Mechanische Grundlagen der Biomechanik und

Biomechanische Prinzipe des Knochenbaus

Dr.-Ing. Ulrich Simon UZWR, Universität Ulm

www.biomechanics.de

Biology

Wahlfach im Studiengang Medizin

Termin: Dienstag 13:30 - 15:00 und 15:20 - 16:50

• Terminplan

Termin: Dienstag 13:30-15:00 und

Vorlesungsevaluation

(nach Anmeldung sichtbar)

Skripte und Klausurergebnisse

15:20-16:50 Uhr

Terminplan

Vorlesungsevaluation

Skripte und Klausurergebnisse (nach Anmeldung sichtbar)

- Medicine": · Bone and bone metabolism
- (einstündig) . Bone regeneration after
- trauma (einstündig)
- Zusätzlich bieten wir an:
- POL-Gruppen Internships

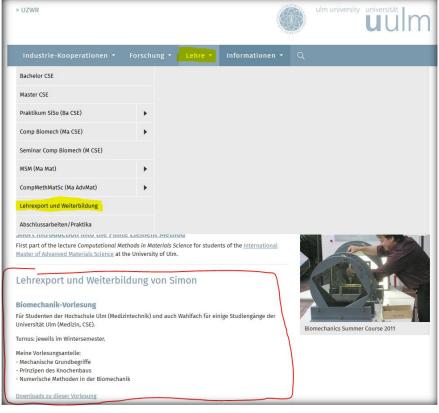
Zum Masterstudiengang "Molecular Medicine"

Benutzeranmeldung

Für den Download von Skripten melden Sie sich bitte an. Die Zugangsdaten erhalten Sie durch Anfrage per E-Mail von Herrn Ohmayer (werner.ohmayer[at]uniulm.de).

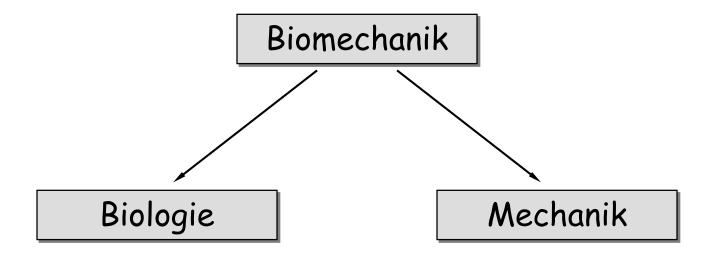
Benutzername:

www.uzwr.de



Allgemeines

<u>Allgemeines</u>



Ziel der Vorlesung:

Mechanische Grundlagen in anschaulicher Form auffrischen.

Gliederung

<u>Teil 1</u>

Statik starrer Körper

- Die Kraft
- Das Moment
- Freikörperbild
- Statisches Gleichgewicht

Elastostatik

- Spannungen
- Dehnungen
- Materialgesetze

Kinematik und Dynamik

- Weg und Winkel, Geschw., Beschl.
- Momentane Drehachse
- d'Alembertsches Prinzip
- Energie, Arbeit, Leistung

Teil 2

Biomech. Prinzipe des Knochenbaus

- Minimum-Maximum-Prinzip
- Prinzip Röhrenknochen
- Prinzip Querschnittsverlauf
- Prinzip Spongiöser Knochen
- Prinzip Zuggurtung
- Prinzip Schaftkrümmung

Größen, Dimensionen, Einheiten

Standard: ISO 31, DIN 1313

Größe = Zahlenwert · Einheit

 $L\ddot{a}nge L = 2 \cdot m = 2 m$

{Größe} = Zahlenwert

[Größe] = Einheit

Geschw. v in m/sec Fänge T in mm

falsch: Länge L[m]

richtia: Länge L/m

oder Länge Lin m

SI-Basiseinheiten (Mechanik):

m (Meter), kg (Kilogramm), s (Sekunde)

<u>Einheitensysteme</u>

Basis	seinhei	iten	Abgeleitete Einheiten					Bemerkung
Länge	Masse	Zeit	Kraft	Spannung	Dichte	Beschl.		
m	kg	sec						SI-Einheiten
mm		sec	N					Organ-Level
								Tissue-Level

```
[...] bedeutet Einheit von ...

Zu Zeile 2:

1. Wahl: mm

2. Wahl: N

3. Wahl: sec

[Spannung] = [Kraft]/[Länge]²

[Dichte] = [Masse]/[Länge]³

...

[Masse] = ?

[Kraft] = [Masse]*[Länge]/[Zeit]²

[Masse] = [Kraft]*[Zeit]²/[Länge]

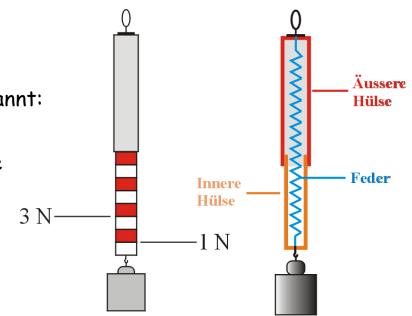
= (kg*m/sec²)*sec²/ mm

= 1000 kg
```

Statik starrer Körper

Die Kraft

- Der Kraft-Begriff ist aus dem Alltag gut bekannt: Antriebskraft, Muskelkraft, Arbeitskraft, ...
- aber eigentlich axiomatisch, d.h. ohne strenge Definition
- "Kraft" ist eine Erfindung, keine Entdeckung
- Kräfte können nicht direkt gemessen werden.



Zweites Newtonsches Axiom:

Kraft = Masse \cdot Beschleunigung oder $F = m \cdot a$

Zum Merken:

Die Kraft ist die Ursache für eine Beschleunigung (Bewegungsänderung) oder eine Verformung Dehnung) eines Körpers.

Die Einheit der Kraft

Newton

$$N = kg \cdot m/s^2$$

$$F_G = m \cdot g$$

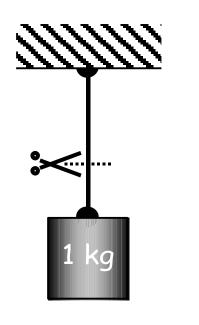
$$= 0,102 \text{ kg} \cdot 9,81 \text{ N/kg}$$

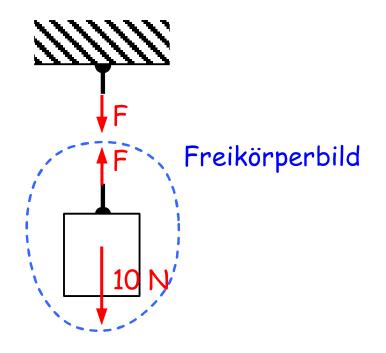
$$= 1 \text{ N}$$

Zum Merken:

Gewichtskraft einer Tafel Schokolade ≈ 1 Newton

Schnittprinzip (Euler) und Freikörperbild





Zum Merken:

Erst schneiden dann Kräfte und Momente eintragen.

