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Abstract: We consider parameter dependent spatial stochastic processes in the context of
partial differential equations (PDEs) and model order reduction. For a given parameter,
a random sample of such a process specifies a sample coefficient function of a PDE, e.g.
characteristics of porous media such as Li-ion batteries or random influences in biomechanical
systems. To apply the Reduced Basis Method (RBM) to parametrized systems (with stochastic
or deterministic parameter dependencies), it is necessary to obtain affine decompositions of the
systems in parameter and space (cf. e.g. Patera and Rozza (2006); Haasdonk et al. (2012)).
For deterministic problems, it is common to use the Empirical Interpolation Method (EIM)
(cf. Barrault et al. (2004)). For stochastic coefficients, one can apply the Karhunen-Loève
(KL) expansion (cf. Karhunen (1947), Loève (1978)) where the terms involving stochastic
dependencies are assumed to satisfy certain distributions and are modeled using polynomial
chaos (PC) expansions (cf. Ghanem and Spanos (1991)).
In this paper, we extend the EIM to parametrized spatial stochastic processes. The goal is
to develop efficiently computable affine decompositions of not only parameter dependent but
also stochastic systems that separate spatial dependencies from parametric and probabilistic
influences without any assumptions on the distribution of non-spatial terms. We will use the
basic concept of the EIM together with ideas from Proper Orthogonal Decomposition (POD)
as well as from the Discrete Empirical Interpolation Method (DEIM) (cf. Chaturantabut and
Sorensen (2010)). Furthermore, we introduce a combination of these methods with least-squares
approximations.
We emphasize that the presented methods are not limited to stochastic functions but work
analogously on noisy input data or on other hardly decomposable functions.

Keywords: empirical interpolation method, proper orthogonal decomposition, least-squares
approximation, reduced-order models, reduced basis method, a posteriori error estimation

1. INTRODUCTION

Let (Ω,F , P ) be a probability space, P ⊂ Rp be a set of
deterministic parameters, and let D ⊂ Rd denote a spatial
domain. Furthermore, let c denote a real-valued parameter
dependent spatial stochastic process, i.e. c : D × (P ×
Ω)→ R, (x;µ, ω) 7→ c(x;µ, ω). For each pair (µ, ω) ∈ P ×
Ω, we obtain a trajectory c(µ, ω) ∈ X for some appropriate
Hilbert (function) space X on D.

We consider the following problem: For any trajectory
c(µ, ω) ∈ X, evaluate some given linear functional
`(u(µ, ω)), where u(µ, ω) ∈ X is the solution of a PDE
L(c(µ, ω))[u(µ, ω)] = 0 on D. The spatial differential op-
erator L is supposed to be linear w.r.t. the trajectories
c(µ, ω).
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In the context of Reduced Basis Methods (RBM), it is
essential that the operator L is affine w.r.t. the parameter
pair (µ, ω), since this allows for an efficient offline-online
decomposition. Due to the linearity of L, this is satisfied
provided that c(µ, ω) is an affine function of the param-
eters and the spatial variables. In general, however, this
requirement is not fulfilled, in particular in the presence
of stochastic influences. The objective of this paper is thus
(i) to find affine approximations of c(µ, ω) of the form

c(µ, ω) ≈
M∑
m=1

θm(µ, ω) qm (1)

with so-called collateral basis functions qm ∈ X, m =
1, ...,M , (ii) to construct efficient evaluation procedures
for the coefficients θm(µ, ω) ∈ R, m = 1, ...,M , and (iii)
the derivation of effective a-posteriori error estimators to
choose M ∈ N possibly small in order to guarantee a
certain approximation error in (1).

Known methods for the construction of affine approxima-
tions of non-affine functions include the Empirical Inter-



polation Method (EIM) (cf. Barrault et al. (2004); Tonn
(2012)) for deterministic parametric functions and the
Discrete EIM (DEIM) (cf. Chaturantabut and Sorensen
(2010)) as well as the Operator EIM (cf. Drohmann et al.
(2012)) for discrete operator approximations. For stochas-
tic influences in terms of random variables, the Karhunen-
Loève (KL) expansion is well-known (cf. Karhunen (1947);
Ghanem and Spanos (1991)), which can also be seen as
the stochastic counterpart of the Proper Orthogonal De-
composition (POD). The probability distributions of the
KL expansion coefficients are modeled using Polynomial
Chaos (PC) expansions (cf. Xiu and Karniadakis (2002)).

