# Aufgabe 14

## Laminaren Rohrströmung

# (Analyse mit ANSYS CFX)

### Arbeitsschritte:

- 1. Starte AnsysWB und lege ein *Fluid-Flow-(CFX)*-Projekt an.
- Doppelklicke auf [Geometry →] im Projektfluss um den DesignModeller zu öffnen. Generiere im DesignModeller ein sich verjüngendes (fast) zylindrisches Volumen gemäß Skizze:



 Doppelklicke im Projektfluss auf [Mesh →] um zum Vernetzen in das Mechanical-Modul zu wechseln. Wer will kann versuchen an allen undurchlässigen Oberflächen sogenannte Inflationlayer aufzubringen, mit denen der große Geschwindigkeitsgradient an diesen Stellen besser abgebildet werden kann (s. Bild).



4. We chsle dann [Setup  $\rightarrow$ ] in das **CFX-Pre-Modul**.

- a. Geometrie und Netz sollten erscheinen. Man findet sie auf dem Ast
  Simulation/Flow Analysis 1/Default Domain, sonst: Refresh oder Update im Projektfenster.
- b. Wir geben unserem Strömungsgebiet einen besseren Namen, z.B. "Rohr"
- c. Unter **Analysis Type** (doppelklicken oder Rechtsklick/Edit) wählen wir eine *Steady State* Simulation.
- d. Unter **Rohr** (vorher Default Domain) wählen wir <u>Eigenschaften unseres</u> <u>Strömungsgebiets</u> (siehe Bilder):

| asic Settings Flui     | d Models Initialization |              | Basic Settings    | uid Models To | itialization |
|------------------------|-------------------------|--------------|-------------------|---------------|--------------|
| Location and Type      |                         |              | Heat Transfer     |               | 10012010011  |
| ocation                | B6                      | •            | Option            | Isothermal    | •            |
| omain Type             | Fluid Domain            |              | Fluid Temperature | 298.15 [K]    |              |
| oordinate Frame        | Coord 0                 | -            | Turbulence        |               |              |
| Fluid and Particle Def | initions                |              | Option            | None (Lamin   | ar) 🗸        |
| Fluid 1                |                         |              | Combustion        |               |              |
|                        |                         | $\mathbf{x}$ | Option            | None          | •            |
|                        |                         |              | Thermal Radiation |               |              |
| Fluid 1                |                         |              | Option            | None          | •            |
| Option                 | Material Library 👻      |              | Electromagneti    | c Model       |              |
| Material               | Water 🗸 🗸               |              |                   |               |              |
| Morphology             |                         |              |                   |               |              |
| Option                 | Continuous Fluid 👻      |              |                   |               |              |
| I Minimum Volu         | ume Fraction            | €            |                   |               |              |
| Domain Models          |                         |              |                   |               |              |
| Pressure               |                         |              |                   |               |              |
| Reference Pressure     | 1.01325 [bar]           |              |                   |               |              |
| Buoyancy Model         |                         | -8-          |                   |               |              |
| Option                 | Non Buoyant 👻           | ]            |                   |               |              |
| Domain Motion          |                         | -8-          |                   |               |              |
| Option                 | Stationary 🗸 🗸          | ]            |                   |               |              |
| Mesh Deformation       |                         | -8-          |                   |               |              |
| Option                 | None 👻                  | ]            |                   |               |              |
|                        |                         |              |                   |               |              |

Achtung: Nicht vergessen stets mit [Apply] zu bestätigen!

e. <u>Randbedingungen</u>: Dann fügen wir zwei Randbedingungen *Einlass* und *Auslass* als Unterpunkte hinzu (Rechtsklick auf Rohr, Insert/Boundary, siehe Bild).



Die Einstellungen zu den Randbedingungen (Doppelklick auf die Randbedingung) erfolgen entsprechend der folgenden Bilder:



| Basic Settings   | Boundary Details | Sources                    | 4 |
|------------------|------------------|----------------------------|---|
| Flow Regime      |                  |                            | Ξ |
| Option           | Subsonic         | •                          |   |
| Mass And Mom     | entum            |                            | ⊡ |
| Option           | Total Press      | <mark>sure (</mark> stab 👻 |   |
| Relative Pressur | re 1.001 [bar    | ]                          |   |
| Flow Direction   |                  |                            | Ξ |
| Option           | Normal to        | Boundary 👻                 |   |
| Turbulence       |                  |                            | Ξ |
| Option           | Low (Inter       | nsity = 19 👻               |   |

Wir wählen am **Einlass** einen Strömungsgeschwindigkeit (*Normal Speed*). Sie soll berechnet werden, dass ein Massenfluss von 3,14 kg/s entsteht.

Am **Auslass** wollen wir als Randbedingung einen *Outlet* wählen, bei dem wir einen *Average Static Pressure* von 1,000 bar vorgeben.

