Aufgabe 2: Verifikation & Validierung

Ziel der Übung

- Untersuchung des Einflusses der räumlichen Diskretisierung (Netzfeinheit, Elementtyp) auf das Ergebnis der Simulation
- Vergleich der theoretischen (numerischen und analytischen) Ergebnisse mit experimentell ermittelten Daten

Aufgabenstellung

Wir möchten untersuchen, wie sich die Wahl der Vernetzung (Auflösung) und des Elementtyps (linear, quadratisch) auf die Qualität der numerischen Lösung auswirkt. Für den Kragbalken aus Aufgabe 01 kennen wir bereits die exakte analytische Lösung¹ (max. Auslenkung), die wir im Folgenden zur Ermittlung des Diskretisierungsfehlers heranziehen wollen.

- Führe eine sogenannte Konvergenzanalyse für das 3D-, 2D- oder das 1D-Modell des Kragbalkens aus Aufgabe 01 durch: Verfeinere das FE-Netz schrittweise bis sich das Ergebnis um weniger als 0.1 % ändert (bezogen auf das jeweils eine Stufe gröbere Netz). Erstelle sog. Konvergenzdiagramme, indem Du die ermittelte maximale Auslenkung bzw. den relative Änderung gegenüber der "Anzahl der Freiheitsgrade" (DOFs) des Modells aufträgst.
- 2. Wieviele DOFs sind notwendig, um einen Fehler von < 0.1 % zu erhalten?
- 3. Wähle nun Elemente mit linearer anstelle von quadratischer Ansatzfunktion. Was beobachtest Du bezüglich des Konvergenzverhaltens?
- 4. Worin besteht der Nachteil des 1D-Modells (Balkenelemente) gegenüber den sog. Kontinuumselementen der 2D- und 3D-Varianten?
- 5. Inwiefern unterscheidet sich die mit dem 1D-Balkenmodell berechnet maximale Auslenkung von unserem analytischen Ergebnis? (Tip: ANSYS Manual → Element Library)
- 6. Validiere Dein(e) Modell(e) anhand eines Experiments! Diskutiere mögliche Fehlerquellen (analytisch, numerisch, experimentell)!

Hinweise und Tips

- Verwende für die 2D- und 3D-Modelle zunächst Hexaeder- bzw. Viereckselemente mit quadratischer Ansatzfunktion (Standardeinstellung).
- *Kontrolle der Netzfeinheit:* Die Netzfeinheit in ANSYS Workbench (*"Mechnical"*-Modul) kannst Du auf zwei Arten festlegen:
 - **Edge sizing:** Hierbei legt man für jede Kante fest, in wie viele Elemente ("Number of Divisions") sie unterteilt werden soll (Abbildung 1). Dies erlaubt

¹ "Exakt" im Sinne der zugrundeliegenden, ebenfalls vereinfachenden, Euler-Bernoulli-Balkentheorie

eine sehr genaue manuelle Kontrolle der Auflösung des Netzes in allen drei Dimensionen; andererseits muß man nun im Falle des 2D und 3D-Modells manuell sicherstellen, daß die *Aspect Ratios* der Elemente nicht "ungünstig" sind.

- Body sizing: Bei dieser Variante gibt man lediglich eine mittlere Elementgröße vor (vgl. Aufgabe 01, S. 8). Der ANSYS-Mesher versucht dann ein Netz zu erzeugen, dessen Elemente einerseits in etwa der Größenvorgabe entsprechen, andererseits aber auch gewisse Qualitätsmetriken genügen.
- Als Kompromiss bietet sich an, das *Edge Sizing* nur entlang der Länge des Balkens (*x*-Richtung) zu definieren und die anderen beiden Dimensionen freizulassen.
- **Anzahl der Knoten und Elemente bestimmen:** Nach erfolgreicher Vernetzung zeigt ANSYS Informationen zum Netz unter im "*Details"*-Fenster des "*Mesh"*-Knotens an (Abbildung 2).
- **Ändern der Ansatzfunktion:** Um auf lineare Elemente umzuschalten, wähle die Option *Mesh* → *Details* → *Element Midside Nodes* → *Dropped* (Abbildung 3).
- Automatisierung/Parametrisierung (optional): Anstatt die Vernetzungsparameter manuell zu ändern, kann man die entsprechenden Einstellungen (Number of Divisions, Element Size) auch parametrisieren (Abbildung 6). So kann man einen Satz an Design Points (= Parameter-Kombinationen) erstellen, die ANSYS dann in einem Rutsch auswertet.