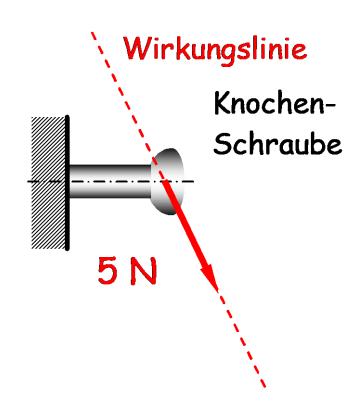
Freikörperbild = völlig freigeschnittenes Teilsystem

Darstellen von Kräften

... mit Pfeilen

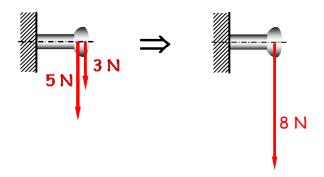
Kräfte sind vektorielle Größen

- Betrag
- Richtung
- Richtungssinn

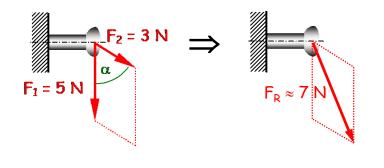


Zusammenfassen und Zerlegen von Kräften

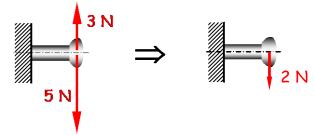
Addition der Beträge



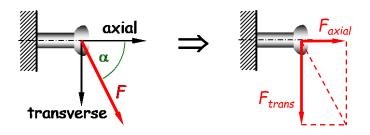
Vectoraddition



Subtraktion der Beträge

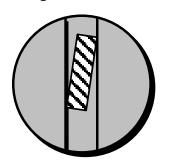


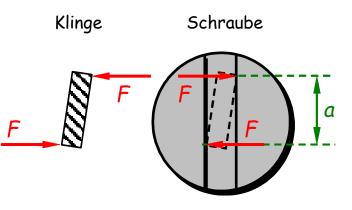
Zerlegung in Komponenten

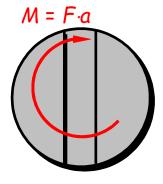


Das Moment

Schlitzschraube mit Schraubenzieher-Klinge (belastet)







Moment M

Zum Merken:

Ein Moment ist die Ursache für eine Dreh-Beschleunigung (Bewegungsänderung) oder eine (Dreh-) Verformung (Torsion, Biegung) eines Körpers.

Zum Denken:

Moment gleich "Drehkraft"

Einheit des Moments

Newton-Meter

 $N \cdot m = kg \cdot m^2/s^2$

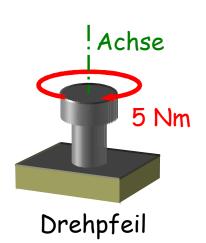
Rechte-Hand-Regel:

Darstellung von Momenten

... mit Drehpfeilen oder Doppelpfeilen

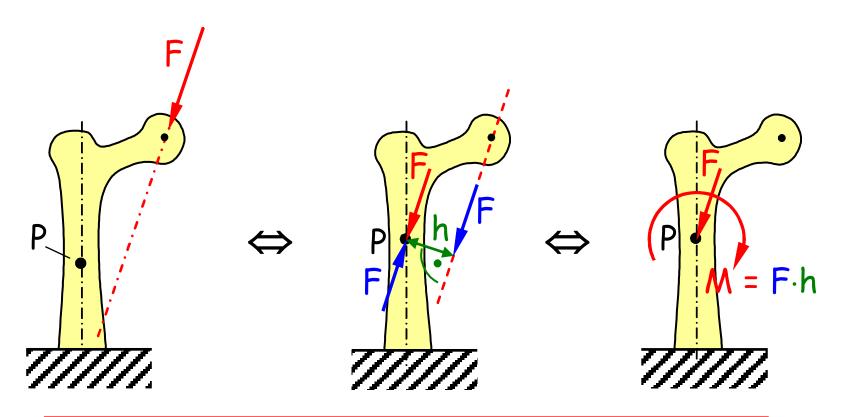
Momente sind vektorielle Größen

- Betrag
- Richtung
- Richtungssinn





Moment einer Kraft bezüglich eines Punktes P



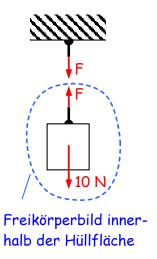
Zum Merken:

Moment = Kraft mal Hebelarm (Hebelarm senkrecht zur Wirkungslinie)

Statisches Gleichgewicht

Wichtig:

Gleichgewicht nur an "Freikörperbildern"



Für ein ebenes (2D) Problem gelten drei Gleichungen:

Summealler Kräfte in x - Richtung: $F_{1,x} + F_{2,x} + ... = 0$,

Summealler Kräfte in y-Richtung: $F_{1,y} + F_{2,y} + \dots = 0$,

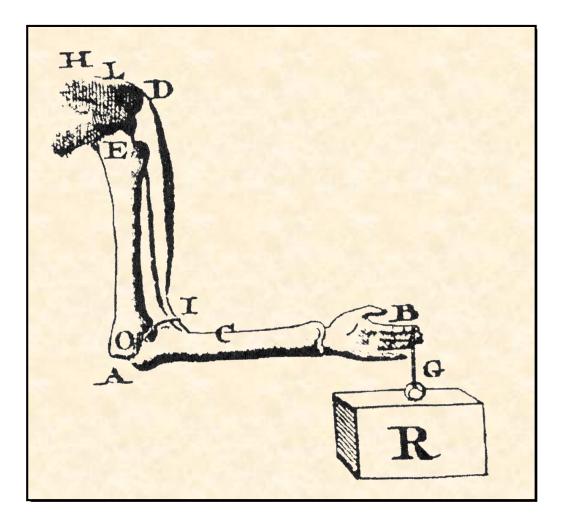
Summealler Momente bezüglich P: $M_{1,z}^P + M_{2,z}^P + ... = 0$.

(Für ein räumliches (3D) Problem gelten sechs Gleichungen)

Lösungsrezept

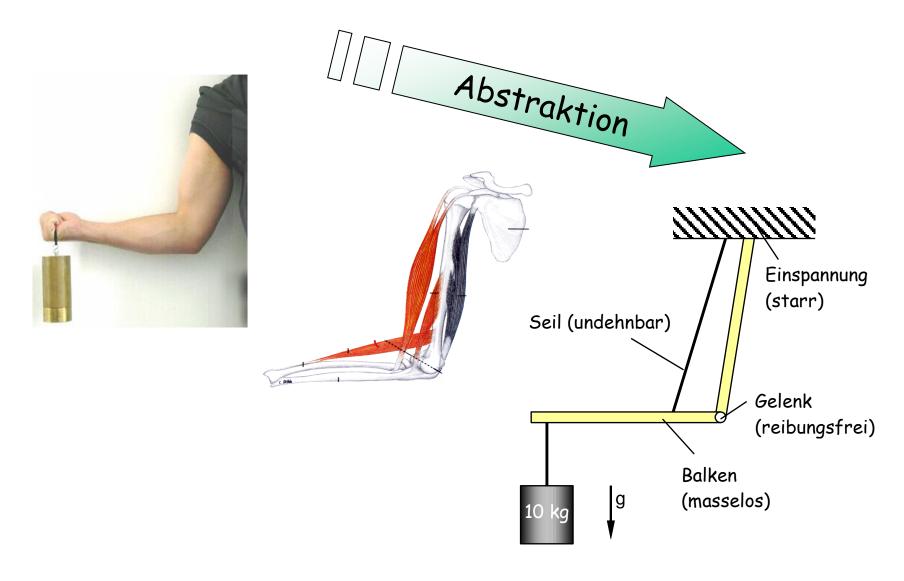
- Schritt 1: Modellbildung. Generieren eines Ersatzmodells (Skizze mit Geometrie, Lasten, Einspannungen). Weglassen unwichtiger Dinge. Das "reale System" muss abstrahiert werden.
- Schritt 2: Schneiden, Freikörperbilder. System aufschneiden, Schnittkräfte und Schnittmomente eintragen,
- Schritt 3: Gleichgewicht. Kräfte- und Momentengleichgewichte für Freikörper anschreiben.
- Schritt 4: Gleichungen lösen.
- Schritt 5: Ergebnis deuten, verifizieren, mit Experiment vergleichen; Plausibilität prüfen.