The main obstruction in our framework is that the EIM
is based on the L∞ approximation error of previously
chosen snapshot trajectories. For non-smooth trajectories,
the basis will not be smooth either, and the method may
be inappropriate due to the presence of singularities. Es-
pecially for stochastic processes, one can usually at most
guarantee smoothness P -a.s., and even though the essen-
tial supremum is taken to determine the EIM interpolation
points (knots), it may be hard to distinguish between ‘true’
large deviations and singularities of measure zero.

Even when using an ‘optimal’ basis for the approximation
of non-smooth functions, errors occur due to imprecise
coefficients θm in (1). Since the EIM is based only upon few
interpolation points, these coefficients may also be strongly
influenced by singularities.

In Section 2, we provide necessary information about
the POD, EIM, Operator EIM and DEIM that will be
used to introduce two new approaches to construct affine
decompositions of stochastic (non-smooth) processes. In
Section 3, we introduce a Proper Orthogonal Interpolation
Method (POIM) that is based on the EIM and POD and
replaces the L∞-based basis selection by an L2-‘optimal’
basis. We show a connection to the DEIM and provide
new error estimates for both methods. We then introduce
a Least-Squares EIM (LSEIM) in Section 4 that uses
more knots than basis functions. In Section 5 we provide
a numerical example and show that we obtain close to
optimal approximations.

2. PRELIMINARIES

In this section, we briefly review some of the basic known
facts on POD and EIM that are needed in order to describe
our approach.

2.1 Proper Orthogonal Decomposition (POD)

For some training set Ξtr ⊂ P × Ω of cardinality ntr and
corresponding trajectories c(µ, ω), (µ, ω) ∈ Ξtr, the POD
space V POD

M of dimension M is defined via the following
optimization problem

V POD
M := arg inf

VM ⊂Xtr

dimVM=M

n−1
tr ·

∑
(µ,ω)∈Ξtr

inf
wM∈VM

‖c(µ, ω)− wM‖22,

where Xtr := span{c(µ, ω)|(µ, ω) ∈ Ξtr}. It yields hierar-
chical spaces and is L2-optimal in the sense of representing
the trajectories of the training set in the mean.

A hierarchical basis of V POD
M is given by the eigenfunctions

vm of decreasing eigenvalues λm, m = 1, ...,M , of the
covariance operator C : D ×D → R defined as

C(x1, x2) := n−1
tr ·

∑
(µ,ω)∈Ξtr

c(x1;µ, ω) c(x2;µ, ω), x1, x2 ∈ D.

The average approximation error of the trajectories in the
training set is given by εPOD

M :=
√∑

m>M λm. For more
details, see for example Kunisch and Volkwein (2002).

2.2 Empirical Interpolation Method (EIM)

We briefly review the EIM as introduced for example
in Barrault et al. (2004) and Tonn (2012). We use the
parametric stochastic specification that we consider in this
work.

EIM: Offline-phase. A general form of the EIM offline
procedure is described in Algorithm 1. It generates a
so called collateral basis QM = {q1, ..., qM} and corre-
sponding interpolation points ti, i = 1, ...,M , for M =
1, ...,Mmax. We will describe the main steps below.

Algorithm 1 Offline – Empirical Interpolation Method.

1: for M = 1 to Mmax do
2: ξ ← getNextBasisFunction()
3: ξEIM

M−1 ← getApproximation(M−1, ξ)

4: rM ← ξ − ξEIM
M−1

5: tM ← arg ess supx∈D |rM (x)|
6: qM ← rM/rM (tM ), QM = {QM−1, qM}
7: end for

For an empty basis, the procedure getApproximation(0, ξ)
in line 3 returns zero. Otherwise, getApproximation(M, ξ)
computes the coefficients θM = (θj(ξ))

M
j=1 by solving the

linear system
M∑
j=1

θj(ξ)qj(ti) = ξ(ti), i = 1, ...,M, (2)

and returns some ξEIM
M =

∑M
j=1 θj(ξ)qj . By construction,

this approximation is exact at the knots ti, i = 1, ...,M .
Denoting BM := (qj(ti))

M
i,j=1 and ξM := (ti)

M
i=1 allows to

rewrite (2) as BMθM = ξM and ξEIM
M = QMθM .

