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Fluid phase system

State variables: Physical laws:
o Density p (1d) @ Mass conservation
o Velocity o (3d) e Momentum conservation
o Pressure p (1d) o Energy conservation
o Energy e (1d) e Equation of state
o Temperature T (1d)

Example for the equations of state:

p=pRs T and e=c¢ T
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Mass conservation:
Look at the mass m inside of an arbitrary volume Q(t)

dm d rtt op . 1
Wi | et [{Geven)ate

Q(t) Q(t)
Continuity equation:

ap B
E+V (p)=0

Reynolds transport theorem:

/f(xtdQ /{ (x,t)+ V- (fd )}dQ

Q(t
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Momentum conservation:
Look at the momentum p inside of an arbitrary volume Q(t)

dr_ 4 puerit/{aaptu—i—V (p JJ)} aQ =
a(t) a(t)

Reynolds transport theorem:
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Momentum conservation:
Look at the momentum p inside of an arbitrary volume Q(t)

dr_ 4 puer—tt/{aaptu—i-V (p JJ)} a0 =F
a(t) a(t)

Force:

F = Fa+ Faq

Reynolds transport theorem:

/ F(x, t) dQ = /{gf(x D4V (fﬁ)} a9

Q(t Q(t)
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Momentum conservation:
Look at the momentum p inside of an arbitrary volume Q(t)

do_ 4 pudQ’—“/{%ptf’JrV (p Jﬁ)} dQ=F
Q(t) Q(t)
Force:
F:FQ+FBQ:/pfdQ+/Uﬁd5
Q(t) o08(t)

Reynolds transport theorem:

/ F(x, t) dQ = /{gf(x D4V (fﬁ)} a9

Q(t Q(t)
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Energy equation:

d 1 2
— — 7l

Q(t)
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Energy equation:

3 [ 5o+ oef aa= [ { b a9

Q(t) Q(t)

+ / { }ds
o9(1)
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Energy equation:

d | B -
a/{§p|u| -I-pe} dQ—/{pfou }dQ

Q(t) Q(t)
+ / { }ds
o0(t)

According to:
@ volume force: fQ(t) pf-ddQ
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Energy equation:

d 1 .o B >
I / {§p|u| -l—pe} dQ = / {pf'u-l-p Q} dQ
Q(t) Q(t)
+ / { }ds
o0(t)
According to:
@ volume force: fQ(t) pf-ddQ

@ energy source: fQ(t) p QdQ
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Energy equation:

d 1, - .
I / {2p|u| +pe} dQ = / {pf~u+p Q} dQ

Q(t) Q(t)

+ [ {en)-a } ds
o0(t)
According to:

@ volume force: fQ(t) pf-7dQ
@ energy source: fQ(t) p QdQ

o surface force: f(‘)Q(t) (g ﬁ) -adS
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Energy equation:

d 1, B .
I / {2p|u| +pe} dQ = / {pf~u+p Q} dQ

Q(t) Q(t)

+ / {(gﬁ)-[f—l—nVT-ﬁ} ds
o0(t)
According to:

@ volume force: fQ(t) pf-ddQ
@ energy source: fQ(t) p QdQ
o surface force: f(‘)Q(t) (g A)-addS
o heat flux: faQ(t) kV T -AdS
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System equations:

@ mass conservation

p
ot

@ momentum conservation

8u

Py, Tlpd-V) d=p

+V-(pd)=0

it
+
<

IS]
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System equations:

@ mass conservation

© energy conservation

00 ) QY (kY T) 4V (o) - (Vo)
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System equations:

o

mass conservation

ou >
pl+(pu V)i=pf +V-0o
ot =
energy conservation
Oe o
pasz—i—V-(/ﬁVT)—i—V-(gu)—(v-g)

equation of state (e.g. ideal gas equation)
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Incompressible fluid + isothermal assumption:

From T = const. with %p = 0 follows:
@ Pressure is given with p ~ p (equation of state)

@ Energy is a function of p and &
= the energy conservation contains no extra information

For a newtonian fluid we get the Navier-Stokes equations as

Navier-Stokes equations

<y
I

V.i=0 (1)
o . . -
poy TP @ V) d=pf —=Vp +puV-1 (2)

