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Abstract. We present a new approach to solve nonlinear parametric partial differential
equations (PPDEs) with stochastic coefficients, which is based on the Reduced Basis (RB)

method. It is imposed that the problem formulation allows for an affine decomposition

in the (deterministic) parameter. The uncertainties in the coefficients are modeled using
Karhunen-Loève expansions. The nonlinearity is resolved using Newton’s method with

Fréchet derivatives. For the computation of a linear output functional, its first and second

moment, and its variance, we additionally solve some linear dual problems. Statistical
analysis is then done using the Monte Carlo (MC) method.

We investigate offline/online decompositions that enable efficient computations inde-

pendent of the number of degrees of freedom of the full system. We provide efficient and
rigorous a-posteriori error bounds for the state variable, the output functional, and the

statistical quantities based upon the Brezzi-Rappaz-Raviart theory, dealing however with
additional errors as a result of the uncertainty modeling.

We present numerical experiments for a stationary quadratic convection-diffusion prob-

lem to illustrate different aspects of the proposed method.

1. INTRODUCTION

Stochastic partial differential equations (PDEs) are widely used to model e.g. physical,
medical, or economical problems containing stochastic uncertainties. One distinguishes be-
tween stochastic PDEs involving the Itô calculus and PDEs with stochastic influences such
as uncertain, random or unknown coefficients. In the present paper, we deal with problems
of the latter kind, e.g. porous media flows. To describe additional deterministic dependen-
cies, including e.g. geometric variations, model parameters or forces, we include deterministic
parameters to the PDE.

Widely studied solution techniques for PDEs with stochastic influences include different
Galerkin methods [14]. So called stochastic finite elements use weak formulations in space and
probability. Alternatively, weak solutions in space are combined with Monte Carlo evaluations.

In this context, we integrate the Reduced Basis Method (RBM) which has been intensively
studied for PDEs that have to be evaluated repeatedly for many instances of deterministic
parameters, see e.g. [7, 15, 16]. It is based upon an offline-online decomposition, where the
offline construction of the reduced basis, involving solutions of the full problem, is separated
from the efficient online simulations that are independent of the dimension of the full problem.
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Scholarships Act (Landesgraduiertenförderungsgesetz).

1



2 KARSTEN URBAN AND BERNHARD WIELAND∗

The online procedure includes the evaluation of efficient and rigorous a-posteriori error bounds
for the state and outputs.

The key condition for the efficiency of the RBM is the availability of an affine decomposition
of the system in parametric and/or stochastic dependencies from spatial and time variables.
For deterministic problems, such decompositions can be obtained using the Empirical Inter-
polation Method (EIM) [1, 17]. For the stochastic case, we apply the Karhunen-Loève (KL)
expansion [12, 13], where the involved random variables are modeled using polynomial chaos
(PC) expansions [22]. For combinations of parametric and stochastic problems, extensions of
the EIM have been developed in [19].

Deterministic parametrized quadratically nonlinear problems and RBM have been studied
for affine problems e.g. in [20] and non-affine problems e.g. in [5]. The analysis is based on the
Brezzi-Rappaz-Raviart (BRR) theory [3, 4]. RBM for stochastic parametrized linear problems
have been studied in [2, 8]. The evaluation of statistical outputs such as second moment or
variance requires good approximation procedures for quadratic output functionals which has
been developed in [8] for this special case. In general, quadratic output functionals in the RB
context are introduced in [9, 10].

In the present paper, we combine the methods for quadratic deterministic and linear sto-
chastic problems for the case of a given affine decomposition w.r.t. the deterministic parameter.
The affine decomposition w.r.t. the stochastic dependency is obtained using the KL expan-
sion. Consequently, especially the error analysis of state and linear output functional is very
similar to [20] and [5], whereas the analysis of quadratic and statistical outputs is strongly
based upon [8].

We begin in Section 2 with the introduction of the general variational formulation and
its Frèchet derivative for the class of problems we are dealing with. Furthermore, we briefly
describe the Karhunen-Loève expansion and introduce the desired random and statistical
outputs of interest. In Section 3, we present the nonlinear primal RB formulation of the
problem and appropriate linear dual RB problems used for the RB approximation of the
different outputs of interest. The a-posteriori analysis of the error of state and outputs is
developed in Section 4 and the offline-online decomposition in Section 5, where also evaluation
procedures for the inf-sup and continuity constants are presented, which are needed for the
evaluation of the error bounds. Finally, in Section 6, we provide numerical experiments for a
stationary quadratic convection-diffusion problem.

2. PRELIMINARIES

2.1. Variational formulation. Let D ⊂ Rd denote an open, bounded, spatial domain, P ⊂
Rp a set of deterministic parameters, and (Ω,A,P) a probability space. For some finite element
(FE) subspace X ⊂ H1(D) of dimension dim(X) = N , let a0 : X×X×M→ R,M := P×Ω,
be a bilinear form w.r.t. the first two arguments, a1 : X × X × X ×M → R a trilinear
form w.r.t. the first three arguments, and let f : X ×M → R be linear and bounded. We
assume uniformly boundedness of a0 and a1, i.e. for (µ, ω) ∈M, there are continuity constants
0 < ρ0(µ, ω) < ρ̄0 <∞ and 0 < ρ1(µ, ω) < ρ̄1 <∞ such that

|a0(u, v;µ, ω)| ≤ ρ0(µ, ω) ‖u‖X ‖v‖X , u, v ∈ X,(2.1)

|a1(u,w, v;µ, ω)| ≤ ρ1(µ, ω) ‖u‖X ‖w‖X ‖v‖X , u, w, v ∈ X.(2.2)

For (µ, ω) ∈M and w, v ∈ X, we define

g(w, v;µ, ω) := a0(w, v;µ, ω) + a1(w,w, v;µ, ω)− f(v;µ, ω)(2.3)
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and solve the nonlinear, parametrized and random variational problem

g(u(µ, ω), v;µ, ω) = 0, ∀v ∈ X.(2.4)

For the moment, we assume the existence of a solution of (2.4) for each pair (µ, ω). A detailed
proof is given in Section 4, following the well known Brezzi-Rappaz-Raviart (BRR) theory [3].

2.2. Affine decomposition via Karhunen-Loève expansion. In order to achieve com-
putational efficiency of a RBM, we assume g to allow for an affine decomposition in the
deterministic parameter µ, namely

g(w, v;µ, ω) =

Q∑
q=1

θq(µ)
[
ḡq(w, v) + gq(w, v;ω)

]
,(2.5)

where ḡq : X ×X → R are bounded and denote the expectations of the terms in brackets and
gq : X × X × Ω → R have zero mean and represent the fluctuating parts. To separate also
stochastic and spatial dependencies, we express gq(w, v;ω) using Karhunen-Loève expansions
[12, 13], and obtain

gq(w, v;ω) =

∞∑
k=0

ξq,k(ω) gq,k(w, v), q = 1, ..., Q.(2.6)

The random variables ξq,k : Ω → R are uncorrelated and have zero mean and unit variance.
The bilinear forms gq,k : X × X → R are bounded and the magnitude typically decreases
exponentially fast in k. For numerical purposes, one usually restricts the infinite sums by some
sufficiently large K <∞, leading to truncated forms gKq and thereby gK . The corresponding
solution of the truncated form of (2.4) is denoted by uK(µ, ω).

