KG-Vorlesung "Biomechanik"

Grundlagen der Kinematik und Dynamik

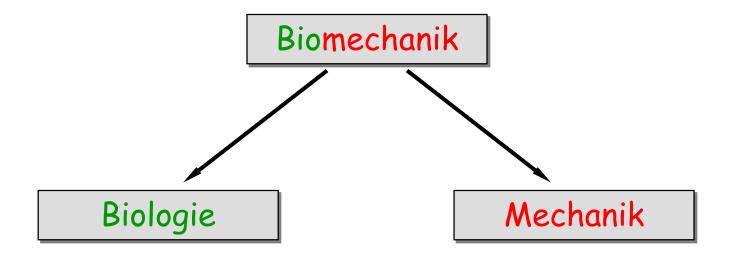
Start: 13:10

Dr.-Ing. Ulrich Simon UZWR, Universität Ulm

www.uzwr.de

www.biomechanics.de

Skript/Folien als Download:


Interessante anwendungsorientierte Forschungsfragen aus Wissenschaft und Wirtschaft werden mit

→ Lehre → Lehrexport und Weiterbildung → Biomechanik ... für KG's

SchülerInnen schnuppern Uni-Luft:

Modellierungswoche CSE

Allgemeines

Ziel der Vorlesung:

Mechanische Grundlagen in anschaulicher Form aufzufrischen.

Gliederung

ALLGEMEINES

Ziel der Vorlesung

Zur Gliederung der Vorlesung

Allgemeines

STATIK STARRER KÖRPER

Die Kraft

Das Moment

Freikörperbild

Statisches Gleichgewicht

Rezept zum Lösen von

Aufgaben

Rechenbeispiel "Muskelkraft"

ELASTOSTATIK

Die Spannungen

Dehnungen

Materialgesetze

Einfache Lastfälle

KINEMATIK

Koordinatensysteme

Weg

Geschwindigkeit

Beschleunigung

Zusammenfassung

Beispiel-Diagramm

KINETIK / DYNAMIK

Erstes Newtonsches Gesetz

Zweites Newtonsches Gesetz

d'Alembertsches Prinzip

Energie, Arbeit und Leistung

Wiederholungsfragen zum Begriff der "Kraft"

Was ist eine Kraft?

Ursache für z.B. Verformung und/oder Beschleunigung von Körpern.

Wie kann man eine Kraft (in einer Skizze) darstellen?

Pfeil (Vektor) mit Richtung, Orientierung und Größe

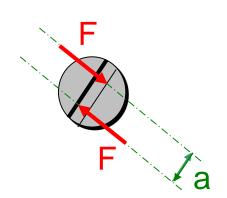
Welche Einheit hat die Kraft?

Newton $N = kg \cdot m/sec^2$

Welche Anziehungskraft wirkt auf eine Masse von m = 1 kg auf der Erde?

$$F_G = m \cdot g = 1 \text{ kg} \cdot 9.81 \frac{\text{m}}{\text{s}^2} \approx 10 \text{ N}$$

Worin besteht der Unterschied zwischen Statik und Dynamik?

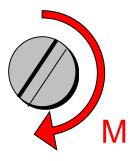

Statik: Kräftegleichgewicht an ruhenden Körpern

Dynamik: Bewegung von Körpern aufgrund von Kräften

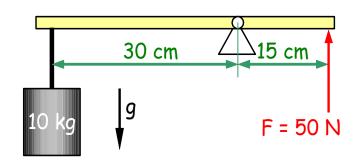
Wiederholungsfragen zum Begriff "Moment"

Was ist ein Moment?

- Moment = "Drehkraft"
- Ursache für z.B. Dreh-Verformungen oder Dreh-Beschleunigungen von Körpern.
- Moment entspricht Kräftepaar $M = F \cdot a$



Wie kann man eine Moment (in einer Skizze) darstellen?