Note: often, the kinematic viscosity v := % is used if p = const
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Dimensionless Navier-Stokes:
Navier-Stokes momentum equation

ou - 7
—+(7-V J:f——Vp-I-—V_
5 (@ V) ; oYL
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Dimensionless Navier-Stokes:
Navier-Stokes momentum equation

ou > 1 7
= +(@-V)d=Ff —=Vp +-V.-
8t+(u ) U p p+p T

Define characteristic time T, length L and velocity U with L= U - T:

t -
T = — vV =

T ¢=

~I X

Sl
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Dimensionless Navier-Stokes:
Navier-Stokes momentum equation
ou - 1
E@-v)yi=Ff--vp+Lv.r
ot p p =
Define characteristic time T, length L and velocity U with L=U-T

\><1

u o
=T VEy o tT

Dimensionless representation of the momentum equation

<u

ov L~ 1
GV V= —f — Mgz
or TV V=t = TEVe gV oL
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Dimensionless Navier-Stokes:
Navier-Stokes momentum equation
ou - 1
E@-v)yi=Ff--vp+Lv.r
ot p P =
Define characteristic time T, length L and velocity U with L=U-T

\><1

t a -
=T VEy o tT

Dimensionless representation of the momentum equation

<u

ov L - 1
- 7. 7= —f — — el vA-
8T+(V V) v iz PIE >Vp +pULv T

o dimensionless forcedensity K := ﬁf' (look for Froude number)
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Dimensionless Navier-Stokes:
Navier-Stokes momentum equation

ry o,
VL

ot
Define characteristic time T, length L and velocity U with L =U - T:

ai .1
Y @-v)a="F G

[

t o -
i AT

Dimensionless representation of the momentum equation

<u

ov L~ 1 1
TV V= —f — — L y.z
o TV V=t Ve Y L

L (look for Froude number)

o dimensionless forcedensity & :
@ pressure rescaling p := p—fﬂ (NOTE: only for inc. fluid)
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Diffusion term & Reynolds number:

ov

5ot (7V) P=F ~V

01.02.2017

|12
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Diffusion term & Reynolds number:
ov
or

Definition of the Reynolds number:

Re := —
viscous forces

inertia forces

01.02.2017

+(V-V) V=R —Vp + ——

|12



Dimensionless description | Computational Fluid Dynamics | 01.02.2017

Diffusion term & Reynolds number:
%+(\7-V) V=R - Vp +

Definition of the Reynolds number:

|12

R inertia forces
e = ———
viscous forces

. 3.
o inertia force: Fj, = M (momentum transfer)
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Diffusion term & Reynolds number:
%ﬂv.w V=R —Vp +

pUL
Definition of the Reynolds number:

[12

R inertia forces
e = ——
viscous forces
. . . _ pl3.U
o inertia force: Fi, = %~ (momentum transfer)

o viscous force: Fis = pl? - % ( “velocity diffusion”)
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Diffusion term & Reynolds number:

ov L « H .
E"‘(V-V) V=R —Vp +7pUL T
Definition of the Reynolds number:
Re inertia forces  pUL

viscous forces I

o 3,
@ inertia force: F; pL-U

n— ——

+ (momentum transfer)
o viscous force: Fis = pl? - % ( “velocity diffusion”)



Dimensionless description | Computational Fluid Dynamics | 01.02.2017

Diffusion term & Reynolds number:
ov
or

Definition of the Reynolds number:

Y (7-V) V=R —Vp +ﬁv.

|12

inertia fc UL
Re . nertia forces _ p

viscous forces I

. 3.
o inertia force: Fj, = # (momentum transfer)

o viscous force: Fis = pl? - % ( “velocity diffusion”)
Dimensionless Navier-Stokes equations

V-v=0 (3)
ov L, .1
E—I—(V-V) V=K —Vp +R—eV-

|12
—~~

N
N
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Turbulent flow:

o If Re << 1, the diffusion time scale is much smaller as the
time scale for momentum transportation

o velocity field perturbations smooth out quickly
o velocity field tends to be laminar

o If Re >> 1, momentum transportation is the main effect for
the fluid flow description

o velocity field perturbations increase quickly
o velocity field tends to be turbulent

