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Problem Description

» P C RP set of deterministic parameters

> (Q,2,P) probability space

» D c RY open and bounded spatial domain

» X C H'(D) finite element space, dim(X) = N

Define parametrized stochastic! forms
a: XxXx(PxQ) =R continuous bilinear form
f: XxP—=R bounded linear form

For (u,w) € P x Q, we define the linear, parametrized, and random variational
problem:

Find u(p, w) € X s.t.
a(u(p,w), v;p,w) = f(v;u), VveX.

T f: X x (P x Q) — R possible. Assumed to be deterministic only for notational reasons.
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Output of Interest
for a parametrized linear functional £ : X x P — R

S(p,w) = £ (u(p,w); 1)
V(p,w) = Ma(u) — M5 (1)

where M (1) and M (u) denote first and second moment of s(y, -)

Context
» weak solution in space
» strong solution in probability = Monte Carlo evaluations

Motivation for Model Reduction
= solutions for many parameters are required
= solutions for many random realizations are required
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Basic Idea of the RBM

Idea
» create reduced space Xy C X “offline”

» of dimension N <
» made of snapshots, i.e. solutions for some pairs (u, w)

» solve problem on Xy “online”

» find u(p, w) € Xn s.t.
a(u(p,w), vip,w) = f(v;u), Vve Xn.

» run-time complexity O(N?) for each (p,w) € P x Q

» develop error bounds
» confirm quality of the approximations of the reduced model
» control size of reduced system

Requirements
» affine decomposition of g, f, and £ w.r.t. (u,w)

> i.e. separate x-dependent from (u,w)-dependent terms

» to assemble system independent of N
» to evaluate error bounds independent of N/
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Affine decomposition w.r.t. u
Assumption: given by
el Q*

f(vin) = Zqz1 O(n) - fg(v),  Uvip)= Zqz1 Og(1) - Lg(v)

a

Q
a(W, Vi i, w) = Zq:1 92(,“) ’ aCI(W7 v w)

Affine decomposition of a; w.r.t. w
Karhunen-Loéve (KL) Expansion

ag(w.viw) = 3 Eqe(t) aqk(w.v)

&q0 = 1 and aqyo represents the mean of a,4

random variables 4 uncorrelated, zero mean, unit variance
magnitude of a, decreases, typically exponentially fast
truncate at some K < K = truncated forms aff, a*

vV vV v Vv
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“Offline” assembling of a
> Let {¢1, ..., o} be the (finite element) basis of X,

assemble system matrix
Q

K
a (¢ i w) = Y > 03(1) Eqk(w) gy i)y Tj =1, N

» Let {(3,...,{n} be the (reduced) basis of Xy, ¢, = Zf\:ﬂ Cn,i Pis
evaluate offline and store, independent of (u, w)
N
agk(Cms Cn) = Zi,/‘:1 Cm,jCn,i Agk(j, ©i), nm=1,.,N
» storage complexity? O(QKN?)
“Offline” assembling of f and ¢

» analogously store 7;(¢,) and /4(¢y)
» storage complexities? for f and ¢ are O(QN)

2For notational simplicity we use @ = @ = Q' = Q°
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“Online” assembling of a
» assemble online in O(OKNZ) independent of N/

a (Cm,Cn My, W Zzaa U)qu aqk((m7Cn)7 n,m= 1)"'7

g=1 k=0

“Online” assembling of f and ¢
» analogously for f and £ in O(QN)

f(Cnip) = Zef n=1,.,.N

Zef ) (4(Ca), n=1,.,N



Achievements

» reduced system independent of N

> assemble system in O(QKN?)
> evaluate solution in O(N?)

