

Reduced Basis Methods for PDEs with Stochastic Influences

Workshop on RBM, Ulm University

Bernhard Wieland December 08, 2010

Problem Description

Error and Effectivity Bounds

Example

Problem Description

Problem Description

Error and Effectivity Bounds

Example

Problem Formulation

Given

- a deterministic parameter set \mathcal{D} ,
- the probability space (Ω, \mathcal{B}, P) ,
- the symmetric coercive bilinear form $a(w, v; \mu, \omega)$ and
- the linear forms $f(\mathbf{v}; \mu, \omega)$ and $\ell(\mathbf{v}; \mu)$

Variational Formulation

For
$$\mu \in \mathcal{D}$$
, $\omega \in \Omega$, find $u(\mu, \omega) \in X$ s.t.

$$a(u(\mu,\omega), v; \mu, \omega) = f(v; \mu, \omega) \quad \forall v \in X$$

Output of Interest

$$\begin{aligned} \boldsymbol{s}(\boldsymbol{\mu}, \boldsymbol{\omega}) &= \ell \left(\boldsymbol{u}(\boldsymbol{\mu}, \boldsymbol{\omega}); \; \boldsymbol{\mu} \right) \\ \mathbb{V}(\boldsymbol{\mu}, \boldsymbol{\omega}) &= \mathbb{E} \left[\boldsymbol{s}^{2}(\boldsymbol{\mu}, \cdot) \right] - \mathbb{E}^{2} \left[\boldsymbol{s}(\boldsymbol{\mu}, \cdot) \right] \end{aligned}$$

Affine Decomposition

Karhunen-Loève (KL) Expansion

$$\begin{aligned} \mathbf{a}(\mathbf{w},\mathbf{v};\mu,\omega) &= \sum_{q=1}^{Q^a} \Theta_q^a(\mu) \left(\mathbf{a}_{0q}(\mathbf{w},\mathbf{v}) + \sum_{k=1}^{\bar{K}} \sqrt{\lambda_{kq}^a} \, \xi_{kq}^a(\omega) \, \mathbf{a}_{kq}(\mathbf{w},\mathbf{v}) \right) \\ f(\mathbf{v};\mu,\omega) &= \sum_{q=1}^{Q^f} \Theta_q^f(\mu) \left(f_{0q}(\mathbf{v}) + \sum_{k=1}^{\bar{K}} \sqrt{\lambda_{kq}^f} \, \xi_{kq}^f(\omega) \, f_{kq}(\mathbf{v}) \right) \end{aligned}$$

- $\blacktriangleright \ \bar{K} \in \mathbb{N} \cup \{\infty\}$
- $\xi_{kq}^{\circ}(\omega)$ zero mean, unit variance
- λ_{kq}° decreasing exponentially

RB System

- Truncate KL series at some $K \ll \bar{K}$
- ► Truncated bilinear and linear forms $a^{K}(w, v; \mu, \omega), f^{K}(v; \mu, \omega)$
- deterministic parameters $\mu \in \mathcal{D}$
- stochastic parameters $\{\xi_{kq}^a, \xi_{kq}^f\}_{k,q=1,...}$
- ▶ RB subspaces: X^N

RB Variational Problem

 $\text{For } \mu \in \mathcal{D}, \, \omega \in \Omega, \quad \text{find} \quad u^{\textit{NK}}, \, p^{\textit{NK}}, \, y^{\textit{NK}}, \, z^{\textit{NK}} \in X^{\textit{N}} \quad \text{s.t.}$

Outputs

Primal residual

$$r^{K}(\mathbf{v};\mu,\omega) = f^{K}(\mathbf{v};\mu,\omega) - a^{K}(u^{NK},\mathbf{v};\mu,\omega)$$

Linear RB outputs

$$egin{array}{lll} m{s}^{N\!K}(\mu,\omega) &:= & \ell(m{u}^{N\!K}) - m{r}^{K}(m{p}^{N\!K}) \ &\mathbb{E}^{N\!K}(\mu) &:= & \mathbb{E}\left[m{s}^{N\!K}(\mu,\cdot)
ight] \end{array}$$