Example: (flow in pipe)

r — V,/J,,p
L}Z
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Turbulent flow:

o If Re << 1, the diffusion time scale is much smaller as the
time scale for momentum transportation

o velocity field perturbations smooth out quickly
o velocity field tends to be laminar

o If Re >> 1, momentum transportation is the main effect for
the fluid flow description

o velocity field perturbations increase quickly
o velocity field tends to be turbulent

Example: (flow in pipe)

@ Reynolds number: Re = ”‘Z—VZ

Q.

@ Observation: Julius Rotta (at 1950)

[ g — ‘77 , p
Reyit. = 2300 ' Z !
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Note:

To retain energy conservation at the numerical domain, one have
to resolve also the dissipative scales in the Navier-Stokes equation!
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Kolmogorov scales:

The smallest scales that influences the turbulent flow by
dissipation effects.

Note:
To retain energy conservation at the numerical domain, one have
to resolve also the dissipative scales in the Navier-Stokes equation!

The scales are given as: (e is the average dissipation rate)

1 1
3\ 2 3
length: n = <,u3> vel : u, = <M e) time : T, = <,u>
€p P pe

with

g _

Re, =
T p
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Resolution problem:
Approximation of the dissipation rate (from large scales):

kinetic energy

€ ~

time
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Resolution problem:
Approximation of the dissipation rate (from large scales):

kinetic energy ~ U? _ U3
time T L

€ ~

Therefore we get the relation:

1 1
L 3 —z 3 3\ 2
:L'(MJ NL.(Ug) _ Re’
U €p Ly
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Resolution problem:
Approximation of the dissipation rate (from large scales):

kinetic energy ~ U? _ U3
time T L

€ ~

Therefore we get the relation:

1
L 3\ — 3 .3\ 2
n o ep’ Ly

Example: (L =~ 0m,v~1m p~13m3, ~ 17.1 pPa-s)

IS

Re ~7.5-10°
n~4-10"°m
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Resolution problem:
Approximation of the dissipation rate (from large scales):

kinetic energy ~ U? _ U3
time T L

€ ~

Therefore we get the relation:
1 1
L 3\ "2 3 3\ 2
g ~ L. U p — Re
7 ep L3

Example: (L~103m, v~ 0.1 =, p =~ 1060 %, p~ 3 mPa-s)

Hlw

Re =~ 35
n~7-10°m
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Simulation approaches:

large scale eddies smallest scale eddies

@@ (ag@ é@ o
computational

demands
resolved

!
rohibitive
DNS &

resolved o modelled _ high
LES

resolved

VRR—— modeled___________ >
RANS
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Simulation approaches:

o Direct numerical simulation (DNS):
Assumption that the flow inside of a volume element is purely
laminar and no dissipation effect occurs. (Note: If this is not
true, the energy conservation results in a different flow field.)
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Simulation approaches:

o Direct numerical simulation (DNS):
Assumption that the flow inside of a volume element is purely
laminar and no dissipation effect occurs. (Note: If this is not
true, the energy conservation results in a different flow field.)

o Eddy dissipation modelling on small scales:

o Reynolds-Averaged Navier Stokes (RANS)
o Large-Eddy Simulation

o ...
v=(v)+v' —and p=(p)+p

with the mean value (-) of - and the fluctuating part -
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RANS:

@ Special cases: temporal or spatial averaging
N
o In general: (f(X,t)) = lim > f(X,t)
N—oo 7y

o Fluctuating part: (') =0
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RANS:

@ Special cases: temporal or spatial averaging
N
o In general: (f(x,t)) = lim > f(X,t)
N—oo 7y

o Fluctuating part: (') =0

Reynolds equations:

V(7)) =0
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RANS:

@ Special cases: temporal or spatial averaging

N
o In general: (f(X,t)) = Nlim >f(X,t)
—00

o Fluctuating part: (') =0

Reynolds equations:
V-(V)=0
9 (v)