In practice, one may have different numbers Q of affine terms for a0, a1 and f , and one
may truncate each of the respective decomposed forms at different values of K. However, for
notational convenience, we do not explicitly specify all dependencies but indicate them just
by Q and K, respectively. Furthermore, an index K indicates that the expression denotes or
is based upon truncated systems.

2.3. Newton iteration. We iteratively solve (2.4) or the respective truncated problem using
Newton’s method. The Frèchet derivative of g at some point z ∈ X is given by

dg(u, v;µ, ω)[z] = a0(u, v;µ, ω) + a1(u, z, v;µ, ω) + a1(z, u, v;µ, ω)(2.7)

and the respective truncated form is denoted by dgK . For some initial guess u
[0]
K (µ, ω), we

solve

dgK(δu
[i]
K(µ, ω), v;µ, ω)[u

[i]
K(µ, ω)] = −gK(u

[i]
K(µ, ω), v;µ, ω), ∀v ∈ X(2.8)

and evaluate the Newton update u
[i+1]
K (µ, ω) = u

[i]
K(µ, ω) + δu

[i]
K(µ, ω).

2.4. Output of interest. Often, one is not only interested in the state u(µ, ω) but also in
some output functional s(µ, ω) := `(u(µ, ω);µ), where ` : X × P → R denotes a paramet-
ric linear form. Furthermore, we may be interested in the squared functional s2(µ, ω) :=
(`(u(µ, ω), µ))2.

Besides these random outputs, we want to evaluate some statistical quantities such as
first and second moment of s(µ, ω), denoted by M1(µ) := E[s(µ, ·)] and M2(µ) := E[s2(µ, ·)],
respectively. Additionally, we need the squared first moment M2

1(µ) = (E[s(µ, ·)])2 to evaluate
the variance, given by V(µ) = M2(µ)−M2

1(µ).
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3. REDUCED BASIS SYSTEM

In this section, we introduce reduced primal and dual systems that are used to derive good
approximations of the desired random and statistical outputs of interest. For the construction
of the dual problems, we combine the ideas of [5, 20], where dual problems for quadratically
nonlinear problems with linear outputs are derived, and [8], where dual formulations for linear
problems in combination with quadratic and statistical outputs are introduced.

3.1. The primal-dual formulation for linear outputs. We create a reduced basis from
solutions ζn := uK(µn, ωn) for some appropriate parameter set {µn, ωn}Nn=1 ∈ MN , N � N .
The reduced space is given by XN = span({ζn}Nn=1) ⊂ X. Due to the affine decomposition of
g and dg, it is possible to assemble and solve the reduced system

gK(uN,K(µ, ω), v;µ, ω) = 0, ∀v ∈ XN .(3.9)

for each (µ, ω) ∈ M with N -independent computational complexity O(QKN3I), where I
denotes the number of Newton iterations. We also introduce a linear dual problem in full and
reduced form,

dg(v, p(1)(µ, ω);µ, ω)[ 1
2 (u(µ, ω)+uN,K(µ, ω))] = −`(v;µ), ∀v ∈ X,(3.10)

dgK(v, p
(1)
N,K(µ, ω);µ, ω)[uN,K(µ, ω)] = −`(v;µ), ∀v ∈ X̃(1)

N ,(3.11)

with solutions p(1)(µ, ω) ∈ X and p
(1)
N,K(µ, ω) ∈ X̃

(1)
N , respectively. The superscript (1) is

motivated by the fact that we will introduce further dual problems later on. The reduced dual

space X̃
(1)
N of dimension Ñ (1) � N is constructed analogously to XN as the span of solutions

of (3.10) for appropriate parameter pairs (µ, ω). The complexity to solve the dual problem
corresponds to just one Newton iteration of the primal problem. Here and in the following,
the index N indicates that the expression denotes or is based on reduced systems. We do
not explicitly indicate the dependencies on the different dimensions of the primal and dual
reduced systems. For notational simplicity, we also omit the parameter pair (µ, ω) in many
cases, where it does not affect the understanding.

Let rRB(v;µ, ω) := gK(uN,K(µ, ω), v;µ, ω) be the residual of the reduced primal problem
for some v ∈ X. We define the RB approximation of the linear output s(µ, ω) and its corre-
sponding linear statistical output, the first moment M1(µ), by

sN,K(µ, ω) := `(uN,K ;µ) + rRB(p
(1)
N,K ;µ, ω),(3.12)

M1,NK(µ) := E[sN,K(µ, ·)],(3.13)

respectively, where rRB(p
(1)
N,K(µ, ω);µ, ω) has been added as a correction term to improve the

approximation. In Section 4, we will provide error bounds to show that this choice leads to
good results.

3.2. The dual formulations for quadratic outputs. As mentioned in Section 2.4, we
are also interested in the squared output s2(µ, ω). Since the straightforward approximation
(sN,K(µ, ω))2 does not lead to accurate results, we define `(2)(µ, ω) := 2sN,K(µ, ω)`(v;µ) and
introduce the additional linear dual problems, full and reduced,

dg(v, p(2)(µ, ω);µ, ω)[ 1
2 (u(µ, ω)+uN,K(µ, ω))] = −`(2)(v;µ, ω), ∀v ∈ X,(3.14)

dgK(v, p
(2)
N,K(µ, ω);µ, ω)[uN,K(µ, ω)] = −`(2)(v;µ, ω), ∀v ∈ X̃(2)

N ,(3.15)

with solutions p(2)(µ, ω) ∈ X and p
(2)
N,K(µ, ω) ∈ X̃

(2)
N , respectively, using some appropriate

reduced dual space X̃
(2)
N of dimension Ñ (2) � N . The RB approximation of the quadratic
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output s2(µ, ω) and its corresponding statistical output, the second moment M2(µ), are then
defined by

s
[2]
N,K(µ, ω) := (sN,K)

2
+ 2sN,K rRB(p

(1)
N,K ;µ, ω)− rRB(p

(2)
N,K ;µ, ω),(3.16)

M2,NK(µ) := E
[
s

[2]
N,K(µ, ·)

]
,(3.17)

i.e., we add two additional correction terms compared to the straightforward approximation.