Abbildung 1: Festlegung der Netzfeinheit mittels "Edge Sizing"

D	д						
+	Defaults Sizing						
+							
+	Inflation						
+	Patch Conforming Options Advanced						
+							
+	Defeaturing						
- Statistics							
1	Nodes	549					
I	Elements	80					
	Mesh Metric	None					

Abbildung 2: Anzahl der Knoten und Elemente im erzeugten Netz

De	etails of "Mesh"	д						
+	Defaults							
+	Sizing							
+	Inflation							
+	Patch Conforming Options							
Ξ	Advanced							
	Shape Checking	Standard Mecha						
ſ	Element Midside Nodes	Program Cont 🔻						
L	Straight Sided Elements	Program Controlle						
L	Number of Retries	Dropped						
5	Extra Retries For Assembly	Yes						
	Rigid Body Behavior	Dimensionally Re						
	Mesh Morphing	Disabled						
+	Defeaturing							
+	Statistics							
1								

Abbildung 3: Wahl der Ansatzfunktion ("Kept": quadratisch; "Dropped": linear)

		Sizing						
	scope							
	Scoping Method	Geometry Selection						
	Geometry	4 Edges						
-	Definition Click th	e empty box						
	Suppressed	No						
	Type	Number of Divisions						
(P Number of Divisions	1						
	Denavior	Haru						
	Bias Type	No Bias						

Abbildung 4: Definition eines Input-Parameters

Details of "Total Deformation"								
Ξ	Scope							
	Scoping Method	Geometry Selection						
	Geometry	All Bodies						
Ξ	Definition							
	Туре	Total Deformation						
	Ву	Time						
	Display Time	Last						
	Calculate Time History	Yes						
	Identifier							
	Suppressed	No						
f	Results							
	Minimum	0, mm						
I	P Maximum	10,819 mm						
Ŧ	Information							

Abbildung 5: Definition eines Output-Parameters (= Ergebnis)

port 🖗 Reconnect. 🏽 Refresh Project. 🥖 Update Project. 🎲 Resume 👭 Update All Design Points 🛛 🚰 two-to-Project. 🕜 Compact Mode Click to retrieve the											
Outline:	Outline: No data				rable of Design Points			results for all designs			
	А	В	с	D		Α	В	с	D	E	F
1	ID	Parameter Name	Value	Unit			P1 - Edge	P2 - Total	P3 -		
2	Input Parameters				1	Name 💌	Sizing X	Deformation	Mesh 💌	Expor	N 💌
3	🖃 🚾 Balken 3D (A1)						Divisions	Maximum	Nodes		
4	ι <mark>ρ</mark> Ρ1	Edge Sizing X Number of Divisions	1		2	Units		mm			
					3	Current	1	10,819	51		
*	🗘 New input parameter	New name	New expression		4	DP 1	2	7	9		
6	 Output Parameters 				5	DP 2	4	1	1		
7	🖃 🚾 Balken 3D (A1)				6	DP 3	8	9	1		
	P2	Total Deformation Maximum	10,819		7	DP 4	16	9	7		
8				mm	8	DP 5	32	7	1		
9	P3 P3	Mesh Nodes	51		9	DP 6 🛒	64	9	7		
*	New output parameter		New expression		*						
11	Charts				Spec	ified desig	yns				

Abbildung 6: Doppelklicken auf "Parameter Set" in der Projekt-Übersicht (oben) öffnet die Design-Point-Ansicht (unten). Dort kann man in der Tabelle rechts neue Designs (= Parameter-Kombinationen) anlegen, indem man einfach den gewünschten Wert für den jeweiligen Parameter in die entsprechende Spalte einträgt. Ein Klick auf "Update All Design Points" führt dann alle notwendigen Simulationen durch.