The procedure getNextBasisFunction() in line 2 uses a
training set Ξtr ⊂ P × Ω, evaluates EIM approximations
cEIM
M−1(µ, ω) of all trajectories c(µ, ω), (µ, ω) ∈ Ξtr, and

returns the trajectory that is so far worst approximated
in the L∞-sense. In line 4, the residual is evaluated. The
next knot tM is defined in line 5 in order to supremize
the residual, i.e. as that point where ξ is so far worst
approximated. Hence, the interpolation point selection
procedure is based upon the L∞-error. The next collateral
basis function qM is added in line 6, defined as the L∞-
normalized residual. We denote the approximation space
at step M by WEIM

M := span{q1, ..., qM}.
As mentioned before, the approximation is exact at the
knots, i.e. the residual rM is zero at t1, ..., tM−1. This
implies that the linear system (2) is lower triangular with
diagonal unity, i.e., qj(tj) = 1 and qj(ti) = 0 for i < j. The
computational complexity of the evaluation of the EIM
coefficients θM is thus O(M2).

EIM: Online-phase. In the online phase, sketched in
Algorithm 2, we choose an M < Mmax that is assumed



Algorithm 2 Online – Empirical Interpolation Method.

1: choose M and M+ such that M < M+ ≤Mmax

2: select a trajectory c(µ, ω) for some (µ, ω) ∈ P × Ω
3: θM+(µ, ω) ← getCoefficients(M+, c(µ, ω))
4: evaluate approximation

cEIM
M (µ, ω) =

M∑
j=1

θj(µ, ω)qj (3)

5: evaluate the L∞-error estimator

∆EIM
M,M+(µ, ω) =

M+∑
j=M+1

|θj(µ, ω)| (4)

to be sufficiently large for a good approximation quality.
Additionally, we define M+ with M < M+ ≤Mmax.

We then call getCoefficients(M+, c(µ, ω)) that evaluates

the trajectory at the knots (ti)
M+

i=1 and returns the solution
θM+(µ, ω) of the lower triangular linear system

M+∑
j=1

θj(µ, ω)qj(ti) = c(ti;µ, ω), i = 1, ...,M+. (5)

For an efficient application of the EIM, we require that

evaluations of trajectories at the knots (ti)
M+

i=1 are fast,
ideally of complexity O(M+). Due to the lower triangular
form of the linear system (5), the solutions are independent
of the size of the system, i.e. θM+1 = (θM , θM+1).

We use only the first M coefficients to evaluate the
approximation cEIM

M (µ, ω) of the given trajectory, see line
4 of Algorithm 2. In the RBM context, it is not even
necessary to evaluate cEIM

M (µ, ω) in the online phase at
all, only the coefficients θM are used.

One often uses the additional coefficients to get er-
ror estimators. Under the assumption that the trajec-
tory c(µ, ω) is in WEIM

M+ , the quantity ∆EIM
M,M+(µ, ω)

from (4) provides a rigorous upper bound of the L∞-
error. The respective bound for the L2-error would be

given by
∑M+

j=M+1 ‖qj‖2|θj(µ, ω)|. However, the assump-

tion c(µ, ω) ∈ WEIM
M+ usually does not hold and ∆EIM

M,M+

just provides a non-rigorous (but in practice very good)
estimate. For more details on EIM error estimators and
more accurate bounds, see Tonn (2012).

2.3 Empirical Interpolation of Differential Operators

The DEIM (cf. Chaturantabut and Sorensen (2010))
and the empirical operator interpolation proposed in
Drohmann et al. (2012) work in a similar context. Both
methods generate affine decompositions of discretized dif-
ferential operators. As opposed to the EIM, the basis
function selection is based upon operator evaluations and
the knots represent indices of the discrete operator or
‘degrees of freedom’. In the online phase, the discrete oper-
ator evaluations are approximated instead of trajectories
c(µ, ω). Hence, Algorithms 1 and 2 can directly be used
for the empirical operator interpolation, considering ti to
be degrees of freedom and c to be operator evaluations.