3.3. The dual formulation for the variance approximation. To develop good approxi-
mations of the variance V(µ) = M2(µ)−M2

1(µ), it remains to find RB estimates of M2
1(µ). We

define `(3)(µ, ω) := 2M1,NK(µ, ω)`(v;µ) and introduce the additional linear dual problems,
full and reduced,

dg(v, p(3)(µ, ω);µ, ω)[ 1
2 (u(µ, ω)+uN,K(µ, ω))] = −`(3)(v;µ, ω), ∀v ∈ X,(3.18)

dgK(v, p
(3)
N,K(µ, ω);µ, ω)[uN,K(µ, ω)] = −`(3)(v;µ, ω), ∀v ∈ X̃(3)

N ,(3.19)

with solutions p(3)(µ, ω) ∈ X and p
(3)
N,K(µ, ω) ∈ X̃

(3)
N , respectively, using some appropriate

reduced dual space X̃
(3)
N of dimension Ñ (3) � N . The RB approximations of the squared first

moment M2
1(µ) and the variance V(µ) are then given by

M[2]
1,NK(µ) := (M1,NK)

2
+ 2M1,NKE

[
rRB(p

(1)
N,K)

]
− E

[
rRB(p

(3)
N,K)

]
,(3.20)

VNK(µ) := E
[
s

[2]
N,K(µ, ·)

]
− M[2]

1,NK(µ)(µ),(3.21)

respectively. Analogously to (3.16), we added two correction terms.
In our numerical experiments, we have observed that it is sufficient to use the same reduced

space for the second and third dual problem, i.e. X̃
(2)
N = X̃

(3)
N . Hence, we just solve

dgK(v, p
(4)
N,K(µ, ω);µ, ω)[uN,K(µ, ω)] = −2`(v;µ, ω), ∀v ∈ X̃(2)

N(3.22)

for p
(4)
N,K(µ, ω) ∈ X̃(2)

N such that p
(2)
N,K = sN,K · p(4)

N,K and p
(3)
N,K = M1,NK · p(4)

N,K .

4. A-POSTERIORI ANALYSIS

Parts of the following analysis are based on the Brezzi-Rappaz-Raviart (BRR) theory [3, 4]
which has already been used in the RB context for affine deterministic problems, e.g. [20], and
non-affine deterministic problems, e.g. [5]. Consequently, especially the analysis in Sections
4.2 to 4.4 is very similar to parts of the mentioned publications. The analysis of quadratic
and statistical outputs is based on [8], where the linear stochastic case has been discussed.

Under the assumption that solutions u(µ, ω) of (2.4) and uN,K(µ, ω) of (3.9) exist, we define
the inf-sup constant β(µ, ω) as

β(µ, ω) := inf
w∈X

sup
v∈X

dg(w, v;µ, ω)[uN,K(µ, ω)]

‖w‖X‖v‖X
.(4.23)

We furthermore assume the existence of some β0 > 0 such that β(µ, ω) > β0 for all (µ, ω) ∈M.
Existence and uniqueness of solutions of the dual problems (3.11), (3.15) and (3.19) follows
immediately. We furthermore assume the availability of a positive lower bound βLB(µ, ω) of
the inf-sup constant β(µ, ω) and an efficient evaluation procedure, compare Section 5.2.
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4.1. Notation. We first introduce some notation for the subsequent analysis. Let

eRB(µ, ω) := uK(µ, ω)− uN,K(µ, ω),

ẽ
(i)
RB(µ, ω) := p

(i)
K (µ, ω)− p(i)

N,K(µ, ω), i = 1, 2, 3,

denote the error between the reduced primal and dual solutions and the corresponding solu-
tions of the full but truncated systems, respectively. Furthermore, let

e(µ, ω) := u(µ, ω)− uN,K(µ, ω),

ẽ(i)(µ, ω) := p(i)(µ, ω)− p(i)
N,K(µ, ω), i = 1, 2, 3,

denote the total error of the reduced primal and dual solutions, respectively. We define the
RB residuals

rRB(v;µ, ω) := gK(uN,K , v;µ, ω) = gK(eRB, v;µ, ω),

r̃
(i)
RB(v;µ, ω) := dgK(v, p

(i)
N,K)[uN,K ] + `(i)(v) = dgK(v, ẽ

(i)
RB)[uN,K ], i = 1, 2, 3,

as a “measure” of the error that results from the basis reduction. Additionally, we define some
KL “residuals” indicating the truncation errors g − gK and dg − dgK . To obtain truncation
bounds independent of the actual random realization, we replace the random variables ξq,k,
k > K by some %-quantile ξ%, i.e., we define some 0 ≤ %� 1 such that |ξq,k| ≤ ξ% holds with
probability 1− %. We define

δKL(v;µ, ω) :=

Q∑
q=1

|θq(µ)|
∞∑

k=K+1

ξ% |gq,k(uN,K , v)| ,

δ̃
(i)
KL(v;µ, ω) :=

Q∑
q=1

|θq(µ)|
∞∑

k=K+1

ξ% |dgq,k(v, p
(i)
N,K)[uN,K ]|, i = 1, 2, 3.

For numerical purposes, the possibly infinte sums in the above definitions will be truncated
as well at some large Kmax > K such that the additional truncation error is negligible.

Since we replaced the random variables ξq,k(ω) by its %-quantile ξ%, the KL residuals δKL

and δ̃
(i)
KL are not residuals in the classical sense but represent corresponing quantiles, i.e.

δKL(v) ≥ |(g − gK)(uN,K , v)| and δ̃
(i)
KL(v) ≥ |(dg − dgK)(v, p

(i)
N,K)[uN,K ]| holds with a certain

probability. In many cases, the random variables ξq,k(ω) are bounded since the underlying
problem restricts their variations. Then, we can choose % = 0 and obtain rigorous bounds.
Otherwise, % should be sufficiently small to be negligible in the following analysis.

Based on the introduced residuals, we define RB and KL bounds for i ∈ {1, 2, 3},

∆RB(µ, ω) :=
1

βLB
sup
v∈X

(
rRB(v)

‖v‖X

)
, ∆̃

(i)
RB(µ, ω) :=

1

βLB
sup
v∈X

(
r̃

(i)
RB(v)

‖v‖X

)
,(4.24)

∆KL(µ, ω) :=
1

βLB
sup
v∈X

(
δKL(v)

‖v‖X

)
, ∆̃

(i)
KL(µ, ω) :=

1

βLB
sup
v∈X

(
δ̃

(i)
KL(v)

‖v‖X

)
.(4.25)

Before we provide the actual error bounds for the state and the outputs, we introduce a
so called proximity indicator τ(µ, ω) which can be seen as a dimensionless measure of the
residuals. Similarly to [5, 20], we define

τ(µ, ω) := 4
ρ1(µ, ω)

βLB(µ, ω)
(∆RB(µ, ω) + ∆KL(µ, ω)) ,(4.26)
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where ρ1(µ, ω) is given by (2.2). For τ(µ, ω) < 1, we furthermore define

d(µ, ω) :=
(

1 +
√

1− τ(µ, ω)
)−1

(4.27)

which will appear as a factor in the upcoming error bounds. It is easy to see that d(µ, ω) is
decreasing in τ(µ, ω) and takes values in the interval [1/2, 1).

4.2. Primal solution error. For τ(µ, ω) < 1, we define the bound

∆(µ, ω) := 2d(µ, ω) (∆RB(µ, ω) + ∆KL(µ, ω)) .(4.28)

Since d(µ, ω) approaches 1/2 for small τ , the bound ∆(µ, ω) approaches ∆RB(µ, ω)+∆KL(µ, ω)
which corresponds to the bound in the linear case, see [8]. To show that ∆(µ, ω) is indeed
an upper bound for the error of the reduced primal solution uN,K , we need the following
statement, which is introduced and proved almost analogously for deterministic problems in
[5, 20].

