ulm university universität

Bernhard Wieland | September 11, 2012 | Vienna ECCOMAS 2012

Reduced Basis Methods for quadratically nonlinear PDEs with stochastic influences

Introduction

RB primal-dual formulation for linear outputs

RB dual formulations for quadratic outputs

Example

Introduction

Problem Description

- $\mathcal{P} \subset \mathbb{R}^p$ set of deterministic parameters
- $(\Omega, \mathfrak{A}, \mathbb{P})$ probability space
- $D \subset \mathbb{R}^d$ open and bounded spatial domain
- $X \subset H^1(D)$ finite element space, dim $(X) = \mathcal{N}$

Define parametrized stochastic forms

$$\begin{aligned} & a_0 : X \times X \times (\mathcal{P} \times \Omega) \to \mathbb{R} \\ & a_1 : X \times X \times X \times (\mathcal{P} \times \Omega) \to \mathbb{R} \\ & f : X \times (\mathcal{P} \times \Omega) \to \mathbb{R} \end{aligned}$$

continuous bilinear form continuous trilinear form bounded linear form

For $(\mu, \omega) \in \mathcal{P} \times \Omega$, we define

 $g(w, v; \mu, \omega) = a_0(w, v; \mu, \omega) + a_1(w, w, v; \mu, \omega) - f(v; \mu, \omega)$

and the nonlinear, parametrized and random variational problem

find $u(\mu, \omega) \in X$ s.t. $g(u(\mu, \omega), v; \mu, \omega) = 0, \quad \forall v \in X.$

Output of Interest

for a linear functional $\ell: X \times \mathcal{P} \to \mathbb{R}$

$$egin{aligned} m{s}(\mu,\omega) &:= \ \ell \left(m{u}(\mu,\omega); \ \mu
ight) \ \mathbb{V}(\mu,\omega) &:= \ \mathbb{M}_2(\mu) - \mathbb{M}_1^2(\mu) \end{aligned}$$

where $\mathbb{M}_1(\mu)$ and $\mathbb{M}_2(\mu)$ denote first and second moment of $s(\mu, \cdot)$

Context

- weak solution in space
- ► strong solution in probability ⇒ Monte Carlo evaluations

Motivation for Model Reduction

- \Rightarrow solutions for many parameters are required
- \Rightarrow solutions for many random realizations are required

Basic Idea of the RBM

Idea

- create reduced space $X_N \subset X$ "offline"
 - of dimension $N \ll \mathcal{N}$
 - made of snapshots, i.e. solutions for some pairs (μ, ω)
- ▶ solve problem on X_N "online"
 - ► find $u(\mu, \omega) \in X_N$ s.t. $g(u(\mu, \omega), v; \mu, \omega) = 0$, $\forall v \in X_N$
 - complexity $\mathcal{O}(N^3)$ (for each Newton iteration)
- develop error bounds
 - confirm quality of the approximations of the reduced model
 - control size of reduced system

Requirements

- affine decomposition of g w.r.t. (μ, ω)
- ▶ i.e. separate x-dependent from (μ, ω) -dependent terms
 - \blacktriangleright to assemble system independent of ${\cal N}$
 - \blacktriangleright to evaluate error bounds independent of ${\cal N}$

Introduction

Affine decomposition w.r.t. μ Assumption: given by

$$g(w, v; \mu, \omega) = \sum_{q=1}^{Q} heta_q(\mu) \cdot \left[\overline{g}_q(w, v) + g_q(w, v; \omega) \right]$$

- \bar{g}_q represent the expectations
- g_q represent the fluctuating parts with zero mean

Affine decomposition w.r.t. ω

Karhunen-Loève (KL) Expansion

$$g_q(w, v; \omega) = \sum_{k=0}^{\bar{K}} \xi_{qk}(\omega) g_{qk}(w, v)$$

- ► random variables ξ_{qk} uncorrelated, zero mean, unit variance
- magnitude of g_{ak} typically decreases exponentially fast
- ▶ truncate at some $K \ll \overline{K} \Rightarrow$ truncated forms g_q^K , g^K , dg^K

Introduction

Assembling *a*⁰ "offline"

Let {φ₁,..., φ_N} be the (finite element) basis of X, assemble system matrix

$$\boldsymbol{a}_{0}^{K}(\varphi_{j},\varphi_{i};\mu,\omega) = \sum_{q=1}^{Q} \sum_{k=0}^{K} \theta_{q}(\mu) \xi_{qk}(\omega) \ \boldsymbol{a}_{0,qk}(\varphi_{j},\varphi_{i}), \quad i,j = 1,...,\mathcal{N}$$