Quadratic RB outputs

$$\begin{split} s^{2,NK}(\mu,\omega) &:= \left(\ell(u^{NK})\right)^2 - \left(r^K(p^{NK})\right)^2 - r^K(y^{NK}) \\ &:= \left(s^{NK}\right)^2 + 2s^{NK}r^K(p^{NK}) - r^K(y^{NK}) \\ \mathbb{E}^{2,NK}(\mu) &:= \left(\mathbb{E}^{NK}\right)^2 + 2\mathbb{E}^{NK}\mathbb{E}\left[r^K(p^{NK})\right] - \mathbb{E}\left[r^K(z^{NK})\right] \\ \mathbb{V}^{NK}(\mu) &:= \mathbb{E}\left[s^{2,NK}(\mu,\cdot)\right] - \mathbb{E}^{2,NK}(\mu) \end{split}$$

Problem Description

Error and Effectivity Bounds

Example

KL Truncation Error

- determine K_{max} s.t. the additional KL error is negligible
- replace ξ_{ka}° by some upper bound or quantile ξ_{UB}

$$\begin{split} \delta^{f}_{KL}(\mathbf{v}_{0};\boldsymbol{\mu}) &:= \sum_{q=1}^{Q^{f}} \Theta^{f}_{q}(\boldsymbol{\mu}) \sum_{\substack{k=K+1 \\ k=K+1}}^{K_{max}} \sqrt{\lambda^{f}_{kq}} \cdot \xi_{UB} \cdot |f_{kq}(\mathbf{v}_{0})|, \\ \delta^{a}_{KL}(\mathbf{v}_{0};\boldsymbol{\mu}) &:= \sum_{q=1}^{Q^{a}} \Theta^{a}_{q}(\boldsymbol{\mu}) \sum_{\substack{k=K+1 \\ k=K+1}}^{K_{max}} \sqrt{\lambda^{a}_{kq}} \cdot \xi_{UB} \cdot |a_{kq}(\boldsymbol{u}^{NK},\mathbf{v}_{0})|, \end{split}$$

► for
$$(\mathcal{A}_{kq}^u, v)_X = a_{kq}(u^{NK}, v)$$
 for all $v \in X$

• and $(\mathcal{F}_{kq}, v)_X = f_{kq}(v)$ for all $v \in X$

$$\Delta_{KL}^{f}(\mu,\omega) = \frac{1}{\alpha_{LB}} \left\| \sum_{q=1}^{Q^{f}} \Theta_{q}^{f}(\mu) \sum_{k=K+1}^{K_{max}} \sqrt{\lambda_{kq}^{f}} \cdot \xi_{UB} \cdot \mathcal{F}_{kq} \right\|_{X}$$
$$\Delta_{KL}^{a,u}(\mu,\omega) = \frac{1}{\alpha_{LB}} \left\| \sum_{q=1}^{Q^{a}} \Theta_{q}^{a}(\mu) \sum_{k=K+1}^{K_{max}} \sqrt{\lambda_{kq}^{a}} \cdot \xi_{UB} \cdot \mathcal{A}_{kq}^{u} \right\|_{X}$$

Error and Effectivity

Error Upper Bounds

$$\begin{aligned} \|u - u^{NK}\|_{X} &\leq \Delta^{u} &:= \Delta^{u}_{BB} + \Delta^{a,u}_{KL} + \Delta^{f}_{KL} \\ \|p - p^{NK}\|_{X} &\leq \Delta^{p} &:= \Delta^{u}_{BB} + \Delta^{a,p}_{KL} \\ \|y - y^{NK}\|_{X} &\leq \Delta^{y} &:= \Delta^{u}_{BB} + \Delta^{a,y}_{KL} \\ \|z - z^{NK}\|_{X} &\leq \Delta^{z} &:= \Delta^{u}_{BB} + \Delta^{a,z}_{KL} \end{aligned}$$

Effectivity Upper Bounds

If
$$\Delta_{RB} > \Delta_{KL}^{a,u} + \Delta_{KL}^{f}$$
 we have
$$\frac{\Delta^{u}}{\|u - u^{NK}\|_{X}} \leq \eta^{u} := \frac{\gamma_{UB}}{\alpha_{LB}} \left(\frac{\Delta_{RB}^{u} + (\Delta_{KL}^{a,u} + \Delta_{KL}^{f})}{\Delta_{RB}^{u} - (\Delta_{KL}^{a,u} + \Delta_{KL}^{f})} \right)$$

and analogously for the other solutions.