Lemma 4.1. For (µ, ω) ∈M and τ(µ, ω) < 1, the operator Φ : X ×M→ X defined by

dg(Φ(w;µ, ω), v;µ, ω) = dg(w, v;µ, ω)[uN,K(µ, ω)]− g(w, v;µ, ω) ∀v ∈ X,
for a given w ∈ X, has a unique fixed point w∗(µ, ω) in the ball B(uN,K(µ, ω), r(µ, ω)) ⊂ X
with the radius r(µ, ω) ∈

[
∆(µ, ω), βLB(µ, ω)(2ρ1(µ, ω))−1

)
.

Proof. We omit all parameter dependencies for notational convenience. First, it is straight-
forward to show the identity

g(w2, v)− g(w1, v) = dg(w2 − w1, v)[ 1
2 (w2 + w1)](4.29)

and the inequality

dg(w, v)[z2]− dg(w, v)[z1] = a1(w, z2 − z1, v) + a1(z2 − z1, w, v)

≤ 2ρ1‖w‖X‖v‖X‖z2 − z1‖X ,(4.30)

using just the definition of g in (2.3) and dg in (2.7) and the continuity assumption (2.2). To
prove the Lemma, we apply these results and use the Banach fixed point theorem. We first
show that Φ is a contraction on B̄(uN,K , r) for some r > 0. For w1, w2 ∈ B̄(uN,K , r), we know
that 1

2 (w2 + w1) ∈ B̄(uN,K , r). Using (4.29), we obtain

dg(Φ[w2]− Φ[w1], v)[uN,K ] = dg(w2 − w1, v)[uN,K ]− (g(w2, v)− g(w1, v))

= dg(w2 − w1, v)[uN,K ]− dg(w2 − w1, v)[ 1
2 (w2 + w1)].

Hence, applying (4.30) and the fact that 1
2 (w2 + w1) ∈ B̄(uN,K , r),

|dg(Φ[w2]− Φ[w1], v)[uN,K ]| ≤ 2ρ1‖w2 − w1‖X‖v‖X‖uN,K − 1
2 (w2 + w1)‖X

≤ 2rρ1‖w2 − w1‖X‖v‖X .
We use this result and the inf-sup constant (4.23),

‖Φ[w2]− Φ[w1]‖X ≤
1

βLB
sup
v∈X

dg(Φ[w2]− Φ[w1], v)[uN,K ]

‖v‖X
≤ 2rρ1

βLB
‖w2 − w1‖X .

Hence, Φ is a contraction for 0 < r < βLB/2ρ1. Next, we show that there is such a radius r
such that Φ maps B̄(uN,K , r) into itself. For w ∈ B̄(uN,K , r). It holds with (4.29) that

dg(Φ[w]−uN,K , v) = dg(w−uN,K , v)[uN,K ]− g(w, v)

= dg(w−uN,K , v)[uN,K ]− (g(w, v)− g(uN,K , v))− g(uN,K , v)

= dg(w−uN,K , v)[uN,K ]− dg(w−uN,K , v)[ 1
2 (w+uN,K)]− g(uN,K , v).
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Using again (4.30), we obtain

|dg(w−uN,K , v)[uN,K ]− dg(w−uN,K , v)[ 1
2 (w+uN,K)]| ≤ ρ1‖w−uN,K‖2X‖v‖X

≤ ρ1r
2‖v‖X .

Furthermore, it is clear that

|g(uN,K , v)| ≤ |(g − gK)(uN,K , v)|+ |gK(uN,K , v)| ≤ δKL(v) + |rRB(v)|.

Hence, using again the inf-sup constant (4.23), we get

‖Φ[w]−uN,K‖X ≤
1

βLB
sup
v∈X

dg(Φ[w]−uN,K , v)

‖v‖X
≤ ρ1r

2

βLB
+ (∆KL + ∆RB).

Therefore, Φ maps B̄(uN,K , r) into itself for all r with ρ1r
2β−1

LB +∆KL +∆RB < r, which holds
for r ∈ [∆, βLB/(2ρ1d)]. Since d < 1 by (4.27), Φ has a unique fixed point on B(uN,K , r) for
r ∈ [∆, βLB/(2ρ1)). �

Proposition 4.2. For τ(µ, ω) < 1, (µ, ω) ∈ M, there exists a unique solution u(µ, ω) ∈
B
(
uN,K(µ, ω), βLB(µ,ω)

2ρ1(µ,ω)

)
of (2.4) such that ‖u(µ, ω)− uN,K(µ, ω)‖X ≤ ∆(µ, ω).

Proof. The proof follows directly from Lemma 4.1. Since the fixed point of Φ solves (2.4), we

have existence and uniqueness in B(uN,K ,
βLB

2ρ1
). Furthermore, the fixed point is in the ball

B(uN,K ,∆) which leads to the error bound. �

At the beginning of Section 4, we assumed the existence of solutions u(µ, ω) of (2.4) and
uN,K(µ, ω) of (3.9). With Proposition 4.2, we can prove existence and local uniqueness of
u(µ, ω) a-posteriori, solving just the reduced problem and evaluating τ(µ, ω). However, the
reduced basis has to be sufficiently large to fulfill the requirement τ(µ, ω) < 1. This reflects
the fact that we can not expect well-posedness of the nonlinear problem for all parameters µ
and ω.

4.3. Dual solution error. For the dual solutions p
(i)
N,K(µ, ω) of (3.11), (3.15) and (3.19), we

define the bounds ∆̃(i)(µ, ω), i ∈ {1, 2, 3}, by

∆̃(i)(µ, ω) := 2d(µ, ω)

(
∆̃

(i)
RB(µ, ω)+∆̃

(i)
KL(µ, ω) +

ρ1(µ, ω)

βLB(µ, ω)
∆(µ, ω)‖p(i)

N,K(µ, ω)‖X
)
.(4.31)

The last term of (4.31) can also be expressed in terms of τ and d and we obtain the alternative

notation ∆̃(i) = 2d(∆̃
(i)
RB + ∆̃

(i)
KL) + d2τ‖p(i)

N,K‖X .

Proposition 4.3. For τ(µ, ω) < 1, it holds that ‖p(i)(µ, ω) − p(i)
N,K(µ, ω)‖X ≤ ∆̃(i)(µ, ω) for

i ∈ {1, 2, 3}, (µ, ω) ∈M.

Proof. It is straightforward that

dg(v, ẽ(i))[uN,K ] = dg(v, p(i))[ 1
2 (u+uN,K)]− dg(v, p(i))[ 1

2 (u−uN,K)]− dg(v, p
(i)
N,K)[uN,K ].

Let us consider the first and last term.∣∣dg(v, p(i))[ 1
2 (u+uN,K)]− dg(v, p

(i)
N,K)[uN,K ]

∣∣ =∣∣`(i)(v)−dgK(v, p
(i)
N,K)[uN,K ]− (dg−dgK)(v, p

(i)
N,K)[uN,K ]

∣∣ ≤ ∣∣r̃(i)
RB(v)

∣∣+
∣∣δ̃(i)

KL(v)
∣∣.