The DEIM implies further modifications of the presented
algorithms. At the start of the method, one applies a

POD on the discrete operator — usually using the method
of snapshots (cf. Handler et al. (2006)) — generating
eigenvalues λ1 ≥ λ2 ≥ · · · and corresponding orthonormal
eigenfunctions v1, v2, · · · . The further steps are sketched
in Algorithm 3.

Algorithm 3 Offline – DEIM.

1: for M = 1 to Mmax do
2: ξDEIM

M−1 ← getApproximation(M−1, vM )

3: rM ← vM − ξDEIM
M−1

4: tM ← arg ess supx∈D |rM (x)|
5: VM = {VM−1, vM}
6: end for

Instead of getNextBasisFunction() in Algorithm 1, we se-
lect the M -th POD eigenfunction in iteration M . Further-
more, in the DEIM context, we do not add residuals to
the collateral basis, but the eigenfunctions. Hence, line 6
of Algorithm 1 changes to VM = {VM−1, vM} and the
approximation space reads WDEIM

M := span{v1, ..., vM}.
Lines 3 to 5 remain necessary to determine the knots.

Due to the different selection method, the linear systems
(2), solved in line 2 of Algorithm 3, and (5), solved online,
become full, and the complexity increases to O(M3) and
O((M+)3), respectively.

Furthermore, the error estimator introduced in line 5 of
Algorithm 2 is not valid anymore. We are not aware of
any other adequate a-posteriori error bound. There are
some non-rigorous a-priori average-error estimates, see
Chaturantabut and Sorensen (2010).

3. A PROPER ORTHOGONAL INTERPOLATION
METHOD (POIM)

In this section, we propose a Proper Orthogonal Inter-
polation Method (POIM) that is based on the EIM and
POD. The main idea is to replace the L∞-error based basis
selection by some L2-‘optimal’ procedure. Even though
the method is motivated by stochastic problems, it can
be applied to deterministic formulations as well and may
lead to improved approximations there, too.

The method has some similarities to the DEIM. In fact,
we show that we can modify the DEIM according to the
POIM methodology, making it faster but still producing
the same approximations. Furthermore, we show that the
provided a-posteriori error estimates for the POIM can
also be applied to the DEIM.

3.1 Outline of the Method

We adopt the concept of the DEIM and apply the POD
to our problem in a first step. I.e., we define a training
set Ξtrain ⊂ P × Ω, evaluate trajectories c(µ, ω), (µ, ω) ∈
Ξtrain, and use the method of snapshots to compute POD
eigenvalues λ1, ..., λMmax

and eigenfunctions v1, ..., vMmax
.

As for the DEIM, we select in each iteration the respec-
tive POD eigenfunction and evaluate its approximation to
define the residual and the knot. However, in contrast to
the DEIM, we do not directly add the POD eigenfunction
to the collateral basis, we use the L∞-normalized residual
qM , as described in Algorithm 4, line 5. This part of the



Algorithm 4 Offline – POIM.

1: for M = 1 to Mmax do
2: ξPOIM

M−1 ← getApproximation(M−1, vM )

3: rM ← vM − ξPOIM
M−1

4: tM ← arg ess supx∈D |rM (x)|
5: qM ← rM/rM (tM ), QM = {QM−1, qM}
6: end for

algorithm has been adopted from the EIM and ensures
that the linear systems (2) and (5) are still lower trian-
gular. Therefore, the procedure getApproximation(M, ·) is
identical to the one used in Algorithm 1 and the online
phase of the POIM is identical to the online phase of the
EIM provided in Algorithm 2.

It is clear that the approximation space WPOIM
M is still

L2-optimal. In other words, we have

WPOIM
M = span{v1, ..., vM} = span{q1, ..., qM}, (6)

which can be easily shown by induction. However, the
basis QM is not orthonormal. The knots depend on the
L∞-error of the residual rM , however, since rM is a
linear combination of the first M POD eigenfunctions, it
is typically smooth and the knot should be adequately
chosen.