Klassisches Rechenbeispiel: "Bizeps-Kraft"

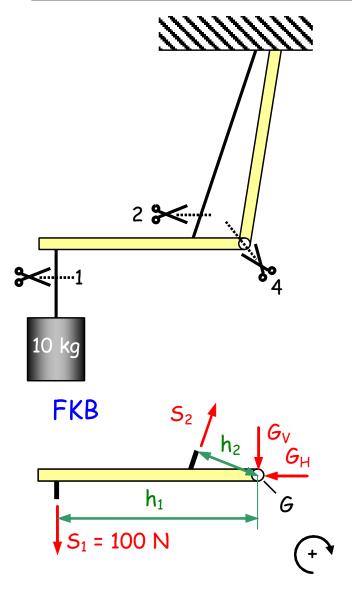


Aus: "De Motu Animalium" von G.A. BORELLI (1608-1679)

Schritt 1: Modellbildung



Schritt 2: Schneiden und Freikörperbilder



Schritt 3: Gleichgewicht

Schritt 4: Gleichungen lösen

Summe aller Momente bezügl. Punkt G = 0

$$-S_1 \cdot h_1 + S_2 \cdot h_2 \stackrel{!}{=} 0$$

$$-100 \,\mathrm{N} \cdot 35 \,\mathrm{cm} + S_2 \cdot 5 \,\mathrm{cm} \stackrel{!}{=} 0$$

$$\Rightarrow S_2 = 100 \,\mathrm{N} \cdot \frac{35 \,\mathrm{cm}}{5 \,\mathrm{cm}} = \frac{700 \,\mathrm{N}}{5 \,\mathrm{cm}}$$

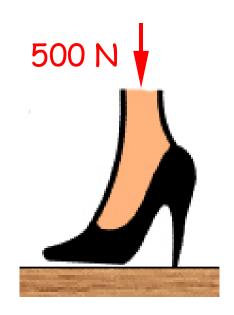
Das ist das siebenfache der Last!

Elastostatik

Festigkeitslehre

<u>Spannungen</u>

[Stresses]



Zum Merken:

Spannung = "verschmierte" Schnittkraft,

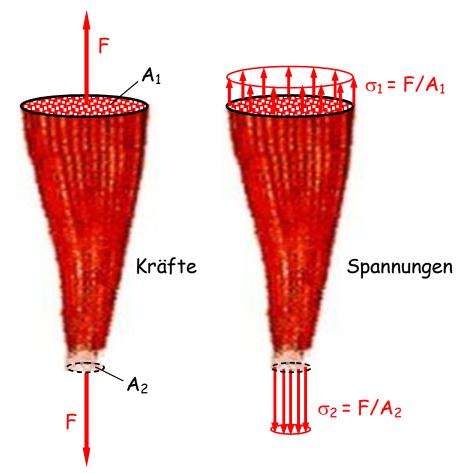
Spannung = Kraft pro Fläche oder σ = F/A

Einheit der Spannung

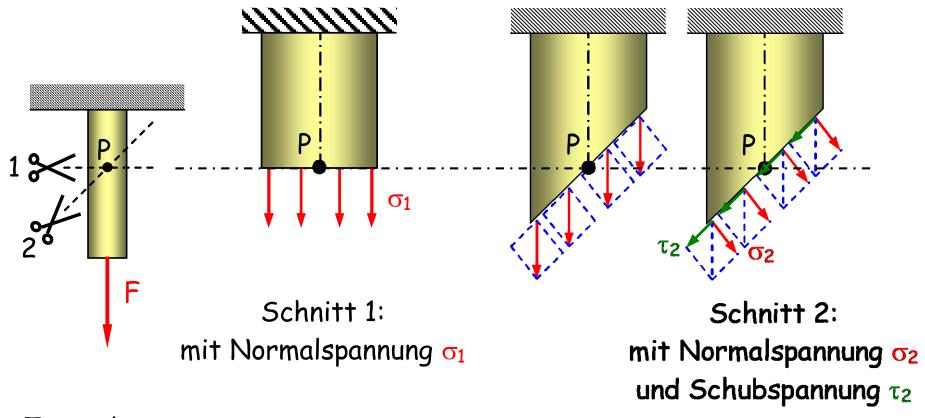
Mega-Pascal: $1 \text{ MPa} = 1 \text{ N/mm}^2$

Pascal: $1 \text{ Pa} = 1 \text{ N/m}^2$

Beispiel: Zugspannung im Muskel



Normal- und Schubspannungen



Zugstab

Zum Merken:

Erst Schnitt, dann Art und Größe der Spannung.

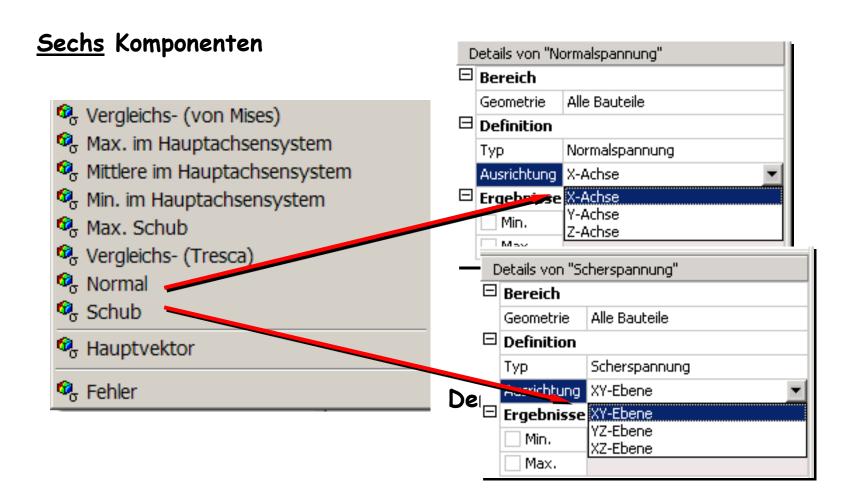
Allgemeiner (3D) Spannungszustand

... in einem Punkt des Körpers:

- <u>Drei</u> Spannungskomponenten in einem Schnitt (Normalsp., 2x Schubsp.)
 mal
- <u>Drei</u> Schnitte (z.B. frontal, sagittal, transversal) gleich
- <u>Neun</u> Spannungskomponenten, die den vollständigen 3D
 Spannungszustand in einem Punkt im Körper kennzeichnen.
- Sechs Komponenten davon sind unabhängig ("Gleichheit der Schubsp.")

$$\underline{\underline{\sigma}} = \begin{bmatrix} \sigma_{xx} & \sigma_{xy} & \sigma_{xz} \\ \sigma_{yx} & \sigma_{yy} & \sigma_{yz} \\ \sigma_{zx} & \sigma_{zy} & \sigma_{zz} \end{bmatrix} = \begin{bmatrix} \sigma_{xx} & \tau_{xy} & \tau_{xz} \\ \tau_{xy} & \sigma_{yy} & \tau_{yz} \\ \tau_{xz} & \tau_{yz} & \sigma_{zz} \end{bmatrix}$$
 Der "Spannungstensor"

Allg. Spannungszustand in FE-Programmen



Allg. Spannungszustand

- Problem: Will man bunte Bilder machen, muss man sich für eine Komponente entscheiden.
- Aber welche soll man nehmen?
- Man kann statt einer einzelnen auch "Mischungen" der Komponenten verwenden.
- Spannungs-Invariante = unabhängig von KOS, schlaue Mischungen der Komponenten mit bestimmter Aussagekraft
- Beispiele Invariante: Hauptspannungen, Von-Mises-Spannung, Hydrostatischer Spannungsanteil, Oktaeder-Schubspannung, ...
- Beispiel Aussagekraft: Von-Mises-Spannung für Versagen von duktilen Werkstoffen
- Beispiel Mischung für Von-Mises-Spannung:

$$\sigma_{Mises} = \sqrt{\sigma_{xx}^2 + \sigma_{yy}^2 + \sigma_{zz}^2 - \sigma_{xx} \sigma_{yy} - \sigma_{xx} \sigma_{zz} - \sigma_{yy} \sigma_{zz} + 3\tau_{xy}^2 + 3\tau_{xz}^2 + 3\tau_{yz}^2}$$

Vergleichs- (von Mises)

Max. im Hauptachsensystem

Mittlere im Hauptachsensystem

Min. im Hauptachsensystem

n Max. Schub

Vergleichs- (Tresca)

<u>Dehnungen</u>

[Strains]

DETAILS

• Durchmesser: 10.5 mm

· Imprägnierung: ohne

· Gewicht: 72 g pro Meter

• Fangstoß: 9.6 kN

· Anz. Stürze: 10

• Dehnung statisch: 7.7 %

· Dehnung dynamisch: 32 %

· Knotbarkeit: 0.7

Zum Merken:

Dehnung = relative Längenänderung (Winkeländerung)

Definition der Dehnung

Dehnung :=
$$\frac{\text{Längenänderung}}{\text{Ursprungslänge}}$$

$$\varepsilon := \frac{\Delta L}{L_0}$$

Einheit der Dehnung

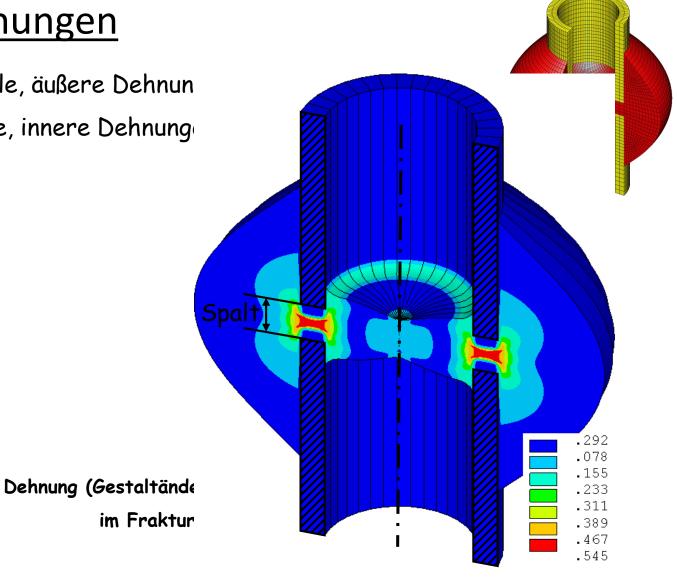
```
Ohne Einheit, also z.B.:

1
1/100 = %
1/1.000.000 = με (micro strain) = 0,1 %
```

<u>Dehnungen</u>

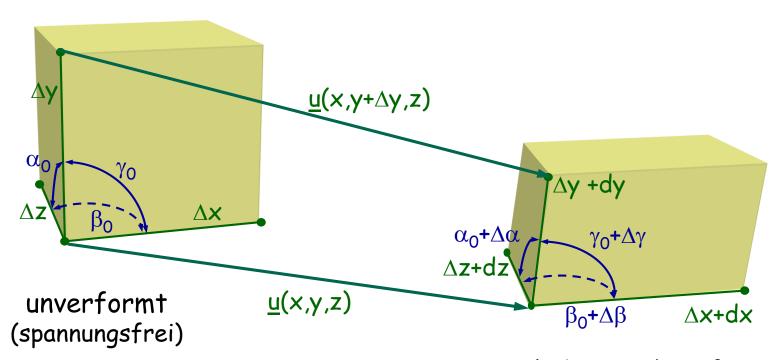
· Globale, äußere Dehnun

· Lokale, innere Dehnung



Definition des lokalen Dehnungszustands

Infinitesimales Testvolumen $\Delta V = \Delta x \cdot \Delta y \cdot \Delta z$



Verschoben und verformt (Spannungen an allen Oberflächen)

Definition des lokalen Dehnungszustands

$$\varepsilon_{xx} = \lim_{\Delta x \to 0} \frac{dx}{\Delta x}, \quad \varepsilon_{yy} = \lim_{\Delta y \to 0} \frac{dy}{\Delta y}, \quad \varepsilon_{zz} = \lim_{\Delta z \to 0} \frac{dz}{\Delta z}$$

$$\varepsilon_{xy} = \frac{1}{2} \cdot \Delta \gamma, \qquad \varepsilon_{xz} = \frac{1}{2} \cdot \Delta \beta, \qquad \varepsilon_{yz} = \frac{1}{2} \cdot \Delta \alpha$$

Längenänderung aus Verschiebungszustand u

$$\varepsilon_{xx} = \lim_{\Delta x \to 0} \frac{dx}{\Delta x} = \lim_{\Delta x \to 0} \frac{u_x(x + \Delta x) - u_x(x)}{\Delta x} = \frac{\partial u_x}{\partial x} = u_{x,x}$$

Universelle Definition der Dehnungskomponenten

$$\varepsilon_{ij} = \frac{1}{2} (u_{i,j} + u_{j,i}), \quad i, j = \{x, y, z\}$$

$$\underline{\underline{\varepsilon}} = \begin{bmatrix} \varepsilon_{xx} & \varepsilon_{xy} & \varepsilon_{xz} \\ \varepsilon_{xy} & \varepsilon_{yy} & \varepsilon_{yz} \\ \varepsilon_{xz} & \varepsilon_{yz} & \varepsilon_{zz} \end{bmatrix}$$
 Der "Dehnungstensor"

Werkstoffgesetze [Material Laws]

... verknüpfen Spannungen [Stresses] und Dehnungen [Strains] miteinander

Lineares Werkstoffgesetz

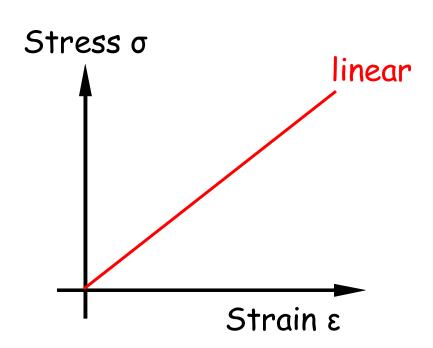
Ein-axial (Hook)

$$\sigma = E \cdot \varepsilon$$

Allgemein, drei-axial

$$\underline{\underline{\sigma}} = \underline{\underline{E}} \cdot \underline{\underline{\varepsilon}}$$

$$\sigma_{ij} = E_{ijkl} \cdot \varepsilon_{kl}$$



Werkstoff-Symmetrien

- Voll besetzter Tensor 4. Stufe f
 ür drei Dimensionen 81 Parameter (9x9)
- Gleichheit einander zugeordneter Schubspannungen (Boltzmann Kontinua) und Scherdehnungen

36 Parameter (6x6)

9 Parameter

$$\underline{\underline{\sigma}} = \underline{\underline{E}} \cdot \underline{\varepsilon}$$

- Maxwellscher Reziprozitätssatz (Satz von Betty)
 21 Parameter
- Orthotrop (trabekulärer Knochen)
- Transverse Isotrop (kortikaler Knochen)
 5 Parameter
- Isotrop2 Parameter

$$\begin{bmatrix} \sigma_{xx} \\ \sigma_{yy} \\ \sigma_{zz} \\ \tau_{xy} \\ \tau_{yz} \\ \tau_{zx} \end{bmatrix} = \frac{E}{(1+v)\cdot(1-2v)} \cdot \begin{bmatrix} (1-v) & v & v & 0 & 0 & 0 \\ & (1-v) & v & 0 & 0 & 0 \\ & & (1-v) & 0 & 0 & 0 \\ & & & \frac{(1-2v)}{2} & 0 & 0 \\ & & & & \frac{(1-2v)}{2} & 0 \\ sym & & & \frac{(1-2v)}{2} \end{bmatrix} \cdot \begin{bmatrix} \varepsilon_{xx} \\ \varepsilon_{yy} \\ \varepsilon_{zz} \\ \gamma_{xy} \\ \gamma_{yz} \\ \gamma_{zx} \end{bmatrix}$$

Werkstoff

Zum Merken:

Ein linear-elastisches, isotropes Werkstoffverhalten wird durch 2 Werkstoffparameter gekennzeichnet:

Zwei von:

```
E - Elastizitätsmodul, E-Modul [Young's modulus]
```

v - Querkontraktionszahl [Poisson's ratio] (0 ... 0.3 ... 0.5)

G - Schubmodul [Shear modulus]

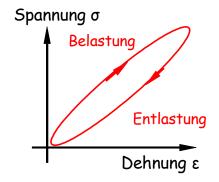
K - Kompressionsmodul [Bulk modulus]

μ, λ - Lamesche Konstanten [Lame Constants]

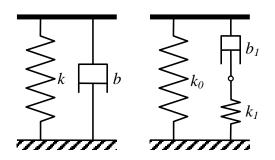
Das übliche (allgemeine) anisotropes Werkstoffgesetz besitzt 21 Werkstoffparameter.

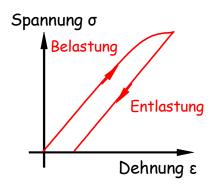
Tatsächlich könnte man aber ganz ohne Symmetrien bis zu 81 Parameter angeben.

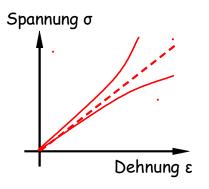
Kompliziertere Werkstoffgesetze



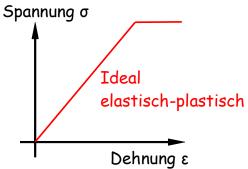
- · Nicht-linear
- · Nicht-elastisch
- · Anisotrop
- · Viskoelastisch, Typ: innere Dämpfung
- · Viskoelastisch, Typ: Gedächtniseffekt

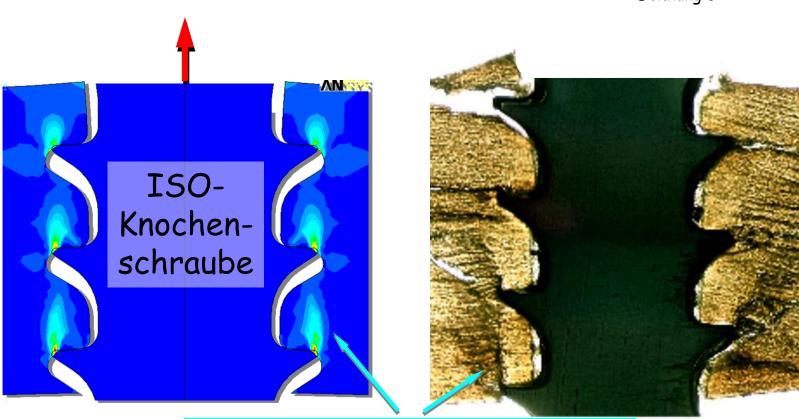






Bsp.: Plastizität

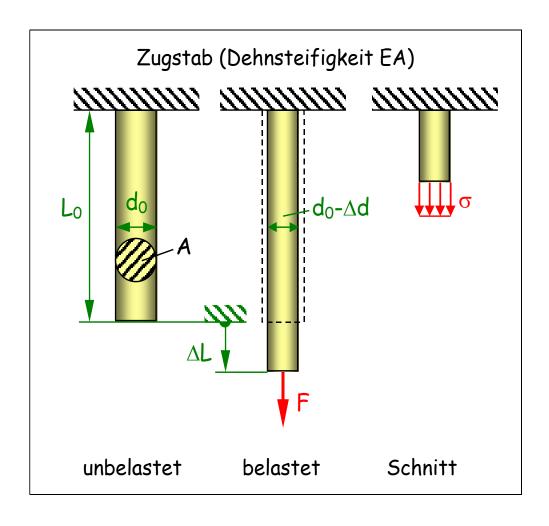




Plastische Dehnungen = Lokale Schädigung

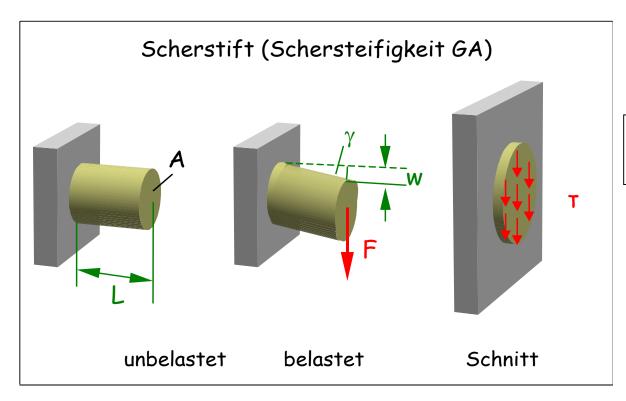
Einfache Lastfälle:

1. Zug und Druck



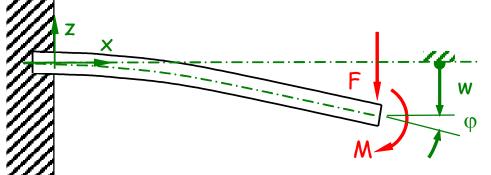
$$F = \frac{EA}{L_0} \Delta L, \quad k = \frac{EA}{L_0}$$

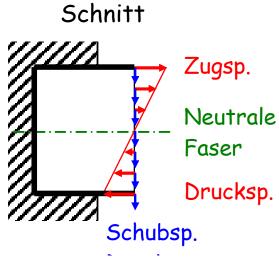
2. Scherung



$$F = \frac{GA}{L}w, \quad k = \frac{GA}{L}$$

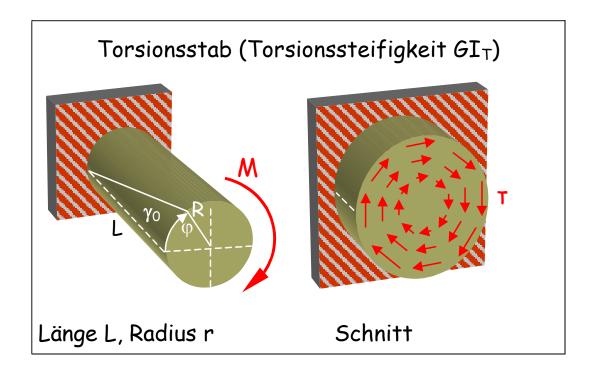
3. Biegung (Kragbalken)





$$w = \frac{L^3}{3EI_a}F + \frac{L^2}{2EI_a}M,$$
$$\varphi = \frac{L^2}{2EI_a}F + \frac{L}{EI_a}M.$$

4. Torsion



$$M = \frac{GI_T}{L} \varphi, \quad c = \frac{GI_T}{L}$$

Zum Merken:

Der Röhrenknochen hat eine günstige (materialsparende) Gestalt bei Torsions- und Biegebeanspruchungen.

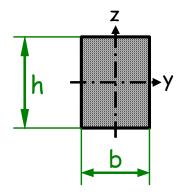
Flächenmoment 2. Grades

(früher: "Flächenträgheitsmoment")

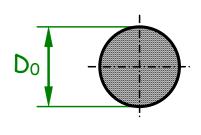
[Second Moment of Area]

 $I_{yy} := \int r_z^2 dA$

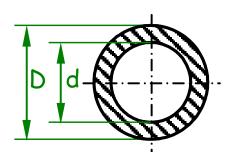
Rechteck:



Vollstab:



Rohr:



3 mal steifer als Vollstab!

Axiales Flächenmoment zweiten Grades für Biegung (um y)

$$I_{yy} = \frac{b \cdot h^3}{12}$$

$$I_{yy} = \frac{\pi}{64} D_0^4$$

$$I_{yy} = \frac{\pi}{64} D_0^4$$
 $I_{yy} = \frac{\pi}{64} (D^4 - d^4)$

Polares Flächenmoment zweiten Grades für Torsion

$$I_T = I_P = \frac{\pi}{32} D_0^4$$
 $I_T = I_p = \frac{\pi}{32} (D^4 - d^4)$

Kinematik, Dynamik

Festigkeitslehre

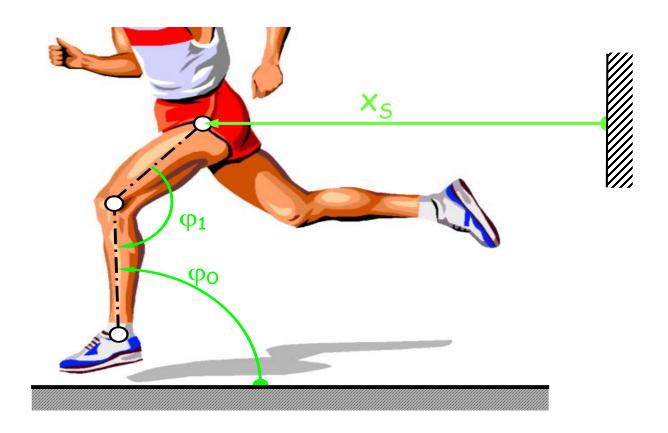
Kinematik

- · Beschreibt und analysiert Bewegungen, ohne Kräfte zu betrachten.
- Bei starren Körpern genügen endlich viele Koordinaten zur Beschreibung.
- Koordinaten beschreiben die Lage der Körper zu jedem Zeitpunkt.
- In der Biomechanik: Ganganalyse, Gelenkkinematik.

Zum Merken:

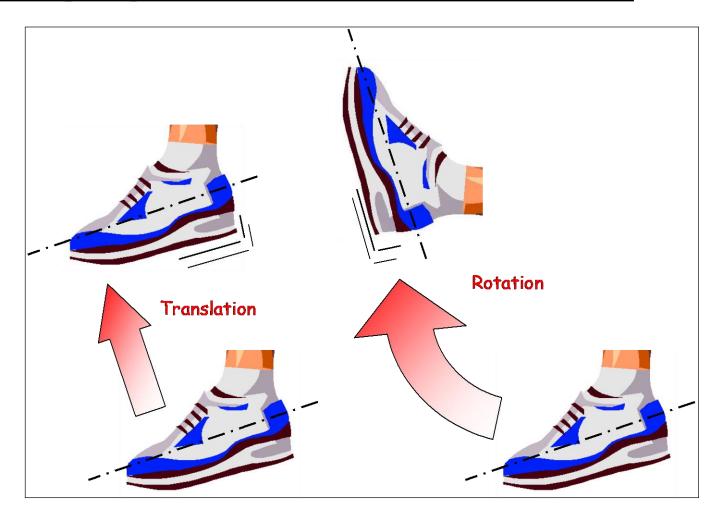
Kinematik = zeitveränderliche Geometrie

Koordinaten



- Translatorisch vs. rotatorisch
- Absolut vs. relativ

Bewegungsarten: Translation, Rotation

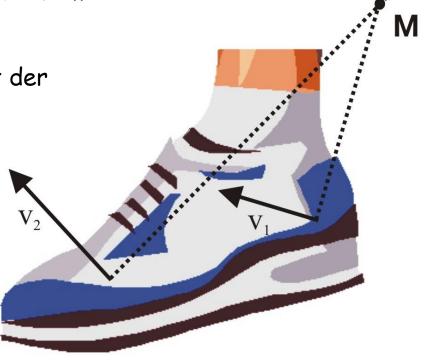


Momentanpol / Momentane Drehachse

 Körperfester Punkt der augenblicklich keine Geschwindigkeit hat.

 Der Körper dreht sich augenblicklich um diesen Punkt (um diese Achse).

 Bei einer reinen Translation liegt der Momentanpol im Unendlichen.



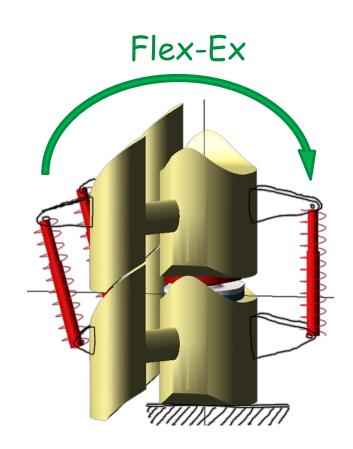
Anwendungsbeispiel zum Momentanpol

Kinematisches MKS-Modell von C5-C6-Wirbelsegment mit Bandscheibenimplantat

- 3D, idealisierte Geometrie
- Bandscheibenimplantat
- Bänder mit Zugkräften
- Erzwungene Flex-Ex-Bewegung

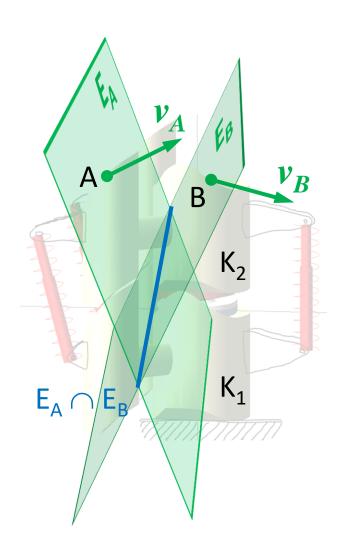
→ Berechnung der Momentanen Drehachse

→ Ziel: Implantat soll möglichst physiologische Kinematik zeigen, also z.B. die unsymmetrische Lage der momentanen Drehachse unterhalb des Bandscheibenzentrums ermöglichen.

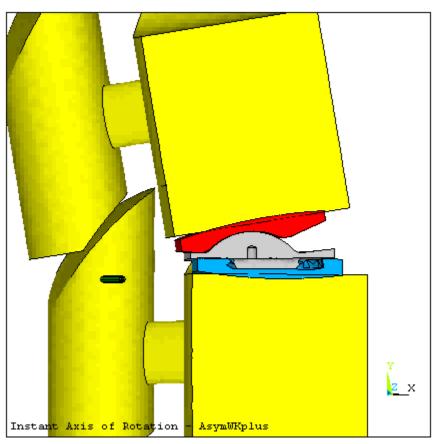


Berechnung Momentaner Drehachsen

- Augenblickliche Bewegung von Körper 2 relativ zum Körper 1.
- Geschwindigkeiten an zwei Punkten
 A und B von K2 bestimmen.
- Ebenen ⊥ zu Geschw.-Vektoren durch jeweilige Punkte bestimmen.
- Schnitt der Ebenen → Mom.
 Drehachse

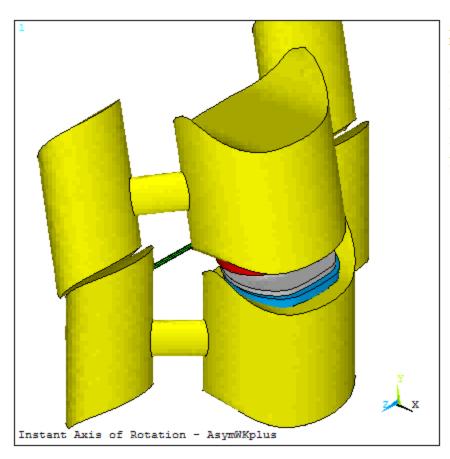


Anwendungsbeispiel zum Momentanpol



ANSYS 13.0
MAR 18 2011
07:21:01
DISPLACEMENT
STEP=7
SUB =1
TIME=1.03
PowerGraphics
EFACET=1
AVRES=Mat
DMX =15.3965

Anwendungsbeispiel zum Momentanpol



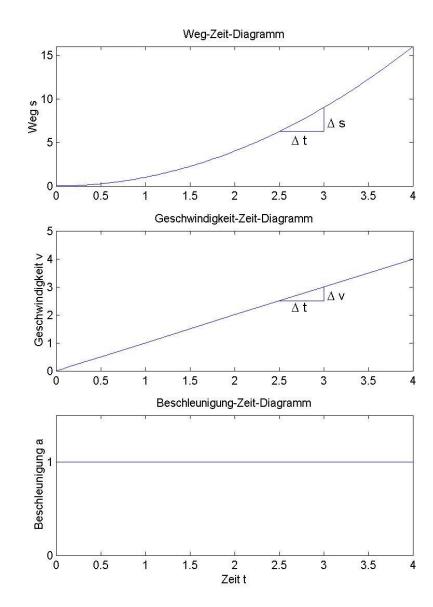
ANSYS 13.0
MAR 18 2011
11:44:34
DISPLACEMENT
STEP=7
SUB =1
TIME=1.03
PowerGraphics
EFACET=1
AVRES=Mat
DMX =15.3965

Weg, Geschwindigkeit, Beschleunigung

ion	Weg: Abstand zwischen <u>zwei</u> Punkten.	X	m
Translation	Geschwindigkeit: Die Änderung des Weges mit der Zeit.	$v = \dot{x}$	m sec
TP	Beschleunigung: Die Änderung der Geschwindigkeit mit der Zeit (Betrag und/oder Richtung).	$a = \dot{v}$	$\frac{\mathrm{m}}{\mathrm{sec}^2}$
٦	Winkel: Neigung zwischen <u>zwei</u> Achsen.	arphi	Grad
Rotation	Winkelgeschwindigkeit: Die Änderung des Winkels mit der Zeit.	$\omega = \dot{\varphi}$	Grad sec
~	Winkelbeschleunigung: Die Änderung der Winkel- geschwindigkeit mit der Zeit.	$\alpha = \dot{\omega}$	$\frac{\text{Grad}}{\text{sec}^2}$

Diagramme

Nur Beschleunigungen die aus absoluten Koordinaten abgeleitet wurden, liefern Trägheitskräfte!

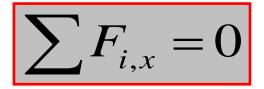


<u>Dynamik</u>

- Wechselwirkung zwischen Bewegung und Kräften.
- · Dämpfungs-, Reibungs-, Trägheitskräfte.

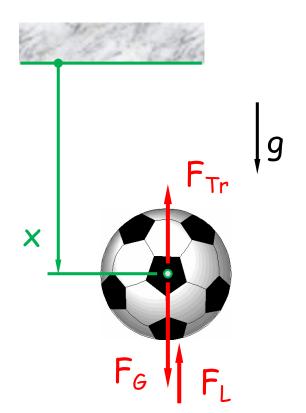
d'Alembertsches Prinzip

- Trägheitskräfte und -momente genau wie sonstigen äußere Kräfte und Momente behandeln. Im FKB eintragen.
- Dynamisches Gleichgewicht genau so wie statisches Gleichgewicht verwenden.



$$-F_{Tr} - F_L + F_G = 0$$

$$m\ddot{x} - F_L + mg = 0$$
 $\Rightarrow \ddot{x} = g - \frac{F_L}{m}(\dot{x})$



Beispiel: "Fallender Fußball" mit Gewichtskraft, Luftwiderstandskraft und Trägheitskraft

Energie E

Einheit: Joule

$$J = N \cdot m$$

Kinetische Energie:

$$E_{kin} = \frac{1}{2} \cdot m \cdot v^2$$

Potentielle Energie:

$$E_{pot} = m \cdot g \cdot h$$
 Lageenergie

$$E_{pot} = \frac{1}{2} \cdot k \cdot x^2$$
 Federenergie

Zum Merken:

Energie bleibt erhalten.