► Let { $\zeta_1, ..., \zeta_N$ } be the (reduced) basis of X_N , $\zeta_n = \sum_{i=1}^N \zeta_{n,i}\varphi_i$, evaluate offline and store, independent of (μ, ω)

$$a_{0,qk}(\zeta_m,\zeta_n) = \sum_{i,j=1}^{N} \zeta_{m,j}\zeta_{n,i} a_{0,qk}(\varphi_j,\varphi_i), \qquad n,m=1,...,N$$

Assembling *a*⁰ "online"

► assemble online in O(QKN²), independent of N

$$a_0^{\mathcal{K}}(\zeta_m,\zeta_n;\mu,\omega) = \sum_{q=1}^{Q} \sum_{k=0}^{\mathcal{K}} \theta_q(\mu) \xi_{qk}(\omega) \ a_{0,qk}(\zeta_m,\zeta_n), \quad n,m = 1,...,N$$

• similarly for a_1 in $\mathcal{O}(QKN^3)$ and f in $\mathcal{O}(QKN)$

ulm university universität

Achievements

- reduced system independent of N
 - assemble system in $\mathcal{O}(QKN^3)$
 - evaluate solution in $\mathcal{O}(N^3)$ per Newton step

Further Tasks

- develop error bounds
 - confirm quality of the approximations of the reduced model
 - selection of snapshots
 - control size of reduced system

primal-dual formulation: for $s(\mu, \omega)$ and $\mathbb{M}_1(\mu, \omega)$

PRIMAL FORMULATIONS

▶ solutions $u_K \in X$ and $u_{NK} \in X_N$

$$egin{array}{lll} egin{array}{lll} g^{K}(m{u}_{K},m{v};\mu,\omega) &= m{0}, & orall m{v}\inm{X}, \ g^{K}(m{u}_{NK},m{v};\mu,\omega) &= m{0}, & orall m{v}\inm{X}_{N}. \end{array}$$

LINEAR DUAL FORMULATIONS

▶ solutions
$$p_K \in X$$
 and $p_{NK} \in \tilde{X}_N^p$

$$egin{aligned} dg^{K}(m{v},m{p}_{K};\mu,\omega)[rac{1}{2}(m{u}+m{u}_{NK})] &= -\ell(m{v};\mu), & orall m{v}\in X, \ dg^{K}(m{v},m{p}_{NK};\mu,\omega)[m{u}_{NK}] &= -\ell(m{v};\mu), & orall m{v}\in ilde{X}_{N}^{p}. \end{aligned}$$

► reduced space $\tilde{X}_N^{\rho} = \operatorname{span}(\{\zeta_n\}_{n=1}^{\tilde{N}^{\rho}}) \subset X, \quad \zeta_n := \rho_{\mathcal{K}}(\mu_n, \omega_n)$

Fréchet derivative

 $dg(w, v; \mu, \omega)[z] = a_0(w, v; \mu, \omega) + a_1(w, z, v; \mu, \omega) + a_1(z, w, v; \mu, \omega)$

complexity corresponds to one primal Newton iteration

solution error bounds

Define the primal and dual RB residual as

$$\begin{split} r_{\mathsf{RB}}(\boldsymbol{v};\boldsymbol{\mu},\omega) &:= \boldsymbol{g}^{K}(\boldsymbol{u}_{\mathsf{NK}},\boldsymbol{v};\boldsymbol{\mu},\omega), \\ \tilde{r}_{\mathsf{RB}}^{\boldsymbol{\rho}}(\boldsymbol{v};\boldsymbol{\mu},\omega) &:= \boldsymbol{d}\boldsymbol{g}^{K}(\boldsymbol{v},\boldsymbol{\rho}_{\mathsf{NK}})[\boldsymbol{u}_{\mathsf{NK}}] + \ell(\boldsymbol{v}). \end{split}$$

Define the primal and dual KL "residual" as

$$\begin{split} \delta_{\mathsf{KL}}(\mathbf{v};\mu,\omega) &:= \sum_{q=1}^{Q} \sum_{\substack{k=K+1 \\ k=K+1}}^{\bar{K}} \left| \theta_{q}(\mu) \, \xi_{\varrho} \, g_{qk}(u_{NK},\mathbf{v}) \right|, \\ \tilde{\delta}_{\mathsf{KL}}^{p}(\mathbf{v};\mu,\omega) &:= \sum_{q=1}^{Q} \sum_{\substack{k=K+1 \\ k=K+1}}^{\bar{K}} \left| \theta_{q}(\mu) \, \xi_{\varrho} \, dg_{qk}(\mathbf{v},p_{NK})[u_{NK}] \right|, \end{split}$$

where $|\xi_{qk}| \le \xi_{\varrho}$ holds with probability $1 - \varrho$, $0 \le \varrho \ll 1$

solution error bounds

- Denote $\rho_1(\mu, \omega)$ the continuity constant of a_1
- ► Define the inf-sup constant

$$\beta(\mu,\omega) := \inf_{w \in X} \sup_{v \in X} \frac{dg(w,v;\mu,\omega)[u_{\mathsf{NK}}]}{\|w\|_X \|v\|_X}$$