Further Tasks
» develop error bounds

» confirm quality of approximations of reduced model
» selection of snapshots
» control size of reduced system
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primal-dual formulation: for s(u, w) and M (u, w)

PRIMAL FORMULATIONS
> solutions ux € X and unx € Xy
a“(ux,vip,w) = f(vip), VveX
a(un i, vip,w) = f(v;p), Vv e Xy

LINEAR DUAL FORMULATIONS
> solutions p’ € X and p{) € X\’

(v, p‘K”-u,w) = —lvip), WveX
a“(v, PNK 1, w) —U(v; p), Vv e 5(1211)

» reduced space X( ) = span({(n} ) cX, (ni= pfg)(u,,,w,,)
» complexity corresponds to one primal solution
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solution error bounds

» Define the primal and dual RB residual as
rme(Vip,w) = f(vip) — @ (unk(pw), vi pw), veX

ROV w) = Uvip) + a(v.p(k(mw); mw), veX

» Define the primal and dual KL “residual” as

kL (Vi pyw) = Z Z 1) & @gr(Un.k (i, 0), V)|, veX
g=1 k=K+1

i) = 3 Z 16200 €, @q(v. Pk )| . v e X
g=1 k=K+1

where |{g| < &, holds with probability 1 — o, 0 <o <1
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solution error bounds

» Define the coercivity constant

a(v, v w) 00 > 0

cln) = i

» Define the RB and KL bounds

=(1)
rra(V) (1) 1 Trg (V)
Aps(p,w) == — ( ) Apa(p,w) == — sup
o) = o weB i) 2t = 52 58 Uil
1 (5K|_(V) < (1) 1 SI((1L)(V)
Ax(p,w) ;== —su ( Ay’ (g, w) ;== —su
o) = i sef i) ) = 55 58 Uivile
» use Riesz representators of affine terms for evaluation
» online complexity O(Q?K2N?) independent of /
| 4
| u(p,w) —unk(pw)|, < Alww) = Ars+Ak
||P(1)( w) — pNK My W ||X < AD(pw) = A(g+A( )
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output error bounds

LINEAR OUTPUT APPROXIMATION

My nk (1) == E[sn,k(p, )]

> Snk 7 L(Un,k)
> rRB(pf\l)K) added as “correction” term

SN,K(H; W) = E(UN,K) - rRB(pI(\},)K) J

LINEAR OUTPUT BOUNDS

s—snkl < A%(pw) = aAAD) 4+ 5KL(p§\},)K)
M1 — M| < A% () = E |agAA0)]

IN

» Apg, Ak appear in products with each other
= only small N and K necessary
> JkL is more precise than Ak, and decreases fast in K
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Outline of the Proof

[s—swkl = A° = aLBAA“)-l-(SKL(p;\},)K

S— SNk = é(U) é(UN K) + rRB(p(1)

= -d(e.py’) +me(pik) where e =u— unk
= —d(e.p)) +alu,pyk) — & (Un, Py
= Tg(e) + [a— aI(u.pik)

= HB(e) + [a—d(e.pl)) + [a— a(un . pik)
N——

Sapl AS& <o AAY < 5KL(P§V)K)

My —Mynk| < AM = E[agAAW)]

Since {&g.x, k > K} and {&4.«, k < K} uncorrelated and E[¢{4] = 0, we have

E [[a—aK](uN,K,p,(J,)K] ZZG (1) E[¢qk] - E[ ag(un,k, pNK)] =0

=1 k>K _,_/
depends on €q.k> k<K
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additional dual formulation: for s?(;,w) and M2 (u, w)

ADDITIONAL LINEAR DUAL FORMULATIONS
» Analogously to the first dual problem:
> solutions p? € X and p)y € X
solutions pf”) € X and px € X

a(v,p2; pw) = —2snk(p,w) U(vip), YveX
a(v, o u,w) = —2My i, w) Vi ), YV € X
a (v, o w) = —2snk(p.w) Uvip), Vv e XP
a(v, P i, w) = —2My (e, w) £(V; ), Vv € X

> in practice, we use X = X
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quadratic outputs

QUADRATIC OUTPUT APPROXIMATION

Sﬁ}K(M) W) = (SN,K)2 + 2 SN’K rRB(pg\}’)K) — rRB(pf\i)K)

ME]NK(M) = (M) +E 2M1,NKFRB(PS,)K)—fRB(Pﬁ,)K)]