T (#) V) D) =F =V p) + V(B - (7-V) 7)

correlation property
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RANS:

@ Special cases: temporal or spatial averaging

N
o In general: (f(X,t)) = Nlim >f(X,t)
—00

o Fluctuating part: (') =0

Reynolds equations:

RV (B - ((V-Vv) V)

ot Re = ————
correlation property
(vevi)  (vevy) (vevz)
VA7) =V (v (v (mv)
(vovi) (vivy) (vivi)
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o Zero equation models v1 = £2 |9) (v)| (mixing length &)
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RANS models:

o Zero equation models v1 = £2 |9) (v)| (mixing length &)

@ One equation models (example: Spalart and Allmaras)

ovr

S+ Vor =V (Z_: VI/T) +S,
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RANS models:

o Zero equation models v1 = £2 |9) (v)| (mixing length &)

@ One equation models (example: Spalart and Allmaras)

ovr

S+ Vor =V (Z: vuT> +S,

e Two equation models (k — ¢, k — w, SST)
o k= tr (V'v') (mean of the fluctuating kinetic energy)
o dissipation rate €

o eddy frequency w
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RANS models:
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RANS models:

o Zero equation models v1 = £2 |9) (v)| (mixing length &)

@ One equation models (example: Spalart and Allmaras)

ovr

S+ Vor =V (Z; vuT> +S,

e Two equation models (k — ¢, k — w, SST)
o k= tr (V'v') (mean of the fluctuating kinetic energy)
o dissipation rate €

o eddy frequency w

Q k — € good on free flow fields with no walls
@ k — w: near wall approximation is good
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RANS models:

o Zero equation models v1 = £2 |9) (v)| (mixing length &)

@ One equation models (example: Spalart and Allmaras)

ovr

S+ Vor =V (Z; vuT> +S,

e Two equation models (k — ¢, k — w, SST)
o k= tr (V'v') (mean of the fluctuating kinetic energy)
o dissipation rate €

o eddy frequency w

Q k — € good on free flow fields with no walls
@ k — w: near wall approximation is good
© SST brings the advantage of booth together
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Computational Fluid Dynamics |

Pre-processing

01.02.2017

Computation

Visualization

Geometry Mesh Problem Flow
A : —
Design Generation Setup Solver
X X 4 [

Quantitative
Analysis

Post-processing
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Mesh

Mesh quality determined by:
o area

aspect ratio

diagonal ratio

edge ratio

skewness

orthogonal quality

stretch

taper

e 6 6 6 66 o o o

volume
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Mesh - Orthogonal Quality

Aifi  Aig
OQ:m'in{_,_,, = C_‘ }, (5)
PoLIA] AllE]

A; face normal vector
f; vector from the centroid of the cell to the centroid of that face
¢; vector from the centroid of the cell to the adjacent cell
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Mesh - Orthogonal Quality

Aifi  Aig
OQ = min — =, _,—C_) N (5)
Aillfil 1Al <]

A; face normal vector
f; vector from the centroid of the cell to the centroid of that face
¢; vector from the centroid of the cell to the adjacent cell

Unacceptable Bad Acceptable Good Verygood  Excellent
0-0.001 0.001-0.14 0.15-0.20 0.20-0.69 0.70-0.95 0.95-1.00
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Mesh

Boundary layer mesh
for flows with high Reynold’'s number, strong gradients exist within

the boundary layer close to a solid wall (with a no-slip boundary

condition)
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Mesh

Boundary layer mesh
for flows with high Reynold’'s number, strong gradients exist within
the boundary layer close to a solid wall (with a no-slip boundary

condition)

u=0.99u_= u,
Nominal Limit of

u Boundary Layer

oo

Transition
Region (short)

» —’| |‘— g Turbulent 5
—_—
Laminar l * W

Leading Edge :
Transttion Viscous Buffer
Point Sublayer ~ Zone Graph of velocity u
against distance y from
surface at point x




01.02.2017
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Practical application |
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Mesh

Inflation layer examples:
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Mesh

Hints for mesh generation
@ minimize mesh complexity

@ use structured mesh when appropriate
o use quad / hex elements when appropriate
o use tri /tet elements for complex geometries