Define the RB and KL bounds

$$\begin{split} \Delta_{\mathsf{RB}}(\mu,\omega) &:= \frac{1}{\beta_{\mathsf{LB}}} \sup_{\boldsymbol{v}\in X} \left(\frac{r_{\mathsf{RB}}(\boldsymbol{v})}{\|\boldsymbol{v}\|_X} \right), \quad \tilde{\Delta}_{\mathsf{RB}}^{\boldsymbol{p}}(\mu,\omega) &:= \frac{1}{\beta_{\mathsf{LB}}} \sup_{\boldsymbol{v}\in X} \left(\frac{\tilde{r}_{\mathsf{RB}}^{\boldsymbol{p}}(\boldsymbol{v})}{\|\boldsymbol{v}\|_X} \right), \\ \Delta_{\mathsf{KL}}(\mu,\omega) &:= \frac{1}{\beta_{\mathsf{LB}}} \sup_{\boldsymbol{v}\in X} \left(\frac{\delta_{\mathsf{KL}}(\boldsymbol{v})}{\|\boldsymbol{v}\|_X} \right), \quad \tilde{\Delta}_{\mathsf{KL}}^{\boldsymbol{p}}(\mu,\omega) &:= \frac{1}{\beta_{\mathsf{LB}}} \sup_{\boldsymbol{v}\in X} \left(\frac{\tilde{\delta}_{\mathsf{KL}}^{\boldsymbol{p}}(\boldsymbol{v})}{\|\boldsymbol{v}\|_X} \right). \end{split}$$

- use Riesz representators of affine terms for evaluation
- online complexity $\mathcal{O}(Q^2 \bar{K}^2 N^4)$ independent of \mathcal{N}

solution error bounds

For $2(\Delta_{RB} + \Delta_{KL}) < \frac{\beta_{LB}}{2\rho_1}$, we define the bounds

$$egin{aligned} \Delta(\mu,\omega) &:= \ \mathbf{2}ig(\Delta_{\mathsf{RB}}+\Delta_{\mathsf{KL}}ig) \ & ilde{\Delta}^{p}(\mu,\omega) &:= \ \mathbf{2}ig(ilde{\Delta}_{\mathsf{RB}}^{p}+ ilde{\Delta}_{\mathsf{KL}}^{p}ig)+rac{\mathbf{2}
ho_{1}}{eta_{\mathsf{LB}}}\Delta\|p_{\mathsf{NK}}\|_{X} \end{aligned}$$

such that there exists a unique solution $u(\mu, \omega) \in B(u_{NK}, \frac{\beta_{LB}}{2\rho_1})$ and

$$egin{array}{ll} \|m{u}(\mu,\omega)-m{u}_{m{NK}}(\mu,\omega)\|_X&\leq&\Delta(\mu,\omega)\ \|m{p}(\mu,\omega)-m{p}_{m{NK}}(\mu,\omega)\|_X&\leq& ilde{\Delta}^p(\mu,\omega) \end{array}$$

Proof: based upon Brezzi-Rappaz-Raviart theory

output error bounds

LINEAR OUTPUT APPROXIMATION

$$\begin{aligned} s_{\mathsf{N}\mathsf{K}}(\mu,\omega) &:= \ell(u_{\mathsf{N}\mathsf{K}}) + r_{\mathsf{R}\mathsf{B}}(p_{\mathsf{N}\mathsf{K}}) \\ \mathbb{M}_{1,\mathsf{N}\mathsf{K}}(\mu) &:= \mathbb{E}[s_{\mathsf{N}\mathsf{K}}(\mu,\cdot)] \end{aligned}$$

- ► $s_{NK} \neq \ell(u_{NK})$
- $r_{\text{RB}}(p_{NK})$ added as "correction" term

LINEAR OUTPUT BOUNDS

$$\begin{split} \Delta^{s}(\mu,\omega) &:= \beta_{\mathsf{LB}} \Delta \tilde{\Delta}^{p} + \delta_{\mathsf{KL}}(p_{\mathsf{NK}}) \\ \Delta^{\mathbb{M}_{1}}(\mu) &:= \mathbb{E}\left[\Delta^{s}(\mu,\cdot)\right] \end{split}$$