» Additional “correction” terms

» Alternatively: sﬁ]K = P(unk) — rﬁB(pf\}’)K) - rRB(pf\i)K

SECOND MOMENT AND VARIANCE

V() = E[SES,]K(Nf)} - ME%]NK(N) J
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quadratic output error bounds

= Sz—Sﬁ}K = 8% —(snk) — ZSN,KfRB(PS,)K) + fRB(Pﬁ)K)

Consider the first part:

—(snk)’ = (5—snk)® + 28wk (S—Snk)

Furthermore

25N,k (8 — Sw,k) = 28Nk l(U) — 28w,k L(Un,k) + 23N,KrRB(p§\;,)K)

— —a(e,p?) + 25w ke (Pl k)
= Posih = (s—swk) - a(e,p?)+ malplk)
N—— ~~
<(asy

linear: s—sy x = —ak(e.p})+ma(py )
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quadratic output error bounds

LINEAR OUTPUT BOUNDS: AS(p,w) = agAAMD 4 5KL(p§\l)K

QUADRATIC OUTPUT BOUNDS

A% (p,w) : (AS)2 +  aBsAA® 4 5KL(pﬁ)K)
A () = (AM1)2+E[QLBAA(3)}

» AS is already small = (A%)? almost negligible
— A% will probably be of the same order than A*

VARIANCE OUTPUT BOUNDS

AV(p) = E[(AS)z] +(AM )2+]E {aLBAA(z’m} J




Achievements

» reduced system
» assemble system in O(QKN?)
> evaluate solution in O(N?)
» efficient dual problems
» complexity corresponds to one primal solution
» (in nonlinear setting to one Newton iteration)
» error bounds
> for s, 8%, My, M and V
» all bounds are likely to be of the same order
» computational complexity O(Q2K2N?)



RBM for PDEs with Stochastic Influences | January 22, 2013 | Bernhard Wieland Example

EXAMPLE: two-dimensional porous medium
HEAT TRANSFER IN A WET SANDSTONE

parameter and constants

» € [0.01,1.00] global water saturation in the pores
> k: D xQ — [0,1] rate of pore space per control volume
> heat conductivities: sandstone : ns = 2.40, water: ny = 0.60, air: n, = 0.03

coefficients
» c¢(u,w) conductivity, depending on ns, Nw, Ma, k(w) and p
> ~(w) random zero mean Neumann outlet condition

-V (C(,u,w) VU(,u,w)) = 0 in D
u(p,w) = 0 onlp
n-(c(p,w) Vu(p,w)) = 0 only
n-(c(p,w) Vu(p,w)) = ~(w)  onloy
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eigenvalues and truncation values of the KL expansions

Four random realizations of x Four random realizations of ~

" g

KL Eigenvalues of KL Eigenvalues of ~

107 \\\ — e 10° — A
10° \\ 10°
" -

R 7 Tis o TR TR %
KL truncation values KL truncation values
> K. =23 > K, =11

> K. =31 > Ky =15
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ERROR DECAY
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Maximal relative RB error
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Number N of basis functions

(a) RB error decay of primal solution u and

dual solutions p(") and (p(® —p(3))

RESULTS
For error tolerance 103
» needed basis functions

» speedup factor:
full system to reduced system

16

Bernhard Wieland Example

H
o

Maximal relative output error
=
5,

b p 4 G s 0 17 1 1
Number N of basis functions

(b) rel. error decay of outputs s, s? and V
without dk -contributions

N | (N,ND N@®) | speedup

4.841 (16,11,16) 35

19.121 (16,11,16) 138
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Results

For a test set of 30 logarithmically distributed values of

5

S,

~ sophisticated

5,

Relative variance error bound

N ~ RB
o i i . i . 1 . 1 i , 10 . | i e L, =
L O o7 o3 oi o5 a6 7 o5 05 1

(c) First moment My (), standard deviation (d) relative error bounds for variance V(u):

o(p) = /(1) and 100 random samples — sophisticated is ~12 times larger in average
— direct is ~160 times larger in average
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