LM386 Low Voltage Audio Power Amplifier

The LM386 is a power amplifier designed for use in low voltage consumer applications. The gain is intemally set to 20 to keep external part count low, but the addition of an external resistor and capacitor between pins 1 and 8 will increase the gain to any value up to 200 .

The inputs are ground referenced while the output is automatically biased to one half the supply voltage. The quiescent power drain is only 24 milliwatts when operating from a 6 volt supply,making the LM386 ideal for battery operation.

Supply Voltage	V^{+}	15 V
Power Dissipation	$\begin{array}{r} \mathrm{P}_{\mathrm{D}}(\mathrm{D}-\text { Type }) \\ (\mathrm{S}-\text { Type }) \end{array}$	$\begin{gathered} 700 \mathrm{~mW} \\ 300 \mathrm{~mW} \end{gathered}$
Input Voltage Range	$V_{\mathbb{N}}$	$=0.4 \mathrm{~V}$
Operating Temperature Range	$\mathrm{T}_{\text {OPT }}$	$-20 \sim+70{ }^{\circ} \mathrm{C}$
Storage Temperature Range	Tstg	$-40 \sim+125{ }^{\circ}$

Package Ontline

Applications

- AM-FM radio amplifiers
- Portable tape player amplifiers
- Intercoms
- TV sound systems
- Line drivers
- Ultrasonic drivers
- Small servo drivers
- Power converters
- Low distortion
- Eight pin dual-in-line package

Connection Diagram

(TOP VIEW)

LM386 Low Voltage Audio Power Amplifier

Blectrical Characteristics ($\mathrm{T}_{\mathrm{A}}=25 \mathrm{c}$)

	M) Conndutioni		Isp.	Mencis	Unita:
Quiescent Circuit Current(I_{0})	$V_{D N}=0$		4	8	mA
Output Power (Pour)	$\begin{aligned} & V_{1}=6 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=8 \Omega, \mathrm{THD}=10 \% \\ & \mathrm{~V}_{1}=9 \mathrm{~V}, \mathrm{R}_{\mathrm{i}}=8 \Omega, \mathrm{THD}=10 \% \end{aligned}$	$\begin{array}{r} 250 \\ 500 \\ \hline \end{array}$	$\begin{aligned} & 325 \\ & 700 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{mW} \\ & \mathrm{~mW} \end{aligned}$
Voltage Gain (Av) D-Type	$\begin{aligned} & V_{0}=6 \mathrm{~V}, \mathrm{f}=1 \mathrm{KHz} \\ & 10_{\mu} \mathrm{F} \text { from Pin } 1 \text { to } 8 \end{aligned}$		$\begin{aligned} & 26 \\ & 46 \\ & \hline \end{aligned}$		dB dB
Bandwidth (BW) D-Type	$\mathrm{V}_{\mathrm{S}}=6 \mathrm{~V}$, Pins 1 and 8 Open 10_{μ} F from Pin 1 to 8		$\begin{array}{r} 300 \\ 60 \\ \hline \end{array}$		KHz
Total Harmonic Distortion(THD) (D-Type)	$\begin{aligned} & V_{S}=6 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=8 \Omega, \text { Poun }=125 \mathrm{~mW} \\ & \mathrm{f}=1 \mathrm{KHz} \text {, Pins } 1 \text { and } 8 \text { open } \end{aligned}$		0.2		\%
Power Supply Rejection Ratio (PSRR)	$\mathrm{V}_{5}=6 \mathrm{~V}, \mathrm{f}=1 \mathrm{KHz}, \mathrm{C}_{\mathrm{EYPASS}}=10_{\mu} \mathrm{F}$ Pins 1 and 8 Open, Referred to Output		50		dB
Input Resistance ($\mathrm{R}_{\text {RI }}$) Input Bias Current (Igus)	$\mathrm{V}_{\mathrm{S}}=6 \mathrm{~V}$, Pins 2 and 3 Open		$\begin{aligned} & 50 \\ & 250 \\ & \hline \end{aligned}$		$\begin{gathered} \mathrm{K} \Omega \\ \mathrm{nA} \\ \hline \end{gathered}$

(note 1) Set the maximum junction temperature to $125^{\circ} \mathrm{C}$ and reduce the thermal resistance to $143{ }^{\circ} \mathrm{C} / \mathrm{W}$ when the ambient temperature is high.
(note 2) Insert a 10Ω resistor and $0.05 \mu \mathrm{~F}$ capacitor in series to ground terminal from pin 5.

