter Knochen wäre hier Materialverschwendung. Vgl. Leichtbauprinzip "Sandwichplatte".

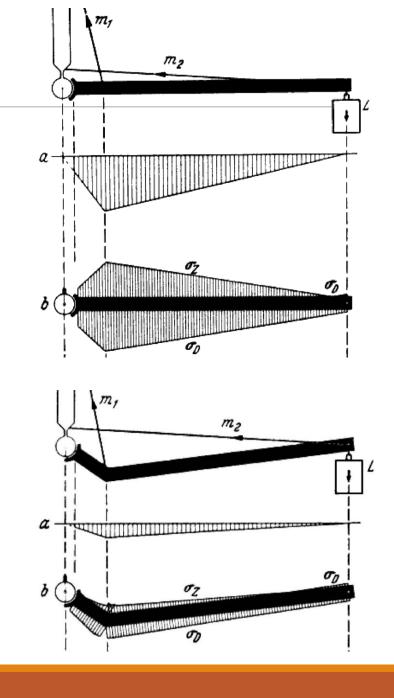
Prinzip: Zuggurtung



→ Knochen "mag" keine Zugspannungen! Zug wird daher teilweise von Bändern (tractus illio-tibialis) übernommen. Vgl. Spannbeton.

Prinzip: Schaftkrümmung

Knochenachse wird bereichsweise so gekippt, dass Knochen hauptsächlich auf Druck belastet wird, und weniger auf Biegung. In der Folge werden vor allem die Zugspannungen reduziert.



Fragen und Feedback