**Die dritte Randbedingung** für alle anderen Ränder (*Rohr Default*) entsteht automatisch und sollte schon als "No Slip Wall" (= reibungsbehaftete Wand) eingestellt sein. Bitte prüfen.

- Damit wäre das Preprocessing abgeschlossen. Wir wechseln [Solution →] in das CFX-Solver-Manager-Modul. Unter File/Define Run/ kann der Solver gestartet werden (*Initialization Option = Initial Conditions* wählen): Start Run.
- 6. Im CFX-Solver Manager kann das iterative Lösungsverfahren beobachtet werden:



 Dann starten wir [Results →] das CFX-Post-Modul. Unter dem Ast User Locations and Plots werden alle unsere Bilder erzeugt. Zunächst soll ein Stromlinienbild erstellt werden (Rechtsklick/Insert/..):



Als Orientierung sind hier mal meine Einstellungen im Bild angegeben.

| A6 : Fluid Flow (CFX) - CFD-Post [ANSYS Aca   | demic Research]                                                  |           |
|-----------------------------------------------|------------------------------------------------------------------|-----------|
| File Edit Session Insert Tools Help           |                                                                  |           |
| 👫 🕰 💂 🖉 🗃 🧳 🍖 🚺 Location                      | - ≉ 🖬 🗟 🌍 🖋 🌢 🔢 🚧 📀 🛪 🐷 🖬 🌢 🙆 😶 🗯 ⁄⁄                             | * 🚛 幅 🛍 📐 |
| Outline Variables Expressions                 | *\ \$. \$. \$. \$. \$. \$. \$. \$. \$. \$. \$. \$. \$.           |           |
| ⊿ 🙆 Cases                                     | View 1 🔻                                                         |           |
| ▲ 😰 CFX                                       |                                                                  | ANCVC     |
|                                               | Velocity<br>Streamline 1                                         | ANSIS     |
| 1 Einlass                                     | 4.170e+001                                                       | K14.5     |
| 📝 🧊 Rohr Default                              |                                                                  | Academic  |
| Mesh Regions                                  |                                                                  |           |
| User Locations and Plots                      | 3.468e+001                                                       |           |
| Default Iransform                             |                                                                  |           |
| Streamline 1                                  |                                                                  |           |
| Vireframe 🔻                                   | 2.765e+001                                                       |           |
| <u> ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا</u> |                                                                  |           |
| Details of Streamline 1                       |                                                                  |           |
| Geometry Color Symbol Limit + >               | 2.063e+001                                                       |           |
| Type 3D Streamline                            |                                                                  |           |
| Definition                                    |                                                                  |           |
| Domains All Domains 👻 🛄                       | 1.361e+001                                                       |           |
| Start From Einlass 💌                          | 1 3                                                              |           |
| Sampling Equally Spaced                       |                                                                  |           |
| # of Points 100 👻 E                           |                                                                  | <b>N</b>  |
| * Preview Seed Point                          |                                                                  |           |
| Variable Velocity                             |                                                                  | Y         |
| Boundary Data O Hybrid O Conservativ          |                                                                  |           |
| Direction Forward -                           | 0 30.000 (mm)                                                    |           |
| Cross Periodics                               | 15.000                                                           | 7 🔪 X     |
| Apply Reset Defaults                          | 3D Viewer Table Viewer Chart Viewer Comment Viewer Report Viewer |           |
| ·                                             |                                                                  |           |

8. Probiere nun weitere Darstellungsmöglichenkeiten aus, um die nachfolgenden Fragen beantworten zu können. Hilfreich könnte z.B. eine *Plane* sein oder aber auch eine *Table* oder ein *Chart*, die ausnahmsweise unter **Report** eingefügt werden. Für eine *Chart* wird z.B. die vorherige Definition einer *Line* benötigt:



#### Fragen

- 1. Welche Strömungsgeschwindigkeit stellt sich am Einlass, welche am Auslass ein?
- 2. Wie sieht der Druckverlauf zwischen Einlass und Auslass aus? Was sehen wir, wenn wir dabei statt "Pressure" "Total Pressure" wählen?
- 3. Welcher Massenfluss welcher Volumenfluss stellt sich ein?
- 4. Wie sieht das Geschwindigkeitsprofil von Rohrwand zu Rohrwand aus?
- 5. Was passiert wenn man als Randbedingung die Einströmgeschwindigkeit oder den Massenfluss vorgibt?

## Zusatzaufgabe



Baue ein Modell entsprechend dem Bild. Es enthält eine Stelle mit stark vermindertem Querschnitt. Teste und vergleiche als Einstellungen für das Strömungsgebiet eine laminare Strömung wie gehabt mit einem Turbulenzmodell (z.B. k-Epsilon). Was zeigt sich?