- Δ_{RB} , Δ_{KL} appear in products with each other
- \Rightarrow only small *N* and *K* necessary
 - δ_{KL} is more precise than Δ_{KL} and decreases fast in K

additional dual formulation: for $s^2(\mu, \omega)$ and $\mathbb{M}^2_1(\mu, \omega)$

ADDITIONAL LINEAR DUAL FORMULATIONS

- Analogously to the first dual problem:
- ► solutions y_K ∈ X and y_{NK} ∈ X̃^y_N solutions z_K ∈ X and z_{NK} ∈ X̃^z_N

$$\begin{aligned} dg^{\mathcal{K}}(v, y_{\mathcal{K}}; \mu, \omega)[\frac{1}{2}(u+u_{\mathcal{N}\mathcal{K}})] &= -2s_{\mathcal{N}\mathcal{K}}(\mu, \omega) \ \ell(v; \mu), \quad \forall v \in \mathcal{X}, \\ dg^{\mathcal{K}}(v, z_{\mathcal{K}}; \mu, \omega)[\frac{1}{2}(u+u_{\mathcal{N}\mathcal{K}})] &= -2\mathbb{M}_{1,\mathcal{N}\mathcal{K}}(\mu, \omega) \ \ell(v; \mu), \ \forall v \in \mathcal{X}. \end{aligned}$$

$$\begin{aligned} dg^{K}(\mathbf{v}, \mathbf{y}_{NK}; \mu, \omega)[u_{NK}] &= -2s_{NK}(\mu, \omega) \,\ell(\mathbf{v}; \mu), \quad \forall \mathbf{v} \in \tilde{X}_{N}^{\mathbf{y}}, \\ dg^{K}(\mathbf{v}, z_{NK}; \mu, \omega)[u_{NK}] &= -2\mathbb{M}_{1,NK}(\mu, \omega) \,\ell(\mathbf{v}; \mu), \; \forall \mathbf{v} \in \tilde{X}_{N}^{\mathbf{z}}. \end{aligned}$$

• in practice, we use $\tilde{X}_N^z = \tilde{X}_N^y$

quadratic outputs

QUADRATIC OUTPUT APPROXIMATION

$$\begin{split} s_{NK}^{[2]}(\mu,\omega) &:= (s_{NK})^2 + 2 s_{NK} r_{\text{RB}}(p_{NK}) - r_{\text{RB}}(y_{NK}), \\ \mathbb{M}_{1,NK}^{[2]}(\mu) &:= (\mathbb{M}_{1,NK})^2 + \mathbb{E}\left[2\mathbb{M}_{1,NK}r_{\text{RB}}(p_{NK}) - r_{\text{RB}}(z_{NK})\right], \end{split}$$

- Additional "correction" terms
- Alternatively: $s_{NK}^{[2]} := \ell^2(u^{NK}) r_{RB}^2(p_{NK}) r_{RB}(y_{NK})$

SECOND MOMENT AND VARIANCE

$$\mathbb{V}_{N\mathcal{K}}(\mu) := \mathbb{E}\left[s_{N\mathcal{K}}^{[2]}(\mu,\cdot)
ight] - \mathbb{M}_{1,N\mathcal{K}}^{[2]}(\mu)$$

quadratic output error bounds

LINEAR OUTPUT BOUNDS: $\Delta^{s}(\mu, \omega) := \beta_{\mathsf{LB}} \Delta \tilde{\Delta}^{p} + \delta_{\mathsf{KL}}(p_{\mathsf{NK}})$

QUADRATIC OUTPUT BOUNDS

$$\begin{split} \Delta^{s^{2}}(\mu,\omega) &:= \left(\Delta^{s}\right)^{2} + \beta_{\mathsf{LB}}\Delta\tilde{\Delta}^{y} + \delta_{\mathsf{KL}}(y_{\mathsf{NK}}), \\ \Delta^{\mathbb{M}^{2}}(\mu) &:= \left(\Delta^{\mathbb{M}_{1}}\right)^{2} + \mathbb{E}\left[\beta_{\mathsf{LB}}\Delta\tilde{\Delta}^{z} + \delta_{\mathsf{KL}}(z_{\mathsf{NK}})\right]. \end{split}$$

- Δ^s is already small $\Rightarrow (\Delta^s)^2$ almost negligible
- $\Rightarrow \Delta^{s^2}$ will probably be of the same order than Δ^s