Dreh-Pfeil mit Richtung (Achse), Orientierung und Größe

Welche Einheit hat das Moment?

Newton-Meter: $N \cdot m = kg \cdot m^2/sec^2$

Wer gewinnt?

Wiederholungsfragen zu "Spannung und Dehnung"

Was ist eine Spannung?

```
Spannung = auf Fläche "verschmierte" Kraft
Spannung = Kraft pro Fläche (\sigma = F/A)
```

Welche Einheit hat eine Spannung?

```
Einheit: Pascal Pa = N/m^2 oder: Mega-Pascal MPa = N/mm^2
```

Wozu braucht man Spannungen? Was bedeuten sie anschaulich?

Spannungen sagen etwas über die Beanspruchung von Körpern aus. Beispiel: Knochen bricht bei mehr als 120 MPa.

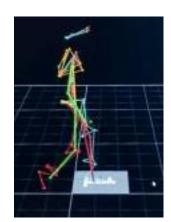
Was ist der Unterschied zwischen Zug-, Druck-, Schubspannung? Zug- und Druckspannung wirken <u>senkrecht</u> zur Schnittfläche Eine Schubspannung wirkt <u>parallel</u> zur Schnittfläche.

Was ist eine Dehnung?

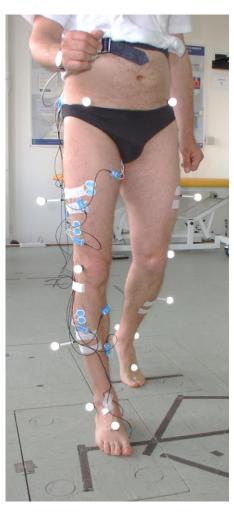
```
Dehnung = Längenänderung durch Ursprungslänge (\varepsilon = \Delta L/L_{0})
```

Welche Einheit hat eine Dehnung?

```
Einheit: "1" bzw. keine bzw. %
```


Motivation: Ganganalyse

Kinematisch* (Bewegung erfassen)


- Video Capture,
- mit oder ohne Marker,
- Winkel, Wege, usw. messen

Kinetisch (Kräfte erfassen)

- Bodenreaktionen
- Pedographie
- EMG -> Muskelaktivitäten

Alles ZEITABHÄNGIG!

*) In Wikipedia m.E. mit "kinematographisch" verwechselt.

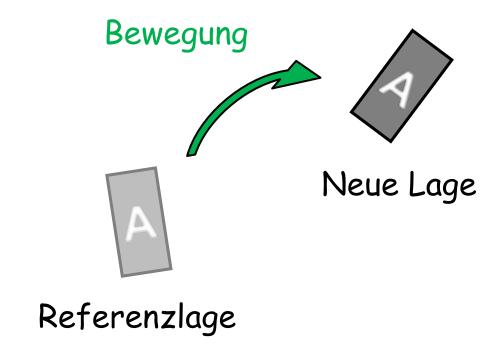
Motivation: Lernziel

Begriffe kennen:

- Kinematisch, kinetisch sowie statisch, dynamisch
- Translation, Rotation
- Koordinaten (absolute, relative)
- Weg, Geschwindigkeit, Beschleunigung
- Winkel, Winkelgeschwindigkeit, Winkelbeschleunigung

Zusammenhänge kennen:

- Kräfte erzeugen Beschleunigungen
- Beschleunigungen erzeugen Geschwindigkeitsänderungen
- Geschwindigkeiten erzeugen Wegänderungen
- Dynamisches Kräftegleichgewicht

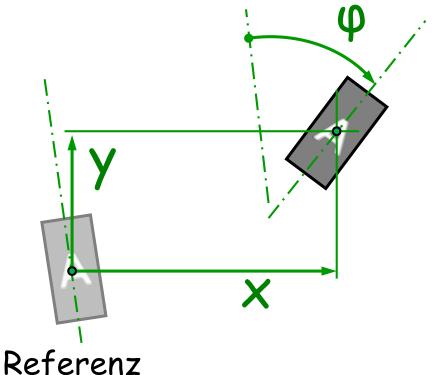

Kinematik

- · Beschreibt und analysiert Bewegungen, ohne Kräfte zu betrachten.
- Will man "mit Kräften" → Dynamik (Kinetik)
- Bei starren Körpern genügen endlich viele Koordinaten zur Beschreibung.
- · Koordinaten beschreiben die Lage der Körper zu jedem Zeitpunkt.

