Aufgabe 4: Plastizität

Ziel der Übung

- Betrachtung von elasto-plastischen Materialeigenschaften
- Durchführung von Simulationen mit mehreren Lastschritten
- Berechnung von Strain/Work-Hardening am Kragbalken

Aufgabenstellung

Wir betrachten einen einfachen Kragbalken mit elasto-plastischen Materialeigenschaften und einer veränderlichen Last *F*:

Abbildung 1: Kragbalken mit aufgebrachter Last

Gegeben:

Tabelle 1: Geometrie- und Materialparameter

l	1000 mm	Balkenlänge
h	60 mm	Balkenhöhe
t	40 mm	Balkendicke
F_1	22000 N	Kraft für Lastschritt 1
F_2	-25000 N	Kraft für Lastschritt 2
F_3	0 N	Kraft für Lastschritt 3
Ε	73100 MPa	E-Modul (Aluminium)
ν	0,33	Querkontraktionszahl
$E_{ au}$	7310 MPa	Tangentenmodul
$\sigma_{ m yield}$	414 MPa	Fließgrenze

- 1. Erstelle eine Geometrie gemäß Tabelle 1 in ANSYS Workbench (2D oder 3D).
- 2. Definiere einen Werkstoff mit isotroper Elastizität und Plastizität (**Isotropic Elasticity** und **Bilinear Isotropic Hardening**, vgl. Abbildung 2) entsprechend den gegebenen Materialparametern in Tabelle 1 und weise diesen Werkstoff dem Balken zu.

- 3. Vernetze Dein Modell mit Hexaedern mit einer Kantenlänge von (maximal) 10 mm.
- Definiere die wechselnde Kraft am Ende des Balkens mit Hilfe einer Load History (vgl. Abbildung 3 und Abbildung 4). Wichtig: Die Anzahl der Lastschritte läßt sich unter Analysis Settings → Number of Steps festlegen.
- Wähle die Option Force Convergence unter Solution (A6) → Solution Information → Solution Output um den Fortschritt des Lösungsvorgangs nachverfolgen zu können.
- Stelle die elastischen und die plastischen Dehnungen in *x*-Richtung dar. Wie erklärst Du das Ergebnis? (Zur Darstellung der plastischen Dehnungen: Aktiviere das Worksheet und wähle EPPLX → Rechtsklick → Create User Defined Result, vgl. Abbildung 5 und Abbildung 6).
- 7. Wie würde sich das Ergebnis verändern, wenn wir nur den ersten und den letzten Lastschritt aufbrächten?
- 8. Was ist die Ursache für die im Vergleich zu den vorherigen Modellen langen Lösungszeiten?

Abbildung 2: Dehnungs-Spannungs-Diagramm des elasto-plastischen Materials

De	etails of "Force"		4	
-	Scope			
	Scoping Method	Geometry Selection		
	Geometry	1 Face		
Ξ	Definition			
	Туре	Force		
	Define By	Components		
	Coordinate System	Global Coordinate System		
	X Component	Tabular Data		
	Y Component	Tabular Data	E	
	Z Component	Tabular Data		🔊 Import
	Suppressed	No		Export 💵
				Constant
				✓ Tabular (Time)
				Function

Abbildung 3: Wähle "Tabular Data" für die Definition der Kraftkomponente(n), um eine Load History festlegen zu können.

Abbildung 4: Load History bestehend aus drei Lastschritten

🗃 A : Static Structural - Mechanical [ANSYS Academic Teaching Advance	ced]
] File Edit View Units Tools Help 🗍 🧭 🧚 Solve 👻 🏥 🏨	🤯 🔃 🚸 🖪 🞯 🕶 🕼 Worksheet 🗼 🛛 📽
🖵 Show Vertices 🖓 Wireframe 🛛 📕 Edge Coloring 🔻 🔏 👻 🏒	✓ 1/2 ▼ 1/3 ▼ 1/x ▼ ▼ → → → → → → → → → → → → → → → → →
Solution ��d Deformation ▼ ��g Strain ▼ ��g Stress ▼ ��g Energy ▼	🗣 Linearized Stress 🔻 🔍 Probe 👻 🎯 Tools 💌
Outline 🕈	
Project	

Abbildung 5: Um die plastischen Dehnungen in x-Richtungen darzustellen, aktiviere zunächst das Worksheet...

and the second second						
· 🕅 🖪 🖪	🕹 • S 💠 🍳	⊕ 🔍 🔍	Q Q 🕺 🥀	2 📾 🗖 🗸		
🙏 Show Coordinate	e Systems					
t 🛛 🗐 Campbell Dia	agram 🛛 🔍 Coordinate	Systems 🔻 📑				
	0					
Туре	Data Type	Data Style	Component	Expression	Output Unit	*
EPTO	Element Nodal	Scalar	γ	EPTOY	Strain	
EPTO	Element Nodal	Scalar	Z	EPTOZ	Strain	
EPTO	Element Nodal	Scalar	XY	EPTOXY	Strain	
EPTO	Element Nodal	Scalar	YZ	EPTOYZ	Strain	
EPTO	Element Nodal	Scalar	XZ	EPTOXZ	Strain	
EPTO	Element Nodal	Scalar	1	EPTO1	Strain	
EPTO	Element Nodal	Scalar	2	EPTO2	Strain	
EPTO	Element Nodal	Scalar	3	EPTO3	Strain	
EPTO	Element Nodal	Scalar	INT	EPTOINT	Strain	
EPTO	Element Nodal	Tensor Strain	VECTORS	EPTOVECTORS	Strain	
EPEL	Element Nodal	Scalar	X	EPELX	Strain	
EPEL	Element Nodal	Scalar	γ	EPELY Crea	ate User Defined Re	esult
EPEL	Element Nodal	Scalar	Z	EPELZ	Strain	-
EPEL	Element Nodal	Scalar	XY	EPELXY	Strain	
EPEL	Element Nodal	Scalar	YZ	EPELYZ	Strain	
EPEL	Element Nodal	Scalar	XZ	EPELXZ	Strain	
EPEL	Element Nodal	Scalar	1	EPEL1	Strain	

Abbildung 6: ... und füge dann EPPLX als benutzerdefiniertes Ergebnis ein.