Linear Output Error

The linear output error bound is given by

 $|s - s^{NK}| \leq \Delta^s := \alpha_{LB} \Delta^u \Delta^p + \delta^a_{KL}(p^{NK}) + \delta^f_{KL}(p^{NK})$

- ▶ all error parts Δ_{RB} and Δ_{KL} appear in products with other error parts
- \Rightarrow only small *N* necessary
- δ_{KL} is more precise than Δ_{KL} and decreases fast in K
- ► since δ_{KL} and Δ_{KL} do not directly depend on *N*, we can determine an appropriate value for *K a*-*priori*:
 - use the "initial reduced basis" in the Greedy algorithm
 - test KL-errors for a test parameter sample
 - choose K s.t. KL error is smaller than some tolerance

Quadratic Output Error

Output Error

$$s^2 - s^{2,NK} = s^2 - (s^{NK})^2 - 2s^{NK}r^K(p^{NK}) + r^K(y^{NK})$$

Consider the first part:

$$s^2 - (s^{NK})^2 = \underbrace{(s - s^{NK})^2}_{\leq (\Delta^s)^2} + 2s^{NK} (s - s^{NK})$$

It remains

$$2s^{NK}(s - s^{NK}) = 2s^{NK}(\ell(u) - \ell(u^{NK}) + r^{K}(p^{NK})) = -a^{K}(u, y^{K}) + a^{K}(u^{NK}, y^{K}) + 2s^{NK}r^{K}(p^{NK})$$

$$\Rightarrow \quad s^2 - s^{2,NK} = (s - s^{NK})^2 - a^K(e^{NK}, y^K) + r^K(y^{NK})$$

with $e^{NK} := u - u^{NK}$

Quadratic Output Error

Linear output error bound

$$|s - s^{NK}| \leq \Delta^s := \alpha_{LB} \Delta^u \Delta^p + \delta^a_{KL}(p^{NK}) + \delta^f_{KL}(p^{NK})$$

Quadratic output error bound

$$egin{array}{lll} |m{s}^2 - m{s}^{2,NK}| \leq \Delta^{m{s}^2} & := & (\Delta^{m{s}})^2 \ & + & lpha_{LB}\Delta^u\Delta^y \ + & \delta^a_{\mathcal{K}L}(m{y}^{NK}) + \delta^f_{\mathcal{K}L}(m{y}^{NK}) \end{array}$$

• Δ^s is already small and $(\Delta^s)^2$ therefore almost negligible $\Rightarrow \Delta^{s^2}$ will probably be of the same order than Δ^s

Variance Error

It remains to find error bounds for

 $\mathbb{E}^2 - \mathbb{E}^{2,NK}$

Analogously to Δ^{s^s} , we obtain

$$\begin{split} |\mathbb{E}^{2} - \mathbb{E}^{2,NK}| &\leq \Delta^{\mathbb{E}^{2}} &:= (\Delta^{\mathbb{E}})^{2} \\ &+ & \mathbb{E} \Big[\alpha_{LB} \Delta^{u} \Delta^{z} \Big] &+ & \mathbb{E} \left[\delta^{a}_{KL}(z^{NK}) + \delta^{f}_{KL}(z^{NK}) \right] \end{split}$$

and the error bound for the variance

$$|\mathbb{V} - \mathbb{V}^{NK}| \leq \Delta^{\mathbb{V}} := \mathbb{E}\left[\Delta^{s^2}\right] + \Delta^{\mathbb{E}^2}$$

Improvement of the Variance Error

Reconsider the additional dual problems:

$$\begin{array}{lll} a^{K}(v,y^{NK};\mu,\omega) &=& -2 \ s^{NK}(\mu,\omega) \cdot \ell(v;\mu) & \forall v \in X^{N} \\ a^{K}(v,z^{NK};\mu,\omega) &=& -2 \ \mathbb{E}^{NK}(\mu) & \cdot \ell(v;\mu) & \forall v \in X^{N} \end{array}$$
For small \mathbb{V} we get $s^{NK} \approx \mathbb{E}^{NK}$ and hence, $y^{NK} \approx z^{NK}$.