Zum Merken:

Kinematik = zeitveränderliche Geometrie

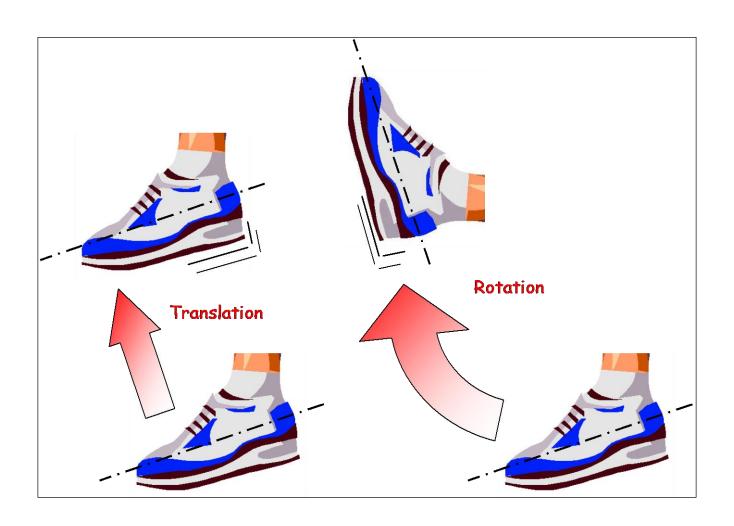
Vorüberlegung



Wie kann man mit möglichst wenigen Zahlen/Worten diese Bewegung beschreiben?

Vorüberlegung

3 Anweisungen:

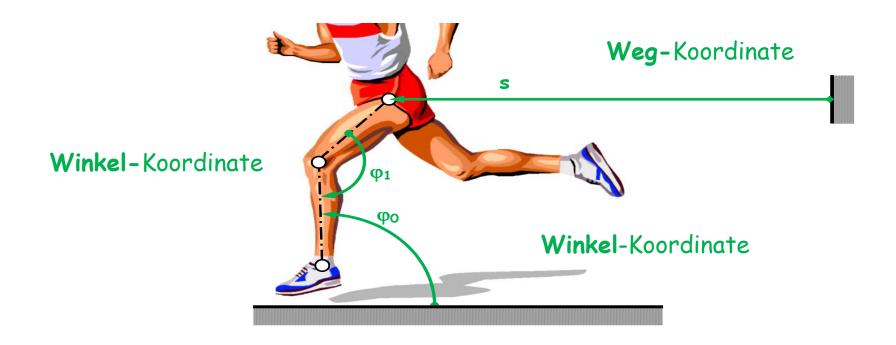

- Rechts rüber ...
- · Hoch ...
- Kippen ...

Mit 3 Koordinaten:

- Verschiebung des Schwerpkts horizontal
- Verschiebung vertikal
- Verdrehung um den Schwerpunkt