Arbeit W

- ändert den Energieinhalt von Systemen.
- Kräfte können mechanische Arbeit verrichten, wenn sich der Kraftangriffspunkt in Richtung der Kraft verschiebt.
- Bei konstanter Kraft gilt dann:

Zum Merken:

Arbeit = Kraft mal Weg

Einheit (wie Energie): Joule

$$J = N \cdot m$$

Beispiel Hubarbeit:

$$W_{Hub} = F_G \cdot h$$

Beispiel Reibungsarbeit:

$$W_{\mathrm{Re}\,ib} = -F_R \cdot s$$

Leistung P

Zum Merken:

Leistung = Arbeit pro Zeit

Einheit: Watt

$$W = \frac{J}{\sec} = \frac{N \cdot m}{\sec}$$

Literatur

Zur Technischen Mechanik:

<u>Dankert</u>, <u>H. und Dankert</u>, <u>J.</u>: "Technische Mechanik - computerunterstützt".

Sehr gutes Lehrbuch

Kessel, S. und Fröhling, D.: "Technische Mechanik / Technical Mechanics"

Deutsch-englische Fachbegriffe im Kontext.

Zur Kinetik und Kinematik des Bewegungsapparates:

Nigg, B.M. und Herzog, W.: "Biomechanics of the Musculo-skeletal System"

Gut, Schwerpunkte: Messung und Modellierung des Gangs.

2. Teil d. Vorlesung

Biomechanische Prinzipien des Knochenbaus

Übergeordnetes Prinzip:

Roux (1895) und Wolff (1892): "Funktionelle Anpassung"

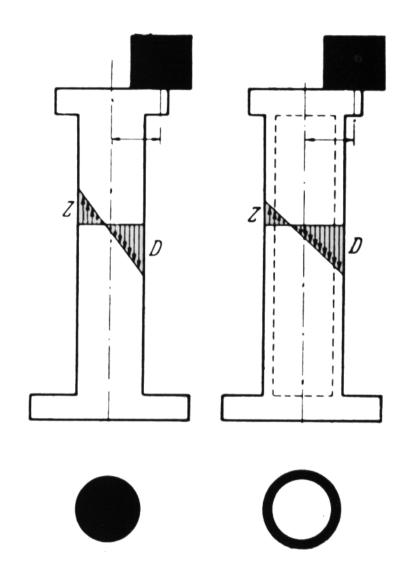
Pauwels (1965):

"Minimum-Maximum-Prinzip"

Mit minimalem Aufwand an Material (Energie) eine maximale Steifigkeit und Festigkeit erreichen

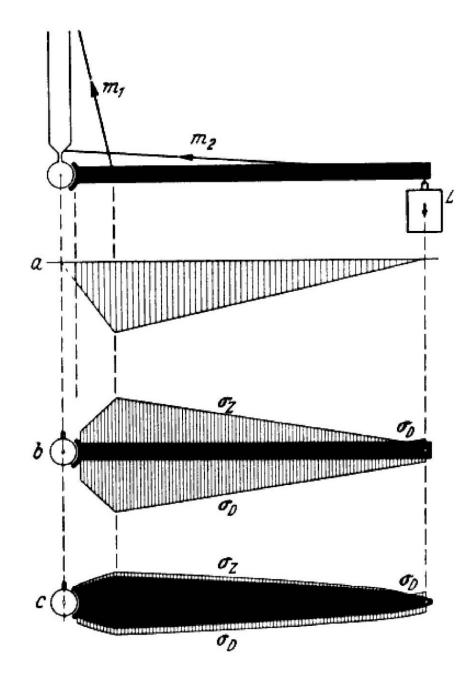
<u>Prinzip:</u> Röhrenknochen

Bei Biegung und Torsion ist Röhre bei gleichem Flächeninhalt (d.h. gleiche Masse) steifer und fester als Vollkreis. Vgl. axiale und polare Flächenmomente

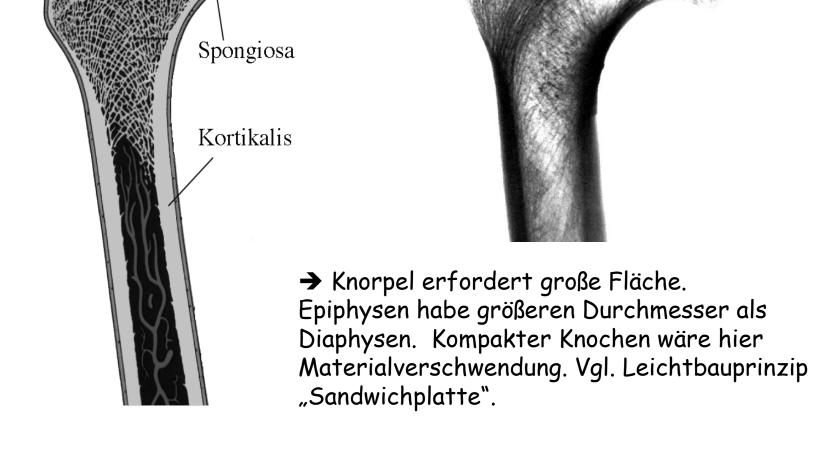


Prinzip: Angepasster Querschnittsverlauf

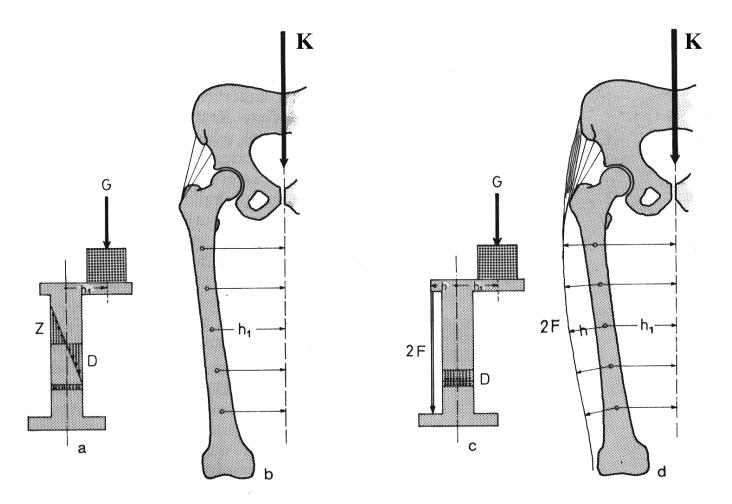
→ Knochenquerschnitt an Biegemomentenverlauf angepasst.



Prinzip: Spongiöser Knochen



Prinzip: Zuggurtung



→ Knochen "mag" keine Zugspannungen! Zug wird daher teilweise von Bändern (tractus illio-tibialis) übernommen. Vgl. Spannbeton.

Prinzip: Schaftkrümmung

Knochenachse wird bereichsweise so gekippt, dass Knochen hauptsächlich auf Druck belastet wird, und weniger auf Biegung. In der Folge werden vor allem die Zugspannungen reduziert.