For the middle term, we use p(i) = ẽ(i) + p
(i)
N,K and inequality (4.30) to obtain∣∣dg(v, p(i))[ 1

2 (u−uN,K)]
∣∣ ≤ ρ1‖e‖X

(
‖ẽ(i)‖X + ‖p(i)

N,K‖X
)
‖v‖X .
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We combine these results to estimate the error ẽ(i). Using the inf-sup condition (4.23), we
obtain

‖ẽ(i)‖X ≤
1

βLB
sup
v∈X

dg(v, ẽ(i))[uN,K ]

‖v‖X
≤
(
∆̃

(i)
RB + ∆̃

(i)
KL

)
+

ρ1

βLB
∆
(
‖ẽ(i)‖X + ‖p(i)

N,K‖X
)
,

i.e., ‖ẽ(i)‖X
(

1− ρ1

βLB
∆

)
≤
(
∆̃

(i)
RB + ∆̃

(i)
KL

)
+

ρ1

βLB
∆‖p(i)

N,K‖X .

Since (1− ρ1
βLB

∆) = 1
2d > 0, the claim is proven 1.

�

4.4. Linear output error. In the subsequent sections, we provide bounds for the errors
between the outputs defined in Section 2.4 and its approximations. In all proofs, we will omit
the parameters (µ, ω) for notational compactness. In this section, we will provide error bounds
for the approximations of the linear output s(µ, ω) and the first moment M1(µ). However, we
start with a statement that will be used in the proofs of all output error bounds.

Lemma 4.4. Let u(µ, ω) be the solution of (2.4), uN,K(µ, ω) the solution of (3.9) and

p(i)(µ, ω), i = 1, 2, 3, the solutions of (3.10), (3.14) and (3.18), respectively. For i ∈ {1, 2, 3},
it holds that `(i)(u)− `(i)(uN,K) = g(uN,K , p

(i)).

Proof. Since `(i)(u) − `(i)(uN,K) = `(i)(e) and using the respective dual formulation (3.10),
(3.14) or (3.18), we have

`(i)(u)− `(i)(uN,K) = −dg(e, p(i))[ 1
2 (u+ uN,K)]

= −a0(e, p(i))− 1
2a1(e, u+ uN,K , p

(i))− 1
2a1(u+ uN,K , e, p

(i))

= −a0(u, p(i))− a1(u, u, p(i)) + a0(uN,K , p
(i)) + a1(uN,K , uN,K , p

(i))

= −f(p(i)) + a0(uN,K , p
(i)) + a1(uN,K , uN,K , p

(i))

= g(uN,K , p
(i)),

which proves the postulated equality. �

Let us now introduce the bound for the error between the linear output s(µ, ω) and its
approximation sN,K(µ, ω) defined in (3.12). We define the bound ∆s(µ, ω) by

∆s(µ, ω) :=
βLB(µ, ω)

2d(µ, ω)
∆(µ, ω)∆̃(1)(µ, ω) + δKL(p

(1)
N,K(µ, ω);µ, ω).(4.32)

Proposition 4.5. For τ(µ, ω) < 1, it holds that |s(µ, ω)− sN,K(µ, ω)| ≤ ∆s(µ, ω).

Proof. From Lemma 4.4, we know that `(u) − `(uN,K) = g(uN,K , p
(1)). Hence, with sN,K

from (3.12), we obtain

s− sN,K = g(uN,K , p
(1))− gK(uN,K , p

(1)
N,K)

= gK(uN,K , p
(1))− gK(uN,K , p

(1)
N,K) + (g − gK)(uN,K , p

(1))

= gK(uN,K , ẽ
(1)) + (g − gK)(uN,K , ẽ

(1)) + (g − gK)(uN,K , p
(1)
N,K).

1Since (1 − ρ1
βLB

∆) = (1 − 1
2
dτ) = (1 − 1

2
τ

1+
√
1−τ ) = ( 2

2
− 1−

√
1−τ
2

) = 1+
√
1−τ
2

= 1
2d

.
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We use the definition of the bounds introduced in Section 4.1 and estimate

|s− sN,K | ≤ |rRB(ẽ(1))|+ δKL(ẽ(1)) + δKL(p
(1)
N,K)

≤ βLB∆RB‖ẽ(1)‖X + βLB∆KL‖ẽ(1)‖X + δKL(p
(1)
N,K)

≤ βLB(∆RB + ∆KL)∆̃(1) + δKL(p
(1)
N,K),

which proves the claim. �

With Proposition 4.5 at hand, it is clear that we can easily define a good bound for the
error between the first moment M1(µ) and its approximation M1,NK(µ) as defined in (3.13).
We define the bound ∆M1(µ) by

∆M1(µ) := E [∆s(µ, ·)] .(4.33)

Corollary 4.6. For µ ∈ P and τ(µ, ·) < 1, it holds that |M1(µ)−M1,NK(µ)| ≤ ∆M1(µ).

Proof. The bound follows from Proposition 4.5 and Definition (3.13). �

4.5. Quadratic output error. We continue with the quadratic outputs s2(µ, ω) and M2(µ)
and start with the bound for the error between the squared output s2(µ, ω) and its approxi-

mation s
[2]
N,K(µ, ω) from (3.16). We define the bound ∆s2(µ, ω) by

∆s2(µ, ω) :=
(
∆s(µ, ω)

)2
+

βLB(µ, ω)

2d(µ, ω)
∆(µ, ω)∆̃(2)(µ, ω) + δKL(p

(2)
N,K(µ, ω);µ, ω).(4.34)

Proposition 4.7. For τ(µ, ω) < 1, it holds that |s2(µ, ω)− s[2]
N,K(µ, ω)| ≤ ∆s2(µ, ω).

Proof. With the definition of s
[2]
N,K in (3.16), the output error is given by

s2 − s[2]
N,K = s2 − (sN,K)2 − 2sN,K rRB(p

(1)
N,K) + rRB(p

(2)
N,K)

= (s− sN,K)2 + 2sN,K(s− sN,K)− 2sN,K rRB(p
(1)
N,K) + rRB(p

(2)
N,K).

Using sN,K = `(uN,K)− rRB(p
(1)
N,K) from (3.12) yields

2sN,K(s− sN,K) = 2sN,K

(
`(u)− `(uN,K) + rRB(p

(1)
N,K)

)
.

Together, replacing 2sN,K` by `(2), we have

s2 − s[2]
N,K = (s− sN,K)2 + `(2)(u)− `(2)(uN,K) + rRB(p

(2)
N,K).(4.35)

From Proposition 4.5, we know that (s − sN,K)2 ≤ (∆s)
2
. The second part of (4.35) can be

estimated analogously to Proposition 4.5 by replacing ` by `(2) as well as p(1) by p(2) and with
Lemma 4.4. We obtain∣∣∣`(2)(u)− `(2)(uN,K) + rRB(p

(2)
N,K)

∣∣∣ ≤ βLB

2d
∆∆̃(2) + δKL(p

(2)
N,K)

which proves the claim. �

Since the second moment M2(µ) and its approximation M2,NK(µ) defined in (3.17) are just

the expectations of s2(µ, ·) and s
[2]
N,K(µ, ·), respectively, it is clear that we can define the bound

∆M2(µ) by the expectation of ∆s2(µ, ·), i.e.,

∆M2(µ) := E
[
∆s2(µ, ·)

]
.(4.36)

Corollary 4.8. For µ ∈ P and τ(µ, ·) < 1, it holds that |M2(µ)−M2,NK(µ)| ≤ ∆M2(µ).
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Proof. Follows from Proposition 4.7 and Definition (3.17). �

4.6. Variance output error. We start with the bound for the error between squared first

moment M2
1(µ) and its approximation M[2]

1,NK(µ). We define the bound ∆M2
1(µ) by

∆M2
1(µ) := (∆M1(µ))2 + E

[βLB(µ, ·)
2d(µ, ·)

∆(µ, ·)∆̃(3)(µ, ·)
]

+ E
[
δKL(p

(3)
N,K(µ, ·);µ, ·)

]
.(4.37)

Proposition 4.9. For µ ∈ P and τ(µ, ·) < 1, it holds
∣∣∣M2

1(µ)−M[2]
1,NK(µ)

∣∣∣ ≤ ∆M2
1(µ).