Typical Application

Power Dissipation vi Ambient Temperature

LM386 Low Voltage Audio Power Amplifier

Typical Applications

Application Hints

GAIN CONTROL

To make the LM386 a more versatile amplifier, two pins (1 and 8) are provided for gain control. With pins 1 to 8 open the $1.35 \mathrm{~K} \Omega$ resistor sets the gain at $20(26 \mathrm{~dB})$. If a capacitor is put from pin 1 to 8 , bypassing the $1.35 \mathrm{~K} \Omega$ resistor, the gain will go up to $200(46 \mathrm{~dB})$. If a resistor is placed in series with the capacitor, the gain can be set to any value from 20 to 200.Gain control can also be done by capacitively coupling a resistor (or FET) from pin 1 to ground.

Additional external components can be placed in parallel with the internal feedback resistors to tailor the gain and frequency response for individual applications. For example, we can compensate poor speaker bass response by frequency shaping the feedback path. This is done with a series RC from pin 1 to 5 (paralleiing the internal $15 \mathrm{~K} \Omega$ resistor). For 6 dB effective bass boost: $R=15 \mathrm{~K} \Omega$, the lowest values for good stable operation is $R \min =10 \mathrm{~K} \Omega$ if pin 8 is open.If pins 1 and 8 are bypassed then R as low $2 \mathrm{~K} \Omega$ can be used. This restriciton is because the amplifier is only compensated for closed-loop gains greater than 9 .
INPUT BIASING
The schematic shows that both inputs are biased to ground with a $50 \mathrm{~K} \Omega$ resistor. The base current of the input transistors is about 250 nA , so the inputs are at about 12.5 mV when left open. If the dc source resistance driving the LM386 is higher than $250 \mathrm{~K} \Omega$ it will contribute very little additional offset (about 2.5 mV at the input, 50 mV at the output). If the de source resistance is less than $10 \mathrm{~K} \Omega$, then shorting the unused input to ground will keep the offset low (about 2.5 mV at the input, 50 mV at the output).For dc source resistances between these values we can eliminate excess offset by putting a resistor from the unused input to ground, equal in value to the dc source resistance. Of course all offset problems are eliminated if the input is capacitively coupled.

When using the LM 386 will higher gains (bypassing the $1.35 \mathrm{~K} \Omega$ resistor between pins 1 and 8) it is necessary to bypass the unused input, preventing degradation of gain and possible instabilities. This is done with a $0.1 \mu \mathrm{~F}$ capacitor or a short to ground depending on the dc source resistance on the driven input.

Typical Applications (Ta=25c)

Quiescent Current ve. Supply Voltage

Voltage Gain vs. Frequency

Total Harmonic Distortion $7 x$. Frequency $\left(V+=6 V, R_{L}=8 \Omega, P o=125 \mathrm{~mW}, A v=26 d B\right)$

Maximum Ontpit Voltage Bwing va. Supply

Power Supply Rejection Ratio vs. Frequency $\left(V^{+}=6 V, A v=26 \mathrm{~dB}\right)$

Total Harmonic Distortion vs. Output Power $\left(\mathrm{V}^{+}=6 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=8 \Omega, \mathrm{f}=1 \mathrm{KCHz}\right)$

Power Dieaipation ve. Ontput Power ($\mathrm{R}_{\mathrm{x}}=4 \Omega$)

Power Dissipation ve. Output Power($\mathrm{R}_{\mathrm{L}}=8 \mathrm{n}$:

