Dantec Dynamics

Validation Tool 1.4.3

for Ansys WB Versions 19.2 to 2025 R1

Introductory Slides

by

U. Simon, M. Kost

Scientific Research Centre Ulm University of Ulm www.uzwr.de

ulm university universität **UUU**

Installation

UZWR

Installer, straight forward

- Version 1.4.3 for Ansys WB Versions 19.2 to 2025 R1
- Tool will only be installed for ONE, the latest Ansys Version on a system.
- Copies the needed files into the necessary Ansys directories.
- Source: <u>www.uzwr.de</u> > Information > Downloads > Validation Tool

Installation

Validation Tool

UZWR

Ansys WB Add On

On4

- WB 19.2 to 2025 R1
- Windows 10

After successful installation you should see ...

- a toolbar extension with two buttons [New] and [Import]
- a new main pop down menu item "Dantec Dynamics"

Pop Down Menu "Dantec Dynamics"

• New Project creates a Template (complete & running, easy to modify). Hit this button and define a new name and location of your project.

• Import Data: reading and converting Dantec Dynamics data (hdf5) into Ansys

- · Dantec Dynamics and
- UZWR links to corresponding homepages
- Online Help system

UZWR

Start a New Project

Based on a Template Project • Click on [New] and

Define new name and working space for th

Import Data

UZWR

Data Conversion

🖉 Data Conversio	n				
	Convert .hd	lf5 data to Ansys compatil	ole .txt data.		
Current Step: Reference Step:	series_step_20.hdf5			Select File	
	Select ASCII file to import coordinates of reference Points				
	Reference points in measurement coordinate system:				
	x	У	Z		
Ref Point 1					
Ref Point 2					
Ref Point 3					
Ref Point 4					
Corresponding points in Ansys coordinate system:					
Point 1					
Point 2					
Point 3					
Point 4					
		Evaluate best fit			

Reading .hdf5 data

Automatic transformation

- Based on reference points
- Least squares method

Visualization of measured data

- Mapped on the FEA geometry
- Location, amount, direction

Displaying Results

- Comparative Results (FEA Measure) are now available directly in the Mechanical module.
- Switching to 4 viewports you can display 4 results simultaneously.

Online Help System

- Written in HTML
- Integrated in Dantec Dynamic main menu extension

Validation Tool: Documentation

This Guide offers you help on how to use the Dantec Dynamics Validation Tool.

Table of Contents

<u>1. User's Guide</u>
 <u>2. HDF5 to TXT conversion Tool</u>
 <u>3. How to handle contacts in your Model</u>

Examples

Case 1: S-Plate (Validation)

Measurement

 $0 \text{ mm} \neq \circ$

• Geometry

• Material: • Arbitrary

Load / boundary conditions

 Measured displacement

FEA

• Geometry o 3D

• Material:

Young's Modulus	3000	MPa
Poisson's Ratio	0,35	
Bulk Modulus	3,3333E+09	Pa
Shear Modulus	1,1111E+09	Pa

 Load / boundary conditions

 U: Displacement load or force
 A: Fixation

S-Plate: Results

Measurement

FEA

Difference (FEA - Measure)

- Displacement differences in all 3 directions
- Stresses, strains

 \rightarrow Answer: Fit or no fit

Case 2: Silicone Cube (Calibration)

UZWR

C

A

Measurement

Geometry

Load / Boundary conditions

 Measured displacements

• Material: arbitrary

Load / Boundary conditions

2

- $\,\circ\,$ U: Displacement load
- A: Fixation
- o C: Contacts with friction
- Material:

FEA

Geometry

- 1 Modified Silicone
- 2 Aluminium

Silicone Cube: Results

UZWR

•

 \rightarrow Answer: Fit or no fit

Stresses, strains

Difference (FEA – Measure)