Proof. Analogously to Proposition 4.7, the output error is given by

M2
1 −M[2]

1,NK = (M1 −M1,NK)2 + E
[
`(3)(u)− `(3)(uN,K) + rRB(p

(3)
N,K)

]
From Corollary 4.6, we know (M1 −M1,NK)

2 ≤ (∆M1)2 = (E [∆s])2. We estimate the remain-

ing term analogously to Proposition 4.5, replacing ` by `(3) as well as p(1) by p(3) and with
Lemma 4.4. We obtain∣∣∣`(3)(u)− `(3)(uN,K) + rRB(p

(3)
N,K)

∣∣∣ ≤ βLB

2d
∆∆̃(3) + δKL(p

(3)
N,K)

and the claim follows directly. �

From the above results, it is clear that the variance error could directly be bounded by

|V(µ)− VNK(µ)| ≤ ∆M2(µ) + ∆M2
1(µ).(4.38)

However, we can derive more precise error bounds. Analogously to Section 4.1, we define dual

RB and KL residuals r̃
(4)
RB(v;µ, ω) and δ̃

(4)
KL(v;µ, ω), replacing p

(i)
N,K by (p

(2)
N,K − p

(3)
N,K),

r̃
(4)
RB(v;µ, ω) := dgK(v, p

(2)
N,K−p

(3)
N,K)[uN,K ] + `(i)(v)

δ̃
(4)
KL(v;µ, ω) :=

Q∑
q=1

|θq(µ)|
∞∑

k=K+1

ξ% |dgq,k(v, p
(2)
N,K − p

(3)
N,K)[uN,K ]|.

The corresponding bounds read

∆̃
(4)
RB(µ, ω) := β−1

LB(µ, ω) sup
v∈X

(
r̃

(4)
RB(v;µ, ω)/‖v‖X

)
,

∆̃
(4)
KL(µ, ω) := β−1

LB(µ, ω) sup
v∈X

(
δ̃

(4)
KL(v;µ, ω)/‖v‖X

)
.

As a consequence of Proposition 4.3, we obtain

‖ẽ(2) − ẽ(3)‖X ≤ ∆̃(4) := 2d
(

∆̃
(4)
RB + ∆̃

(4)
KL

)
+ 2d

ρ1

βLB
∆‖p(2)

N,K−p
(3)
N,K‖X

and define the variance error bound ∆V(µ) by

∆V(µ) := E
[
(∆s(µ, ·))2

]
+ (∆M1(µ))2

+ E
[βLB(µ, ·)

2d(µ, ·)
∆(µ, ·)∆̃(4)(µ, ·)

]
+ E

[
δKL(p

(2)
N,K(µ, ·)−p(3)

N,K(µ, ·);µ, ·)
]
.

(4.39)

Proposition 4.10. For µ ∈ P and τ(µ, ·) < 1, it holds that |V(µ)− VNK(µ)| ≤ ∆V(µ).
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Proof. From Propositions 4.7 and 4.9, we know

V− VNK = E
[
(s− sN,K)2

]
− (M1 −M1,NK)2

+ E
[
`(2)(u)− `(2)(uN,K) + rRB(p

(2)
N,K)

]
− E

[
`(3)(u)− `(3)(uN,K) + rRB(p

(3)
N,K)

]
and the first two terms can be bounded by E

[
(∆s)2

]
and (∆M1)2, respectively. From Lemma

4.4 and the definition of the residual rRB, we know that

`(i)(u)− `(i)(uN,K) + rRB(p
(i)
N,K) = g(uN,K , p

(i))− gK(uN,K , p
(i)
N,K), i = 2, 3.

We subtract the two expressions and follow again the proof of Proposition 4.5. The claim
follows directly using the above definitions. �

5. OFFLINE-ONLINE DECOMPOSITION

In the RB context, one distinguishes between expensive offline computations that have to
be done once to create the reduced system and repeatedly performed online computations,
see e.g. [8, 15]. The aim of the RBM are online evaluation procedures of state, outputs and
corresponding error bounds independent of the dimension N of X. In this section, we describe
the offline-online decomposition and provide the respective complexities.

For the N -independence, it is of crucial importance to efficiently evaluate the continuity
constant ρ1(µ, ω) from (2.2) and the inf-sup constant βLB(µ, ω) from (4.23). We start with an
evaluation procedure for the continuity constant.

5.1. Continuity constant. The derivation of the continuity constant ρ1(µ, ω) from (2.2) is
commonly done using Hölder’s inequality and applying the Sobolev embedding theorem [6, 18],
where the existence of a so called Sobolev embedding constant ρX with ‖v‖4 ≤ ρX‖v‖X for
all v ∈ X is shown. However, the actual derivation of ρ1(µ, ω) depends on the specific form
of the trilinear form a1. Here, we exemplarily provide the derivation strategy for a specific
trilinear form that also (but not only) covers the example problem discussed in Section 6. Let
a1 be given by

a1(u,w, v;µ, ω) :=

∫
D

~ν(µ, ω) · ∇uwv =

∫
D

ν1(µ, ω)uxwv +

∫
D

ν2(µ, ω)uywv,

where ν(µ, ω) : D×M→ R2 denotes some parametric spatial stochastic process. For the first
part, omitting ν for one moment, we apply Hölder’s inequality twice,∫

D

uxwv ≤
[∫

D

(ux)2

]1/2 [∫
D

(wv)2

]1/2

≤
[∫

D

(ux)2

]1/2 [∫
D

(ww)2

]1/4 [∫
D

(vv)2

]1/4

.

Analogously, we estimate the second part. For ν̄(µ, ω) := maxi∈{1,2} ‖νi(µ, ω)‖∞, we directly
obtain the bound a1(u,w, v;µ, ω) ≤ ν̄(µ, ω)(‖ux‖2 + ‖uy‖2)‖w‖4‖v‖4. Using Young’s inequal-

ity, we can easily show that ‖ux‖2 + ‖uy‖2 ≤
√

2‖u‖X . Hence,

a1(u,w, v;µ, ω) ≤
√

2ν̄(µ, ω)‖u‖X‖w‖4‖v‖4.

