LM748 Operational Amplifier

General Description
The LM48 is a general purpose operational amplifier with external frequency compensation.

The unity-gain compensation specified makes the circuit stable for all feedback configurations, even with capacitive loads. It is possible to optimize compensation for best high frequency performance at any gain. As a comparator, the output can be clamped at any desired level to make it compatible with logic circuits.

The LM748C is specified for operation over the 0°C to +70°C temperature range.

Features
- Frequency compensation with a single 30 pF capacitor
- Operation from ±5V to ±20V
- Continuous short-circuit protection
- Operation as a comparator with differential inputs as high as ±30V
- No latch-up when common range is exceeded
- Same pin configuration as the LM101

Connection Diagram

Dual-In-Line Package

Top View
Order Number LM748CN
See NS Package Number N08B
Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

- Supply Voltage: ±22V
- Power Dissipation (Note 2): 500 mW
- Differential Input Voltage: ±30V

Electrical Characteristics (Note 5)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Offset Voltage</td>
<td>T<sub>A</sub> = 25°C, R<sub>S</sub> ≤ 10 kΩ</td>
<td>1.0</td>
<td>5.0</td>
<td></td>
<td>mV</td>
</tr>
<tr>
<td>Input Offset Current</td>
<td>T<sub>A</sub> = 25°C</td>
<td>40</td>
<td>200</td>
<td></td>
<td>nA</td>
</tr>
<tr>
<td>Input Bias Current</td>
<td>T<sub>A</sub> = 25°C</td>
<td>120</td>
<td>500</td>
<td></td>
<td>nA</td>
</tr>
<tr>
<td>Input Resistance</td>
<td>T<sub>A</sub> = 25°C</td>
<td>300</td>
<td>800</td>
<td></td>
<td>kΩ</td>
</tr>
<tr>
<td>Supply Current</td>
<td>T<sub>A</sub> = 25°C, V<sub>S</sub> = ± 15V</td>
<td>1.8</td>
<td>2.8</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>Large Signal Voltage Gain</td>
<td>T<sub>A</sub> = 25°C, V<sub>S</sub> = ± 15V, V<sub>OUT</sub> = ± 10V, R<sub>L</sub> ≥ 2 kΩ</td>
<td>50</td>
<td>160</td>
<td></td>
<td>V/mV</td>
</tr>
<tr>
<td>Input Offset Voltage</td>
<td>R<sub>S</sub> ≤ 10 kΩ</td>
<td>6.0</td>
<td></td>
<td></td>
<td>mV</td>
</tr>
<tr>
<td>Average Temperature Coefficient of Input Offset Voltage</td>
<td>R<sub>S</sub> ≤ 50Ω</td>
<td>3.0</td>
<td></td>
<td></td>
<td>µV/°C</td>
</tr>
<tr>
<td></td>
<td>R<sub>S</sub> ≤ 10 kΩ</td>
<td>6.0</td>
<td></td>
<td></td>
<td>µV/°C</td>
</tr>
<tr>
<td>Input Offset Current</td>
<td>T<sub>A</sub> = 0°C to +70°C</td>
<td>300</td>
<td></td>
<td></td>
<td>nA</td>
</tr>
<tr>
<td></td>
<td>T<sub>A</sub> = −55°C to +125°C</td>
<td>500</td>
<td></td>
<td></td>
<td>nA</td>
</tr>
<tr>
<td>Input Bias Current</td>
<td>T<sub>A</sub> = 0°C to +70°C</td>
<td>0.8</td>
<td></td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td></td>
<td>T<sub>A</sub> = −55°C to +125°C</td>
<td>1.5</td>
<td></td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td>Supply Current</td>
<td>T<sub>A</sub> = +125°C, V<sub>S</sub> = ± 15V</td>
<td>1.2</td>
<td>2.25</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td>T<sub>A</sub> = −55°C to +125°C</td>
<td>1.9</td>
<td>3.3</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>Large Signal Voltage Gain</td>
<td>V<sub>S</sub> = ± 15V, V<sub>OUT</sub> = ± 10V, R<sub>L</sub> ≥ 2 kΩ</td>
<td>25</td>
<td></td>
<td></td>
<td>V/mV</td>
</tr>
<tr>
<td>Output Voltage Swing</td>
<td>V<sub>S</sub> = ± 15V, R<sub>L</sub> = 10 kΩ</td>
<td>±12</td>
<td>±14</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>V<sub>S</sub> = ± 15V, R<sub>L</sub> = 2 kΩ</td>
<td>±10</td>
<td>±13</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Input Voltage Range</td>
<td>V<sub>S</sub> = ± 15V</td>
<td>±12</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Common-Mode Rejection Ratio</td>
<td>R<sub>S</sub> ≤ 10 kΩ</td>
<td>70</td>
<td>90</td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>Supply Voltage Rejection Mode</td>
<td>R<sub>S</sub> ≤ 10 kΩ</td>
<td>77</td>
<td>90</td>
<td></td>
<td>dB</td>
</tr>
</tbody>
</table>