VARIANCE OUTPUT BOUNDS

$$\begin{split} \Delta^{\mathbb{V}}(\mu) &:= \mathbb{E}\left[(\Delta^{s})^{2}\right] + (\Delta^{\mathbb{M}_{1}})^{2} \\ &+ \mathbb{E}\left[\beta_{\mathsf{LB}}\Delta\tilde{\Delta}^{y-z} + \delta_{\mathsf{KL}}(y_{\mathsf{NK}} - z_{\mathsf{NK}})\right] \end{split}$$

ulm university universität **UUU**

Achievements

- reduced system
 - assemble system in O(QKN³)
 - evaluate solution in $\mathcal{O}(N^3)$ per Newton step
- efficient dual problems
 - complexity corresponds to one primal Newton iteration
- error bounds
 - for s, s^2 , \mathbb{M}_1 , \mathbb{M}_2 and \mathbb{V}
 - all bounds are likely to be of the same order
 - computational complexity $\mathcal{O}(Q^2 \bar{K}^2 N^4)$
 - we can derive sharper error bounds (see paper)

EXAMPLE: stationary convection-diffusion process CONCENTRATION/MASS TRANSPORT IN A WET SANDSTONE

parameter and constants

- \blacktriangleright $\mu_1 \in [0.05, 1.00]$ global water saturation in the pores
- \blacktriangleright $\mu_2 \in [0.20, 1.00]$ convection magnitude
- $\kappa: D \times \Omega \rightarrow [0, 1]$ rate of pore space per control volume
- diffusivities: $\eta_s = 0.04$ of sandstone, $\eta_w = 3.10$ of water, $\eta_a = 1.20$ of air

coefficients

- \triangleright $\eta(\mu,\omega)$ diffusivity, depending on η_{s} , η_{w} , η_{a} , $\kappa(\omega)$ and μ_{1}
- \triangleright $\vec{\nu}(\mu_2)$ convection, depending on μ_2
- $\triangleright \gamma(\omega)$ random zero mean Neumann outlet condition

$$\vec{U} - \nabla \cdot (\eta(\mu, \omega) \nabla u(\mu, \omega)) + \vec{\nu}(\mu_2) \cdot \nabla u \, u = 0 \text{ in } D,$$

$$u(\mu,\omega) = 0 \text{ on } \Gamma_{\mathsf{D}}$$

- $\begin{cases} u(\mu,\omega) \\ n \cdot (\eta(\mu_1,\omega) \nabla u(\mu,\omega)) \\ n \cdot (n(\mu_1,\omega) \nabla u(\mu,\omega)) \end{cases}$ $= 0 \text{ on } \Gamma_{N},$ = $\gamma(\omega) \text{ on } \Gamma_{out}.$

eigenvalues and truncation values of the KL expansions

Four random realizations of κ

Four random realizations of γ

KL Eigenvalues of κ

KL truncation values

•
$$\bar{K}_{\kappa} = 47$$

KL Eigenvalues of γ

KL truncation values

$$K_{\gamma} = 11$$

$$\overline{K}_{\gamma} = 15$$

ERROR DECAY

(a) RB error decay of primal solution u and dual solutions p and (y-z)

RESULTS

For error tolerance 10⁻³

- needed basis functions
- speedup factor: full system to reduced system

(b) rel. error decay of outputs $s,\ s^2$ and $\mathbb V$ without $\delta_{\text{KL}}\text{-contributions}$

\mathcal{N}	$(N, \tilde{N}^p, \tilde{N}^y)$	speedup
3.191	(28, 7, 28)	33
12.555	(28, 7, 28)	96

ulm university universität

F. Brezzi, J. Rappaz, and P.-A. Raviart.

Finite-dimensional approximation of nonlinear problems. I. Branches of nonsingular solutions. *Numer. Math.*, 36(1):1–25, 1980/81.

C. Canuto, T. Tonn, and K. Urban.

A posteriori error analysis of the reduced basis method for nonaffine parametrized nonlinear PDEs. *SIAM J. Numer. Anal.*, 47(3):2001–2022, 2009.

B. Haasdonk, K. Urban, and B. Wieland.

Reduced basis methods for parametrized partial differential equations with stochastic influences using the Karhunen-Loève expansion.

K. Veroy and A. T. Patera.

Certified real-time solution of the parametrized steady incompressible Navier-Stokes equations: rigorous reduced-basis a posteriori error bounds.

Bernhard Wieland | September 11, 2012 | Vienna ECCOMAS 2012

Reduced Basis Methods for quadratically nonlinear PDEs with stochastic influences