Now, we apply the Sobolev embedding theorem and obtain the desired continuity constant
ρ1(µ, ω) :=

√
2ν̄(µ, ω)ρ2

X . Suppose ~ν allows for an affine decomposition in the parameters
(µ, ω), it is clear that ν̄ and therefore ρ1 can be decomposed as well with the same number of
affine terms. Hence, the online evaluation of ρ1(µ, ω) can be done efficiently.
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It remains to compute the Sobolev embedding constant ρX which involves the solution of
a nonlinear eigenproblem of the form∫

D

φ3v = λ · (φ, v)X , ∀v ∈ X, ‖φ‖X = 1.(5.40)

The solution of (5.40) can be obtained using e.g. fixed point or homotopy procedures [20].
The Sobolev embedding constant ρX is then given by (λmax)

1/4. The evaluation can be done
offline.

5.2. Inf-sup constant. For the evaluation of the inf-sup constant, we refer to the successive
constraint method (SCM) [11] that can almost directly be applied to the stochastic case. How-
ever, due to the KL truncation, we have to subtract a correction term. Let βKLB(µ, ω) be a lower
bound of the inf-sup constant with respect to the truncated form dgK(w, v;µ, ω)[uN,K(µ, ω)].
We furthermore define

∆β
KL(µ, ω) := sup

w∈X
sup
v∈X

(
Q∑
q=1

|θq(µ)|
Kmax∑
k=K+1

ξ%
|dgq,k(v, w)[uN,K ]|
‖w‖X‖v‖X

)
and obtain the lower bound (c.f. [5, 8])

βLB(µ, ω) := βKLB(µ, ω)−∆β
KL(µ, ω) ≤ β(µ, ω).

In [11], it is shown that the online evaluation of βKLB(µ, ω) is independent of N . However, it
involves the solution of a linear program with about (QKN)2/2 degrees of freedom. One can

show that the online evaluation of ∆β
KL(µ, ω) is of complexity O(Q(Kmax −K)N). The com-

bined offline evaluations for βKLB(µ, ω) and ∆β
KL(µ, ω) include QKmaxN eigenvalue problems

of the full dimension N .

5.3. The offline complexity. To generate the reduced basis, we use a Greedy algorithm as
it is well known in the RB context [21]. Suppose we use a training set of ntrain samples, we
need O(N · ntrain) the online run-time for the basis selection procedure. Furthermore, the
evaluation of the actual basis is of complexity O(IQKtruthNN ), where I is the number of
used Newton iterations, assuming that the FE “truth” uses Ktruth terms of the KL expansion.
The complexity to compute the matrices and vectors of the reduced system is O(QKmaxN

3).
For the evaluation of the ∆KL and ∆RB error bounds, we evaluate O(QKmaxN

2) Riesz repre-
sentators, one for each affine term of the residuals, and its pairwise inner products. I.e., the
complexity reads O(Q2K2

maxN
4N ). We store the reduced system matrices and vectors and

the Riesz representators inner products, i.e., the storage complexity is O(Q2K2
maxN

4).

5.4. The online complexity. Let us summarize the online run-time complexity to assemble
and solve the reduced system for one parameter pair (µ, ω) ∈ M and to evaluate outputs
and error bounds. Let I denote again the number of Newton iterations. In each iteration,
we have to assemble and solve the reduced primal system which is of complexity O(QKN3)
and O(N3), respectively. The evaluation of the residuals rRB — needed as correction terms
for the outputs — is done in O(QKN3) as well. Furthermore, we need to assemble and solve
the linear dual problems with complexity O(QKN3 + N3), i.e. the complexity of just one
Newton iteration. For the error bounds, we first evaluate βLB, solving a linear program with
about (QKN)2/2 degrees of freedom. The evaluation of ρ1 can be done in O(QK). For the
δKL-error bounds, we need Q(Kmax − K) matrix-vector multiplications, i.e., the complexity
is O(Q(Kmax −K)N2). For the ∆KL and ∆RB error bounds, we have to assemble the inner
products of the Riesz representators with the total complexity O((QKmaxN

2)2). Hence, the
overall complexity reads O(IQKN3) +O(Q2K2

maxN
4).
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Sample 1 Sample 2 Sample 3 Sample 4

Figure 6.1. Four random realizations of κ̃

First Mode Second Mode Third Mode Fourth Mode

Figure 6.2. First four modes of κ̃

The storage complexity is O(QKmaxN
3) for all reduced matrices, vectors and Riesz inner

products. Suppose we use M realizations to evaluate Monte Carlo statistical outputs. Then,
we have an additional storage complexity of O(M) to store certain RB outputs or we need to
reevaluate the respective quantities when needed. However, using the less precise variance error
bound (4.38), it is possible to evaluate all quantities with an additional storage complexity of
just O(1). For more details, we refer to [8].

6. NUMERICAL EXPERIMENT

In this section, we consider a two-dimensional stationary convection-diffusion process in
a porous medium. We model the concentration or mass of a physical quantity transported
through a wet sandstone. The diffusivity depends on the porosity, modeled by some spatial
stochastic process, and the water saturation of the sandstone, given by some deterministic
parameter. The nonlinear convective term includes the gradient of the concentration together
with a given dominant direction and a scalar intensity factor given by another deterministic
parameter.

Let D = [0, 1]2 denote the physical domain of the sandstone and (Ω,F , P ) some probability
space. The porosity, i.e. the rate of pore space within some control volume, is denoted by
the spatial stochastic process κ : D × Ω → [0, 1] and is assumed to be smooth in space.
Furthermore, the global water saturation in the pores is given by µ1 ∈ [0.05, 1.00]. Let
ηs = 0.04 be the diffusivity constant of pure (theoretically imporous) sandstone and ηw = 3.10,
ηa = 1.20 the respective diffusivity constants of water and air. With these notations, the
diffusivity of a wet sandstone is assumed to be

η(x;µ, ω) = ηs · (1− κ(x;ω)) + (µ1ηw + (1− µ1)ηa)κ(x;ω)

= ηs + (−ηs + µ1ηw + (1− µ1)ηa)κ(x;ω).
(6.41)

We denote the scaled dominant convection direction by ~ν(µ2) = µ2√
2

(
1
1

)
, where µ2 ∈ [0.2, 1.0].

Finally, we introduce a random zero mean Neumann outlet condition γ(ω) at one part of the
boundary. For µ := (µ1, µ2) ∈ D := [0.05, 1.00]× [0.20, 1.00] andM := D×Ω, the PDE reads
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Figure 6.3. Four random realizations of γ
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as follows: for given (µ, ω) ∈M, find u(µ, ω) such that
−∇ ·

(
η(µ1, ω) ∇u(µ, ω)

)
+ ~ν(µ2) · ∇uu = 0 in D,

u(µ, ω) = 0 on ΓD,

n ·
(
η(µ1, ω) ∇u(µ, ω)

)
= 0 on ΓN,

n ·
(
η(µ1, ω) ∇u(µ, ω)

)
= γ(ω) on Γout.