Bewegungsarten: Translation, Rotation

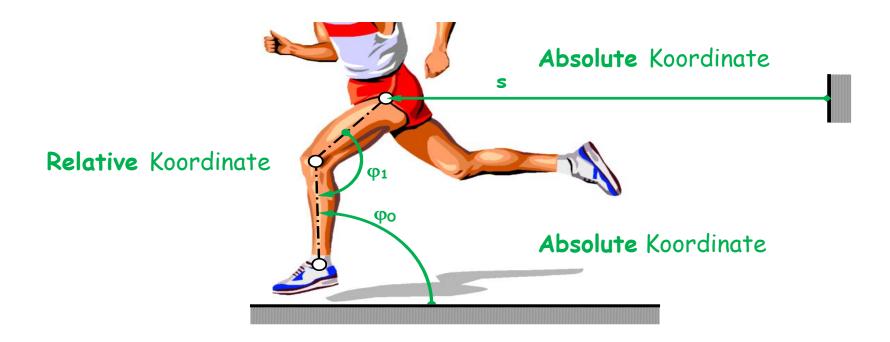
Lage eines starren Körpers


In 2D: 3 Koordinaten

- · Translationen x, y
- · Rotationen φ

In 3D: 6 Koordinaten

- Translationen x, y, z
 Rotationen ϕ_X , ϕ_Y , ϕ_Z


Koordinaten: Wege oder Winkel

Weg-Koordinaten: translatorische Lage im Raum

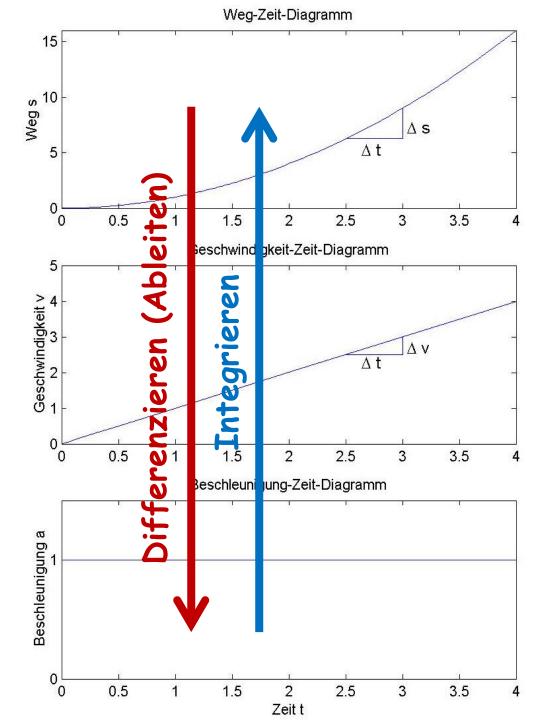
• Winkel-Koordinaten: rotatorische Lage im Raum