Practical application | Computational Fluid Dynamics | 01.02.2017

Mesh

Hints for mesh generation
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Mesh

Hints for mesh generation
@ minimize mesh complexity
@ use structured mesh when appropriate
o use quad / hex elements when appropriate
o use tri /tet elements for complex geometries
@ minimize number of mesh elements
o do not use too many (or too few) elements
o use quad / hex elements when appropriate (e.g. boundary
layers, long pipes)
@ maximize solution accuracy
o concentrate mesh elements in critical regions (e.g. boundary
layers, wakes, shocks)
o align quad / hex meshes with flow direction
o avoid poor quality elements (e.g. twisted, skewed)
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Problem Definition - Boundary conditions

Choosing appropriate boundary conditions:
@ nature of flow — incompressible / compressible ...
@ physical models — turbulence, species transport ...
@ position of boundary
o what is known

convergence of solution may (strongly) depend on choice of
boundary conditions

(]
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Problem Definition- Numerical solver

two basic solver approaches :
@ pressure-based solver
o originally developed for low-speed flows

o pressure determined from pressure or pressure-correction

equation (obtained from manipulating continuity and
momentum equations)

o density-based solver
o originally developed for high-speed flows

o density determined from continuity equation
o pressure determined from equation of state

similar discretization method is used for both pressure-based and
density-based solvers.

linearization and solving of the discrete equations is different for
two approaches.
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Calculation - Convergence of the iterative numerical scheme

@ at convergence :
o all discretized conservation equations are satisfied in all cells to
a specified tolerance
o solution no longer changes significantly with more iterations
o overall mass, momentum, energy and scalar balances are
obtained
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Calculation - Convergence of the iterative numerical scheme

@ at convergence :
o all discretized conservation equations are satisfied in all cells to
a specified tolerance
o solution no longer changes significantly with more iterations
o overall mass, momentum, energy and scalar balances are
obtained
@ monitoring convergence with residuals
o generally decrease in residuals by 1073 indicates basic global
convergence - major flow features have been established
o scaled energy residual must decrease by 10~° for segregated
solver
o scaled species residual may need to decrease by 1075 to
achieve species balance
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Calculation - Convergence of the iterative numerical scheme

@ at convergence :
o all discretized conservation equations are satisfied in all cells to
a specified tolerance
o solution no longer changes significantly with more iterations
o overall mass, momentum, energy and scalar balances are
obtained
@ monitoring convergence with residuals
o generally decrease in residuals by 1073 indicates basic global
convergence - major flow features have been established
o scaled energy residual must decrease by 10~° for segregated
solver
o scaled species residual may need to decrease by 1075 to
achieve species balance
@ monitoring convergence with physical quantities
e important surface quantities should exhibit convergence
@ checking for property conservation
o overall heat and mass balances should be within 0.1% of net
flux through domain
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Convergence difficulties

@ numerical instabilities can arise due to :

ill-posed problem (no physical solution)
poor quality mesh

inappropriate boundary conditions
inappropriate solver settings
inappropriate initial conditions

e 6 6 o o
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Convergence difficulties

@ numerical instabilities can arise due to :

e 6 6 o o

ill-posed problem (no physical solution)
poor quality mesh

inappropriate boundary conditions
inappropriate solver settings
inappropriate initial conditions

@ trouble-shooting

(]

(]

ensure problem is physically realizable

compute an initial solution with a first-order discretization
scheme

decrease under-relaxation for equations having convergence
problems (segregated)

o reduce CFL number (unsteady flow)
o re-mesh or refine mesh regions with high aspect ratio or highly

skewed cells
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Post Processing

o qualitative analysis (visualization):
o displaying the mesh
o contours of flow fields (e.g. pressure, velocity, temperature,
concentrations ... )
o contours of derived field quantities
o velocity vectors
o animation (using keyframes or frame-by-frame)
@ quantitative analysis:
o XY plots (e.g. pressure, velocity, temperature vs position)
o forces and moments on surfaces
o surface and volume integrals
o Flow solvers may contain a complete post-processing
environment
o generally not necessary to use external post-processing software