3.2 Error Estimators

We can directly apply the error estimator defined in Algo-
rithm 2, line 5, i.e., we solve the lower triangular system
(5) in O((M+)2) for some M+ > M and use the additional
coefficients θM+1, ..., θM+ to evaluate ∆EIM

M,M+(µ, ω).

3.3 Application within the DEIM context

As indicated in Section 2.3, the concepts of EIM and DEIM
differ only slightly, using operator evaluations instead of
trajectories and degrees of freedom instead of interpolation
points. Hence, the POIM can directly be used to approxi-
mate operators as well. In view of (6), the approximation
spaces of the DEIM and the POIM coincide. Now, we show
that both methods also produce the same approximations.

Lemma 1. Let c be an arbitrary function and let c̃M , ĉM
be approximations using M basis functions generated by
the POIM and the DEIM, respectively, using the same
interpolation points. Then, c̃M = ĉM .

Proof. Let QM = (q1, ..., qM ) denote the POIM-basis and
VM = (v1, ..., vM ) the DEIM-basis. Since both span the
same space, there exists a matrix ΨM ∈ RM×M such
that QM = VM · ΨM . Due to the construction of QM
in Algorithm 4, ΨM is upper triangular. Define B̃M :=
(qj(ti))

M
i,j=1, B̂M := (vj(ti))

M
i,j=1 and cM := (c(ti))

M
i=1.

Then, ĉM = VM ·B̂−1
M cM and c̃M = QM ·B̃−1

M cM = VMΨM ·
B̃−1
M cM . Since QM = VM · ΨM , we have B̃M = B̂M · ΨM

which leads to c̃M = VMΨM · (B̂MΨM )−1cM = ĉM ,
proving the claim. 2

It remains to show that the knots coincide.

Lemma 2. The DEIM in Algorithm 3 and the POIM in
Algorithm 4 generate the same set of interpolation points.

Proof. Let (t̃i)
M
i=1 denote the POIM-knots and (t̂i)

M
i=1

the DEIM-knots. Since for both methods, the procedure

getApproximation(M, ·) returns zero for M = 0, we have
that r1 = v1 for both methods and t̃1 = t̂1. Let the
assertion be true for M − 1. Then, Lemma 1 provides
that both methods return the same approximation, i.e.
ξDEIM
M−1 = ξPOIM

M−1 . Hence, both methods use the same

residual to evaluate the next knot so that t̃M = t̂M . 2

As a consequence of the two results above, we can use
the POIM instead of the DEIM, generating the same
approximations, but solving only a triangular system.
Hence, the complexity is only O(M2). Furthermore, we
can now use the EIM a-posteriori error estimates for the
DEIM as well. At the same time, the DEIM a-priori error
estimates are still valid since neither the approximation
space is changed nor the actual approximations.

Even if an orthonormal basis would be needed and the
DEIM is directly applied, we can efficiently evaluate a-
posteriori error estimates. We first solve the triangular
system (5) for coefficients θPOIM

M+ . Using the definitions and
notations introduced in the proof of Lemma 1, it holds that

θDEIM
M+ = ΨM+θPOIM

M+ (7)

and we can still apply error estimator (4) with the POIM
coefficients θPOIM

M+1 , ..., θ
POIM
M+ . The computational complex-

ity of (7) is O((M+)2). We do not need to store two sets of
basis functions but only the two triangular matrices ΨM+

and B̃M+ of the POIM.

4. A LEAST-SQUARES EMPIRICAL
INTERPOLATION METHOD (LSEIM)

In this section, we introduce a Least-Squares Empirical
Interpolation Method (LSEIM) that uses more knots than
basis functions and solves a least-squares problem to
evaluate θM . This can be combined with both EIM and
POIM.

4.1 Outline of the Method

The general concept of the LSEIM offline procedure is
described in Algorithm 5. We will describe the main steps
below.

Algorithm 5 Offline – LSEIM.

1: for M = 1 to Mmax do
2: ξ ← getNextBasisFunction()
3: ξLSEIM

M−1 ← getApproximation(M−1, ξ)

4: rM ← ξ − ξLSEIM
M−1

5: (ti)
IM
i=IM−1+1 ← getNextKnots(rM )

6: qM ← getL2orthonormal(rM ), QM = {QM−1, qM}
7: end for

The procedure getNextBasisFunction() in line 2 returns
either the so far worst approximated snapshot, as de-
scribed for the EIM in Section 2.2, or the M -th POD
eigenfunction, if the LSEIM is combined with the POIM.

For the LSEIM-approximation in line 3, we solve the least-
squares problem

IM∑
i=1

 M∑
j=1

θj(ξ)qj(ti)− ξ(ti)

2

→ min (8)



for the coefficients θM ∈ RM and evaluate ξLSEIM
M =

QMθM , where IM denotes the number of used knots. Since
the approximation and thus the residual rM as well are
no longer exact at the knots, the system is full and the
complexity of solving (8) increases to O(IMM

2).

There is no unique way to determine the number and
location of the new knots (ti)

IM
i=IM−1+1. In our examples,

we used a constant number of 2 new knots per basis
functions, defined by the essential infimum and the es-
sential supremum of the residual, respectively: tIM−1 :=
arg ess infx∈D rM (x) and tIM := arg ess supx∈D rM (x) with
IM = 2M . It is also possible to use iterative and adaptive
selection methods (e.g., iteratively add knots until coeffi-
cients are close to ‘optimal’). We will see in Section 5 that
the method works very well in practice.

In line 6, we add the L2-projection of the residual on
WLSEIM
M−1 := span{q1, ..., qM−1} to the basis, i.e., we obtain

an L2-orthonormal basis. Analogously to Lemmas 1 and 2,
we can show that this is equivalent to add L∞-normalized
residuals. We just replace the solutions BMθM = cM in
the proof of Lemma 1 by the solution of a minimization
problem of the form (8). However, since the system is full
anyway, we prefer the L2-orthonormal basis.

Once M is fixed in the online phase, one can compute and
store a QR-decomposition and solve (8) in O(IMM) for
any new right-hand side. Under the assumption that the
number of selected knots per iteration is O(1), i.e. IM ∈
O(M), the cost increases only moderately. A drawback
in the online application is the necessity to evaluate
trajectories c(µ, ω) at additional knots to get new right-
hand sides, which can be expensive. However, we hope to
reduce the number M of affine terms such that the overall
cost decreases. Furthermore, within the RBM context, the
total online complexity to assemble the system and to
compute solution and error bounds is O(IMM + MN2 +
N3 + M2N2), where N is the dimension of the reduced
space (c.f. Patera and Rozza (2006)) and thus a small M
becomes more important than a decrease of the number of
knots.

4.2 Error Estimators

It is not possible to directly adopt the error estimators
used for the EIM and POIM since θM+1 6= (θM , θM+1).
Instead, we separately solve (8) for M and M+ and denote

the solutions by (θMj )Mj=1 and (θM
+

j )M
+

j=1, respectively. Since
QM is L2-orthonormal, the L2-error estimator is given by

∆LSEIM
M,M+ :=

M∑
j=1

∣∣∣θM+

j − θMj
∣∣∣+

M+∑
j=M+1

∣∣∣θM+
j

∣∣∣ (9)

whereas the respective L∞-error estimator is given by∑M
j=1 ‖qj‖∞|θM

+

j −θMj |+
∑M+

j=M+1 ‖qj‖∞|θ
M+

j |. The com-
putational complexity increases compared to EIM and
DEIM, even though it still is O((M+)2) for given QR-
decompositions and IM ∈ O(M).

5. NUMERICAL EXAMPLE

We consider a Wiener process W : [0, 1] × Ω → R with
probability space (Ω,F , P ) such that W (x;ω) −W (y;ω)
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Fig. 1. Four random trajectories c(µ, ω) as defined in (10)
for different smoothing parameter configurations.

is normally distributed with zero mean and variance |x−y|.
Furthermore, we apply a parameter dependent smoothing

filter F (x, y;µ) = 1√
2πµ

exp(− 1
2

(x−y)2

µ2 ) with deterministic

parameters µ ∈ P = [10−3, 10−1]. We evaluate affine
approximations of processes of the form

c(x;µ, ω) =

∫ x+1/2

x−1/2

F (x, y;µ)W (y;ω)dy. (10)

Thus, the trajectories c(µ, ω) : [0, T ] → R are continuous
with increasing smoothness for larger µ. Hence, we will
approximate a set of functions with different smoothness
properties. Figure 1 shows random trajectories for four
values of µ, logarithmically equally spaced on P.