Koordinaten: absolut oder relativ

• Absolute Koordinaten: Lage im Raum, für Trägheitskräfte

• Relative Koordinaten: Lage zu anderen (bewegten) Körpern,

für Gelenkfunktion

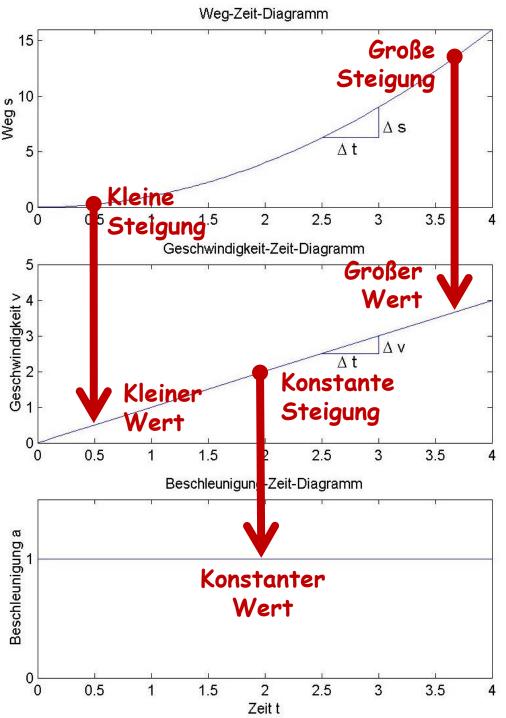

Weg, Geschwindigkeit, Beschleunigung

Translation	Weg: Abstand zwischen <u>zwei</u> Punkten.	X	m
	Geschwindigkeit: Die Änderung des Weges mit der Zeit.	v	$\frac{\mathrm{m}}{\mathrm{sec}}$
7	Beschleunigung: Änderung der Geschw. mit der Zeit (Betrag und/oder Richtung).	а	$\frac{\mathrm{m}}{\mathrm{sec}^2}$
Z.	Winkel: Neigung zwischen <u>zwei</u> Achsen.	arphi	Grad
Rotation	Winkelgeschwindigkeit: Die Änderung des Winkels mit der Zeit.	ω	Grad sec
~	Winkelbeschleunigung: Die Änderung der Winkel- geschwindigkeit mit der Zeit.	α	$\frac{\text{Grad}}{\text{sec}^2}$

Weg

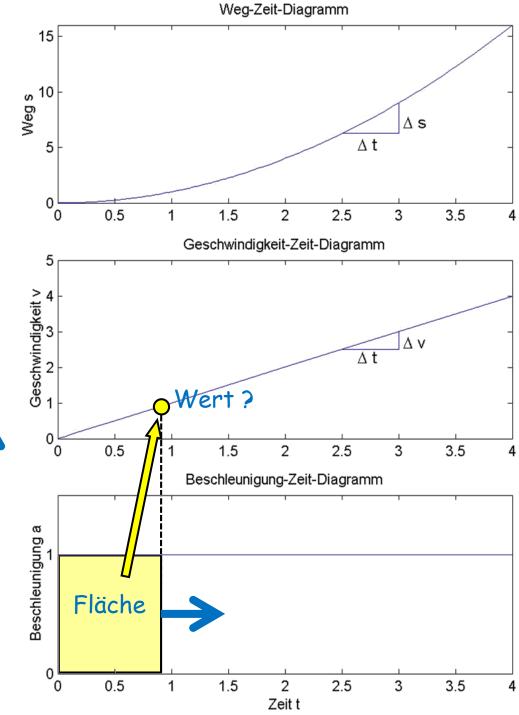
Geschwindigkeit

Beschleunigung



Differenzieren (mit Steigungs-Regel) § 10-

Je größer die Steigung der Ausgangskurve an einer bestimmten Stelle (x), je größer der Wert der neuen Kurve.


→ Umkehroperation.

Integrieren (mit Flächen-Regel)

Je größer die **Fläche** unter der Ausgangskurve links von der bestimmten Stelle (x), je größer Der **Wert** der neuen Kurve.

Weg, Geschwindigkeit, Beschleunigung

Zum Merken:

- Geschwindigkeit ist die (momentane) Änderung der Position (des Weges) pro Zeiteinheit.
- Beschleunigung ist die (momentane) Änderung der Geschwindigkeit pro Zeiteinheit.

Hinweise:

"Momentane Änderung" = "Ableiten" (Differenzieren)

Beispiele:

Position bleibt → Geschwindigkeit = 0

Geschwindigkeit bleibt → Beschleunigung = 0

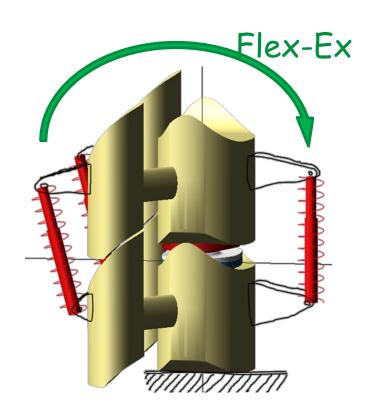
Lange hohe Geschwindigkeit \rightarrow Große Strecke

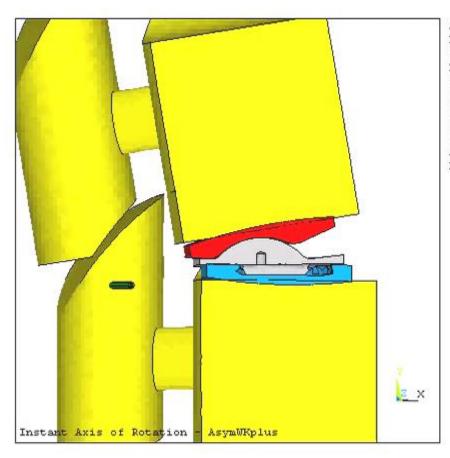
Lückentext

- Ist die Position konstant, dann ist die Geschwindigkeitnull und die Beschleunigung ist ...auch null
- Bleibt die Geschwindigkeit konstant, dann ist die Beschleunigung ... nummt (linear) zu
- Ist die Beschleunigung konstant, dann ist die Geschwindigkeit linear wachsend und die Position ist quadratisch (überproportional) wachsend
- Auf einen Körper wirkt eine konstante Kraft. Dann ist die Beschleunigung <u>auch konstant</u>
- Wenn der Betrag der Geschwindigkeit konstant bleibt, aber ihre Richtung sich ändert, dann ist die Beschleunigung nicht 0 (& quer zur Geschw.)
- Bei einer Kreisbahn mit konstanter Geschwindigkeit ist die Beschleunigung nicht 0 & quer zur Geschw., also zum Zentrum = Zentripetalbeschl.
- Ein Körper ändert seinen Bewegungszustand (Betrag und Richtung der Geschwindigkeit) nicht, wenn die Beschleunigung 0 ist (und damit keine Kräfte auf ihn wirken)

Momentanpol

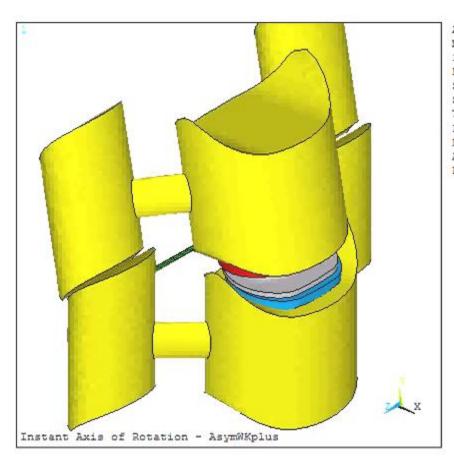
- Körperfester Punkt der augenblicklich keine Geschwindigkeit hat.
- Der Körper dreht sich augenblicklich um diesen Punkt.


 Bei einer reinen Translation liegt der Momentanpol im Unendlichen.


Anwendungsbeispiel zum Momentanpol

Kinematisches Modell von C5-C6-Wirbelsegment mit Bandscheibenimplantat

- 3D, idealisierte Geometrie
- Bandscheibenimplantat
- Bänder mit Zugkräften
- Erzwungene Flex-Ex-Bewegung
- → Berechnung der Momentanen Drehachse
- → Ziel: Implantat soll möglichst physiologische Kinematik zeigen



Anwendungsbeispiel zum Momentanpol

ANSYS 13.0
MAR 18 2011
07:21:01
DISPLACEMENT
STEP=7
SUB =1
TIME=1.03
PowerGraphics
EFACET=1
AVRES=Mat
DMX =15.3965

Anwendungsbeispiel zum Momentanpol

ANSYS 13.0
MAR 18 2011
11:44:34
DISPLACEMENT
STEP=7
SUB =1
TIME=1.03
PowerGraphics
EFACET=1
AVRES=Mat
DMX =15.3965

Dynamik

- Dynamos (griechisch Kraft)
- Auch Kinetik genannt
- · Jetzt werden die Kräfte betrachtet

Was ändert sich in der Dynamik gegenüber der Statik?