(6.42)

In the weak form, this leads to the trilinear form a1(w, z, v;µ) =
∫
D
~ν(µ2) ·∇w z v, the bilinear

form a0(w, v;µ, ω) =
∫
D
η(µ1, ω)∇w∇v, and the linear form f(v;ω) =

∫
Γout

γ(ω)v. We define

θ1(µ) := ηs and θ2(µ) := −ηs + µ1ηw + (1 − µ1)ηa using (6.41), as well as θ3(µ) := µ2, and
θ4(µ) := 1. Hence, the affine decompositions w.r.t. µ of a0, a1 and f are given by

a0(w, v;µ, ω) = θ1(µ)

∫
D

∇w∇v + θ2(µ)

∫
D

κ(ω)∇w∇v,

a1(w, z, v;µ) = θ3(µ)

∫
D

1√
2

(
1

1

)
· ∇w z v,

f(v;ω) = θ4(µ)

∫
Γout

γ(ω) v.

Let κ̄(x) denote the mean of the porosity κ(x; ·) and κ̃(x;ω) := κ(x;ω)− κ̄(x) its stochastic

part with zero mean and the KL expansion κ̃(x;ω) =
∑Kκ,max

k=1 ξκk (ω)κk(x), where κ̄(x) ≡ 0.62
is supposed to be constant in space. Four random realizations and the first four KL modes of κ̃
are provided in Figure 6 and 6.2, respectively. Analogously, we have the KL expansion for the

zero mean outlet given by γ(x;ω) =
∑Kγ,max

k=1 ξγk (ω)γk(x). Four random realizations and the
first four KL modes of κ̃ are provided in Figure 6.3 and 6.4, respectively. The KL eigenvalues
of κ̃ and γ are plotted in Figure 6.5. For the truth, we used Kκ,truth = 78 terms to specify κ̃
and Kγ,truth = 18 terms to specify γ. In the reduced setting, Kκ = 30 and Kγ = 11 terms are
used, respectively. The error is measured using Kκ,max = 47 and Kγ,max = 15, respectively,
such that the additional truncation error is negligible compared to the given error tolerance.
In total, the affine decomposition of g w.r.t. µ and ω consists of 3+Kκ,truth +Kγ,truth = 99
terms, the affine decomposition of dg of 2+Kκ,truth = 80 terms, and the respective truncated
forms of 3+Kκ+Kγ = 44 and 2+Kκ = 32.

The output of interest is assumed to be the average concentration at the “output” boundary
Γout, i.e., for `(v) =

∫
Γout

v, we define the output s(µ, ω) := `(u(µ, ω)). Furthermore, we are

interested in its mean, second moment and variance.



16 KARSTEN URBAN AND BERNHARD WIELAND∗

1 30 47 78 116 200
10

−18

10
−15

10
−12

10
−9

10
−6

10
−3

10
0

 

 

λκ

(a) Eigenvalues of the KL expansion of κ̃ and KL

truncation values Kκ = 30, Kκ,max = 47, Kκ,truth =

78

1 11 15 18 21 32
10

−18

10
−15

10
−12

10
−9

10
−6

10
−3

10
0

 

 

λγ

(b) Eigenvalues of the KL expansion of γ and KL

truncation values Kγ = 11, Kγ,max = 15, Kγ,truth =

18

Figure 6.5. Eigenvalues and truncation values of the Karhunen-Loève expansions
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(4)

of basis functions

M
a
x
im

a
l
R
B

er
ro
r

 

 

∆RB

∆̃
(1)
RB

∆̃
(4)
RB

(a) Error decay of primal solution u and dual solu-

tion p(1), and of (p(2) − p(3))

16 20 24 28
10

−4

10
−3

10
−2

10
−1

N , Ñ
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Figure 6.6. Greedy error decay

For the “truth”, we use a finite element space X ⊂ {v ∈ H1(D) | v = 0 on ΓD} with linear
Lagrange elements and N = 3191 degrees of freedom. For the corresponding H1-norm ‖ · ‖X ,
we evaluate the Sobolev embedding constant ρX = supv∈X ‖v‖4/‖v‖X as described in Section
5.1 and obtain ρx = 0.60077.

For the basis construction, we use a greedy algorithm such that X̃
(2)
N = X̃

(3)
N . Figure 6.6(a)

shows the decay of the maximal RB error bounds of the primal and dual solutions u and p(1)

as well as the difference of the additional dual solutions p(2) − p(3). For (N, Ñ (1), Ñ (2)) =
(28, 7, 28), the error bounds of the desired outputs fall below the given tolerance tol = 10−3

for all (µ, ω) in the training sample. The decay of the output error bounds is provided in
Figure 6.6(b), omitting the δKL-parts that do not decrease in N and are therefore ignored in

the greedy procedure. We parallely created XN and X̃
(2)
N used for reduced solution of s2 and

V, assuming that Ñ (1) is already large enough such that the terms (∆s)2 and (∆M1)2 in the

respective error bounds ∆s2 and ∆V are sufficiently small. For N ≥ 15 primal basis functions,

we obtained τ < 1 for all (µ, ω) in the training set. Then, we created X̃
(1)
N such that ∆s and

∆M1 indeed become sufficiently small. Since N was already large, only a small number of
Ñ (1) = 7 basis functions were needed.

To compare truth and reduced solutions, we used a 3.06 GHz Intel Core 2 Duo processor, 4
GB RAM. We used Matlab 7.9.0 (R2012a) to run reduced simulations and Matlab 7.9.0 with
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the link to Comsol 3.5a for the truth. For the (rather small) truth with N = 3.191, we already
achieved a speedup factor of about 33 from full to reduced simulations, where in the reduced
case, the evaluations of all error bounds are included. Tests with finer meshes and hence larger
N for the full solutions showed that the desired error tolerance can still be reached with the
same numbers of basis functions. E.g. for N = 12.555 and (N, Ñ (1), Ñ (2)) = (28, 7, 28), the
speedup factor was about 96.

In Table 6.1, we compare the presented method to evaluate variances VNK and the error
bound ∆V with two alternative procedures. Neither of the two needs additional dual problems.
The simplest method just uses the estimations |s2 − (sN,K)2| = |(s − sN,K)(s + sN,K)| ≤
∆s(∆s + 2|sN,K |) and analogously |M2

1 − (M1,NK)2| ≤ ∆M1(∆M1 + 2|M1,NK |). For the more
sophisticated method, we refer to [2]. We see that our variance evaluation and the error
bounds produce much sharper results. Compared to the “simple” method, the bound is about
24 times smaller, compared to the “sophisticated” method, it still is over 4 times smaller.
The costs, on the other hand, increase only moderately. The evaluation of the additional dual
problem corresponds to just one Newton iteration of the primal problem.

average error bound factor
simple 7.436 · 10−3 23.95 ·∆V

sophisticated 1.347 · 10−3 4.341 ·∆V

∆V 3.104 · 10−4 1.000 ·∆V

Table 6.1. Comparison of different variance error bounds for a test set of
256 parameters, using 10.000 random samples for each parameter.

7. CONCLUSION

We have extended the theory of RBMs for linear PDEs with stochastic influences [8] to the
nonlinear case, using the BRR theory and the results from [5, 20]. It is demonstrated that the
RB methodology allows us to deal with large nonlinear parameterized systems involving sig-
nificant stochastic deviations. We have shown that quadratic outputs such as second moment
and variance can be also evaluated efficiently using an additional linear dual problem.
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