In the RBM context, we use c(µ, ω) as a stochastic coeffi-
cient of some PDE, e.g. ∇ · (c(µ, ω)∇u(µ, ω)) = f . Here,
c(µ, ω) is constructed to exemplarily represent both the
case of random functions and the case of noisy input data.

We used a discretization of N = 400 equidistant subin-
tervals of the domain D = [0, 1]. For the generation of
trajectories c(µ, ω), we generated samples of the Wiener
process W on the interval [−1/2, 3/2] and evaluated (10).
We used a training set Ξtr ⊂ P × Ω with a total of 3000
samples, divided on 30 logarithmically spaced parameters
µ ∈ P. This training set has been used to perform the
POD, EIM, DEIM, POIM and LSEIM. We used POD
eigenfunctions for the generation of the LSEIM basis.

Figure 2 shows the average L2-error of all training tra-
jectories c(µ, ω), (µ, ω) ∈ Ξtr. In this context, the POD
provides the minimal error that can not be improved. We
can see that the average EIM-error convergence is far from
optimal whereas the LSEIM almost reaches the minimum.
Even though the POIM uses the same basis as the LSEIM,
the error is noticeably larger. Thus, the coefficients are not
adequately evaluated. For an error tolerance of 10−2, 105
basis functions and 210 knots are needed for the LSEIM
whereas the POIM needs 240 knots and basis functions and
the EIM more than 350. In this case, the LSEIM needs
even less knots than the POIM and would considerably
save online time within an RBM. As shown in Section 3.3,
the POIM and DEIM produce the same results.

Figure 3 shows the maximal L∞-error convergence of the
methods. Here, the EIM and the POIM show a similar
behavior. The errors decrease very slow and significant
variations can be observed. For the POIM, it is clear that
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Fig. 2. Average L2-error of training trajectories.
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Fig. 3. Maximal L∞-error of training trajectories.

the low convergence is caused by imprecise coefficients
since the LSEIM still produces better results using the
same basis. Even though the construction of the EIM is
based on maximum L∞-error minimization, the conver-
gence is not monotonic either, since inappropriate basis
functions may be selected.

In Table 1, we provide the effectivities of the introduced
L∞-error estimators, i.e. the ratio of error estimator and
real error. We used a test set Ξtest ⊂ P × Ω with a
total of 3200 samples, divided on 32 logarithmically spaced
parameters µ ∈ P. For all error estimators, we used 8
additional coefficients, i.e. M+ = M + 8, and the table
shows the minimal, average, and maximal effectivities of
all test trajectories and all M ≤ N−8. We can see that the
error is not rigorous since effectivities less than one occur.
However, the percentage of ineffective estimators, given in
the last column, is very low, and for higher accuracy, we
could increase M+. In most cases, the estimators denote
error bounds and the effectivities are rather small, where
the LSEIM yields slightly better results than the EIM and
the POIM, respectively.

Table 1. Effectivities of the L∞-error estima-
tors for 3200 test trajectories, 1 ≤M ≤ N−8,

and M+ = M+8

Minimal Average Maximal % < 1

EIM 0.373 3.025 9.148 0.022 %
POIM 0.320 3.411 14.849 0.014 %
LSEIM 0.446 2.431 6.992 0.024 %

6. CONCLUSION

We demonstrated that it is useful to add POD eigenfunc-
tions instead of snapshots to generate the EIM basis if
these may be non-smooth. We proved that the described
method produces the same approximation as the DEIM
with less computational cost and provided error estimators
for both methods. Furthermore, we showed that using
more knots than basis functions improves the approxima-
tion quality and arrives at close to optimal results.
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Karhunen-Loève expansion. Preprint, Ulm University.

Handler, R.A., Housiadas, K.D., and Beris, A.N. (2006).
Karhunen-Loeve representations of turbulent channel
flows using the method of snapshots. Internat. J.
Numer. Methods Fluids, 52(12), 1339–1360.
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