With little more effort we get the better variance error bound

$$\begin{split} |\mathbb{V} - \mathbb{V}^{NK}| &\leq \tilde{\Delta}^{\mathbb{V}} := \mathbb{E} \Big[\left(\Delta^{s} \right)^{2} \Big] + \left(\Delta^{\mathbb{E}} \right)^{2} \\ &+ \mathbb{E} \Big[\alpha_{LB} \Delta^{u} \Delta^{y-z} \Big] \\ &+ \mathbb{E} \Big[\delta^{a}_{KL} (y^{NK} - z^{NK}) + \delta^{f}_{KL} (y^{NK} - z^{NK}) \Big] \end{split}$$

Problem Description

Error and Effectivity Bounds

Example

For an "L-Shape" L, we have the following PDE:

$$\begin{aligned} & \left(-\nabla \cdot \left(\kappa(x;\mu,\omega) \nabla u(x;\mu,\omega) \right) &= f(x;\omega) \quad \forall x \in L \\ & u(x;\mu,\omega) &= 0 \quad \forall x \in \Gamma_D \\ & \vec{n} \cdot \left(\kappa(x;\mu,\omega) \nabla u(x;\mu,\omega) \right) &= 0 \quad \forall x \in \Gamma_N \\ & \vec{n} \cdot \left(\kappa(x;\mu,\omega) \nabla u(x;\mu,\omega) \right) &= \ell(x) \quad \forall x \in \Gamma_{OUT} \end{aligned}$$

- deterministic parameter domain $\mathcal{D} = [0.1, 10]$
- ► random process $\kappa(x; \mu, \omega) := \Theta_1(\mu)\kappa_1(x) + \Theta_2(\mu)\kappa_2(x; \omega)$
- Output
 - $\ell(x) \equiv 1$ constant

$$\mathbf{s}(\mu,\omega) := \int_{\Gamma_{OUT}} \ell(\mathbf{x}) \cdot \mathbf{u}(\mathbf{x};\mu,\omega) d\mathbf{x}$$

► Karhunen-Loève Expansion: $K^{\kappa} = 17, K^{f} = 20, K_{max}^{\kappa} = 23, K_{max}^{f} = 24$

Figure: Four Random Realizations of $\kappa_2(x; \omega)$

Figure: First 4 KL Expansion Terms of $\kappa_2(x; \omega)$

Figure: Four Random Realizations of $f(x; \omega)$

Figure: First 4 KL Expansion Terms of $f(x; \omega)$

Convergence of Error Bounds

Page

Effectivity

Figure: Effectivities for $\mu = 10$ and 1000 random realizations

μ	$\frac{\Delta_{RB}^{u} + (\Delta_{KL}^{a,u} + \Delta_{KL}^{f})}{\Delta_{RB}^{u} - (\Delta_{KL}^{a,u} + \Delta_{KL}^{f})}$	$\frac{\Delta_{RB}^{\rho} + \Delta_{KL}^{a,\rho}}{\Delta_{RB}^{\rho} - \Delta_{KL}^{a,\rho}}$	η_{NK}^{u}	$\eta^p_{\tilde{N}K}$
0.1	1.000058	1.001645	1.5176	1.5201
1.0	1.000087	1.001751	1.1171	1.1190
10	1.000226	1.001766	3.1325	3.1373

Table: Sample Means of effectivities for 1000 realizations

Online Costs

\mathcal{N}	$(N_u N_p N_y N_z)$	RB: ω/hour	Full: ω/hour	Factor
3965	(11 8 11 11)	617699	61387	10.06
15609	(11 8 11 11)	617699	13652	45.25
61937	(11 8 11 11)	617699	3147	196.3

Table: Realizations / Hour

Reference: 3.06 GHz Intel Core 2 Duo 4 GB 1067 MHz DDR3 Mac OS X Version 10.6.5 Matlab 7.8.0 (R2009a)

Main References

Sébastien Boyaval, Claude Le Bris, Yvon Maday, Ngoc C. Nguyen, and Anthony T. Patera. A Reduced Basis Approach for Variational Problems with Stochastic Parameters: Application to Heat Conduction with Variable Robin Coefficient. *Comput. Methods Appl. Mech. Engrg.*, 198(41-44):3187–3206, 2009.

Roger G. Ghanem and Pol D. Spanos.

Stochastic Finite Elements: A Spectral Approach.

Springer-Verlag, New York, 1991.

D. B. Phuong Huynh, Jaime Peraire, Anthony T. Patera, and Guirong R. Liu.

Real-time Reliable Prediction of Linear-Elastic Mode-I Stress Intensity Factors for Failure Analysis.

High Performance Computation for Engineered Systems (HPCES), 2006.

Hermann G. Matthies and Andreas Keese.

Galerkin Methods for Linear and Nonlinear Elliptic Stochastic Partial Differential Equations. *Comput. Methods Appl. Mech. Engrg.*, 194(12-16):1295–1331, 2005.

5

Timo Tonn.

Application of Reduced-Basis Methods – Optimization of the Voith-Schneider Propeller. PhD thesis, Ulm University, coming soon.