Statisches Gleichgewicht

Wichtig: Gleichgewicht nur an "Freikörperbildern"

Für ein ebenes (2D) Problem gelten drei Gleichungen:

Summe aller Kräfte in x - Richtung : $F_{1,x} + F_{2,x} + ... = 0$,

Summe aller Kräfte in y Richtung: $F_{1,y} + F_{2,y} + ... = 0$,

Summe aller Momente bezüglich P: $M_{1,z}^P + M_{2,z}^P + ... = 0$.

(Für ein räumliches (3D) Problem gelten dagegen sechs Gleichungen)

Zum Merken: "Gleichgewicht"

Summe aller Kräfte und Momente muss Null sein!

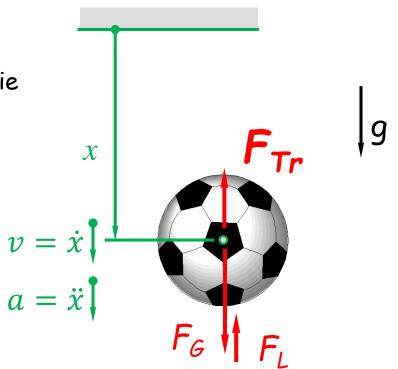
Lösungsrezept

- Schritt 1: Modellbildung. Generieren eines Ersatzmodells (Skizze mit Geometrie, Lasten, Einspannungen). Weglassen unwichtiger Dinge. Das "reale System" muss abstrahiert werden.
- Schritt 2: Schneiden, Freikörperbilder. System aufschneiden, Schnittkräfte und Schnittmomente eintragen,
- Schritt 3: Gleichgewicht. Kräfte- und Momentengleichgewichte für Freikörper anschreiben.
- Schritt 4: Gleichungen lösen.
- Schritt 5: Ergebnis deuten, verifizieren, mit Experiment vergleichen; Plausibilität prüfen.

d'Alembertsches Prinzip

- Trägheitskräfte und -momente genau wie sonstige äußere Kräfte und Momente behandeln. Im FKB eintragen.
- Dynamisches Gleichgewicht genau so wie statisches Gleichgewicht verwenden.

$$\sum F_{i,x} = 0$$


$$F_{Tr} + F_L - F_G = 0$$

$$ma + F_L(v) - mg = 0$$

$$ma = mg - F_L(v)$$

$$a = g - \frac{F_L(v)}{m}$$

Beispiel: "Frei fallender Fußball"

Was sagt uns das nun?

→ Der Ball beschleunigt mit g oder etwas weniger bei Luftwiederstand

d'Alembertsches Prinzip

Zum Merken:

Ein Körper ist beschleunigt

- → Wir sind in der Dynamik !!!
- → Kräfte- und Momenten Gleichgewichte gelten immer noch
- → wir müssen anTrägheits...-kräfte und -momente denken !!!

Energie E

$$J = N \cdot m$$

$$E_{kin} = \frac{1}{2} \cdot m \cdot v^2$$

$$E_{pot} = m \cdot g \cdot h$$
 Lageenergie

$$E_{pot} = \frac{1}{2} \cdot k \cdot x^2$$
 Federenergie

Zum Merken:

Energie bleibt erhalten.

Arbeit W

- · ändert den Energieinhalt von Systemen.
- Kräfte können mechanische Arbeit verrichten, wenn sich der Kraftangriffspunkt in Richtung der Kraft verschiebt.
- Bei konstanter Kraft gilt dann:

Zum Merken:

Arbeit = Kraft mal Weg

Einheit (wie Energie): Joule

$$J = N \cdot m$$

Beispiel Hubarbeit:

$$W_{Hub} = F_G \cdot h$$

Beispiel Reibungsarbeit:

$$W_{\mathrm{Re}ib} = -F_R \cdot s$$

Leistung P

Zum Merken:

Leistung = Arbeit pro Zeit

Einheit: Watt

$$W = \frac{J}{\sec} = \frac{N \cdot m}{\sec}$$