Aufgabe 08: Einführung in das MKS-Programm ADAMS, Beispiel: "Pendel"

Ein Mehrkörper-Modell besteht in der Regel aus starren Körpern, die über Gelenke (Bindungen) miteinander oder mit dem Inertialsystem (Fundament = "Ground") verbunden sind. Eine Simulation eines solchen Modells berechnet typischerweise die Bewegung dieses Systems als Folge von eingeprägten Kräften, löst also ein Anfangswertproblem.

Starten von Adams/View

- Das Programm mit der Schaltfläche Adams/View starten.
 Im Windows-Startmenü:
 Alle Programme // MSC.Software // MD.Adams ... // AView // Adams View
- Im Startfenster können wir Modellname, Gravitation und Einheiten einstellen.

How would you like to proceed? Create a new model Open an existing database Import a file Exit Start in //users/student1/s_bwiela Model name blatt5 Gravity Earth Normal (-Global Y) Units MKS - m. ko. N. s. deg	Adams
	MSC Software

• Nach Bestätigung mit [OK] öffnen sich das Main Window und die Main Toolbar

Main Toolbar (links) und das Main Window (rechts)

Mit einem Rechtsklick auf die Schaltflächen in der **Main Toolbar** öffnet sich eine Liste der verfügbaren Unterelemente. Wählt man nun ein Element aus, erscheinen gegebenenfalls im unteren Teil der Main Toolbar einige Spezifizierungsmöglichkeiten.

In der **Status Toolbar** stehen wichtige Anweisungen und Erklärungen zu den einzelnen Schritten zur Ausführung der in der Main Toolbar ausgewählten Handlung bzw. zum Erstellen der Elemente.

Hat man ein Modell vollständig erstellt, so kann man über die **Informations-Schaltfläche** Informationen über die Einzelteile des Modells, Verwendete Materialien, Freiheitsgrade etc. finden sowie das Modell auf Vollständigkeit prüfen lassen.

Shortcuts im graphischen Main Window

Klickt man mit der rechten Maustaste in das leere (schwarze) Fenster, erscheinen einige Optionen und nützliche Tastaturkürzel. Die wichtigsten davon sind:

- **r** Rotieren
- *t* Verschieben (translate)
- *z* Zoom
- w Zoom in ausgewählte Fläche
- **f** Ansicht anpassen (fit)
- **F** Front Ansicht wieder herstellen

SiSo - Praktikum 11

Beispiel: "Physikalisches Pendel"

Gegeben sei ein physikalisches Pendel mit Schwerpunkt *S* und Aufhängepunkt *A*. Zum Zeitpunkt t_0 stehe es senkrecht, also genau entgegengesetzt zur Richtung der Schwerkraft, und besitze die Winkelgeschwindigkeit $\Omega_0 = 45^{\circ}$ /s. Das Pendel habe die Masse m = 1 kg, die Länge l = 0,5 m und die Breite b = 0,05 m sowie das Massenmoment 2. Grades $J_S = \frac{1}{12}m(l^2 + b^2)$ um den Schwerpunkt *S*. Zur Vereinfachung folgender Rechnungen definieren außerdem den Radius r = 0.5l.

- a. Im ersten Schritt wollen wir also einen Körper erstellen, der vom Ursprung aus senkrecht nach oben steht und die Länge 0,50 m hat. Um die Größe leicht steuern zu können wollen wir uns die aktuellen Koordinaten des Mauszeigers anzeigen lassen. Wir klicken auf die "Select" Schaltfläche in der Main Toolbar. Unten mittig erscheint nun ein Feld mit der Bezeichnung "Toggle …". Hier wählen wir "Toggle Coordinate Window Visibility".
- b. Nun erstellen wir den Körper als "Rigid Body: Link". Anschließend wollen wir ihm den passenden Namen "Pendel" geben, die Masse von 1 kg zuordnen und das Massenmoment 2. Grades J_s angeben. Mit Rechtsklick auf den Körper erhalten wir ein Menü und wählen "Part: PART_2 -> Modify". Der Wert für J_s steht muss hier ins Feld "Ixx".

				00	X Modify Body	
	- ř			Body	PART_2	
	🚯 an an an an			Category	Name and Position	•
y	2			New Name	Pendel	
				Solver ID	2	
					-	
				Location	0.0, 0.0, 0.0	
	Part: PART_2 >	Select		Orientation -	0.0, 0.0, 0.0	
	ZLink: LINK_1 →	Modify		Relative To	.blatt5	
	View Control 🔸	Appearance			-	
	×	Info		Body	Pendel	
· · ·		Measure	•	Category	Mass Properties	<u> </u>
		Сору		Define Mass By	User Input	•
		Delete		Mass 1.0		
· ·		Rename	•	l≫ 0.021	📕 Off-Diagonal Te	rms
	×	(De)activate			lyy 0.0	
	gravity	Hide			Izz 0.0	
y•				Center of Mass M	larker cm	
				Inertia Reference I	Marker	

c. Wir fügen am Ursprung ein Gelenk ein, sodass sich das Pendel um die z-Achse drehen kann. Wähle dazu das Element "Joint: Revolute" aus und verbinde es am Ursprung mit dem Pendel und dem "Hintergrund". Beachte dabei die Anweisungen in der Status Toolbar. Anschließend benennen wir das neue Element "Joint: JOINT_1" durch Rechtsklick und der Funktion "Rename" in "Gelenk" um. Der vordere Namenszusatz sollte dabei erhalten bleiben, da er die Zugehörigkeit zum Modell angibt.

		ě			
	y				
		÷			
		÷			
		z			
		×	₽ y		
		·			
		·			
		УК			
 	y	G	ravity A	_	

d. Bevor wir eine Simulation starten können, müssen wir noch Anfangswerte setzen, also eine Start-Drehgeschwindigkeit. Diese soll hier 45°/sec betragen und kann in Adams entweder am Körper, also an unserem Pendel, oder am Drehgelenk angegeben werden. In beiden Fällen wählen wir durch Rechtsklick im Menü den Punkt "Modify" aus, entweder für das Pendel oder das Gelenk. Beim Pendel muss zusätzlich der Drehpunkt angegeben werden (muss nicht MARKER_1 sein, vorher überprüfen).

Body	Pendel				
Category	Velocity Initial Conditions				
Translational vel	ocity along	Angular velocity about			
Ground C	Marker	C Part CM 🙆 Marker			
		MARKER_1			
🖵 Xaxis		Γ X axis			
🖵 Yaxis		Γ Y axis			
Γ Z axis		V Z axis 90.0			

e. Im letzten Schritt vor der Simulation wollen wir das Modell verifizieren über den entsprechenden Eintrag an der Informations-Schaltfläche.

Simulation starten und Animation erstellen

- f. In der Main Toolbar stellen wir für unsere Simulation die Integrationszeit von 6 sec und 400 Zeitschritte ein und starten die Simulation. Warum ist das Ergebnis unlogisch?
- g. Wir wollen die Genauigkeit des Verfahrens erhöhen. Dazu rufen wir über das Menü "Settings -> Solver -> Dynamics" auf und erhöhen die Fehlertoleranz auf 10⁻⁶. Um erneut eine Simulation starten zu können müssen wir zuerst die Schaltfläche "Reset to Input Configuration" in der Main Toolbar betätigen.

h. Will man sich die Simulation erneut anschauen ist es nicht nötig das Ergebnis erneut zu berechnen. Über die Schaltfläche "Animation" in der Main Toolbar können wir die letzte Simulation beliebig oft erneut abspielen. i. Für das Postprocessing wollen wir die aktuelle Simulation abspeichern. Dazu klicken wir erneut auf die Simulations-Schaltfläche in der Main Toolbar und anschließend auf die Schaltfläche "Detailed Simulation Panel". Doppelklick auf diese Schaltfläche würde außerdem auch das Fenster "Solver Settings" öffnen, das wir vorher bereits über das Menü erreicht hatten. Nun speichern wir unsere letzte Simulation unter einem passenden Namen, z.B. "Pendel-Sim".

Postprocessing

j. Zuerst wollen wir einige numerische Daten ausgeben lassen. Dazu gehen wir im Menü auf "File -> Export" und wählen im Feld "File Type" das Element "Numeric Data" aus. Mit Rechtsklick in das im Bild gelb eingefärbte Feld erscheint ein Menü in dem wir "Result_Set_Component" und "Browse" auswählen. Zuerst wollen wir aus unserer gespeicherten Simulation "PendelSim" die Zeitschritte TIME ausgeben, anschließend die Winkelgeschwindigkeit WZ des Pendels um die z-Achse. Diese können wir in ein "Terminal" schreiben oder in eine Datei abspeichern. Man kann auch beide Elemente zusammen auswählen und in zwei Spalten ausgeben. Das Abspeichern in eine Datei erfolgt am leichtesten durch Rechtsklick in das Feld "File Name" und Auswahl von "Browse". Nun könnten wir die abgespeicherten Daten zum Beispiel mit Matlab oder anderen Programmen weiter bearbeiten.

😝 🔿 🔗 📉 File Export				
File Type	Numeric Data 🚽	1 1	Browse	Y
	·	-	- blatt5	Model
Result Set Comp. Name			+ Last_Run	Analysis
	- , <u> </u>		- PendelSim_001	Analysis
			TIME	Result_Set_Component
Sort By	Time 💌		+ Gelenk	Result_Set
			+ Pendel_XFORM	Result_Set
Order	ascending 👻		WZ	Result_Set_Component
	,			
File Name				
	,			
Above Value				
	,		,	
Below Value			Filter WZ	Browse 💌
			All Objects	-
			1	
write to terminal				

- k. Für viele Dinge kann man auch direkt den Postprocessor von Adams benutzen, zum Beispiel zur einfachen graphischen Darstellungen. Der Postprocessor kann über die Main Toolbar gestartet werden. nach Beenden des Postprocessors kommt man automatisch zu Adams/View zurück. Plotte
 - die Winkelgeschwindigkeiten des Pendels und des Gelenks um die z-Achse
 - die Winkelbeschleunigung des Pendels und des Gelenks um die z-Achse
 - die Auslenkung in x-Richtung für die verschiedenen Marker des Pendels
 - die Auslenkung in y-Richtung für die verschiedenen Marker des Pendels
 - Plotte was dich sonst noch so interessiert...

I. Links oben im Postprocessor kann man von "Plotting" auf "Animation" umstellen. Mit Rechtsklick in die leere Fläche und Auswahl von "Load Animation" kann man die Simulationen laden, abspielen und mit Hilfe der "Record" Funktion auch kleine Videos erzeugen.