Note 1: Absolute maximum ratings indicate limits beyond which damage to the device may occur. Electrical characteristic specifications do not apply when operating the device outside of its rated operating conditions.

Note 2: For operating at elevated temperatures, the device must be derated based on a maximum junction to case thermal resistance of 45°C per watt, or 150°C per watt junction to ambient. (See Curves).

Note 3: For supply voltages less than ±15V, the absolute maximum input voltage is equal to the supply voltage.

Note 4: Continuous short circuit is allowed for case temperatures to +125°C and ambient temperatures to +70°C.

Note 5: These specifications apply for ±5V ≤ V_S ≤ +15V and 0°C ≤ T_A ≤ +70°C, unless otherwise specified.
Typical Applications

Inverting Amplifier with Balancing Circuit

†May be zero or equal to parallel combination of R1 and R2 for minimum offset.

Voltage Comparable for Driving
DTL or TTL Integrated Circuits

Voltage Comparable for Driving
RTL Logic or High Current Driver
Guaranteed Performance Characteristics (Note 5)

Input Voltage Range

- **Supply Voltage (V)** vs. **Input Voltage Range (V)**
 - Minimum

Output Swing

- **Supply Voltage (V)** vs. **Output Swing (V)**
 - Minimum R_L = 10k
 - Minimum R_L = 2k

Voltage Gain

- **Supply Voltage (V)** vs. **Voltage Gain (dB)**
 - Minimum

Supply Current

- **Supply Voltage (V)** vs. **Supply Current (mA)**
 - T_A = -55°C
 - T_A = 25°C
 - T_A = 125°C

Voltage Gain

- **Supply Voltage (V)** vs. **Voltage Gain (dB)**
 - T_A = -55°C
 - T_A = 25°C
 - T_A = 125°C

Input Bias Current

- **Supply Voltage (V)** vs. **Input Bias Current (mA)**
 - T_A = -55°C
 - T_A = 25°C
 - T_A = 125°C

www.national.com
Current Limiting

Input Current

Maximum Power Dissipation

Open Loop Frequency Response

Large Signal Frequency Response

Voltage Follower Pulse Response
Physical Dimensions

inches (millimeters) unless otherwise noted

LM748

www.national.com
THE CONTENTS OF THIS DOCUMENT ARE PROVIDED IN CONNECTION WITH NATIONAL SEMICONDUCTOR CORPORATION (“NATIONAL”) PRODUCTS. NATIONAL MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS PUBLICATION AND RESERVES THE RIGHT TO MAKE CHANGES TO SPECIFICATIONS AND PRODUCT DESCRIPTIONS AT ANY TIME WITHOUT NOTICE. NO LICENSE, WHETHER EXPRESS, IMPLIED, ARISING BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT.

TESTING AND OTHER QUALITY CONTROLS ARE USED TO THE EXTENT NATIONAL DEEMS NECESSARY TO SUPPORT NATIONAL’S PRODUCT WARRANTY. EXCEPT WHERE MANDATED BY GOVERNMENT REQUIREMENTS, TESTING OF ALL PARAMETERS OF EACH PRODUCT IS NOT NECESSARILY PERFORMED. NATIONAL ASSUMES NO LIABILITY FOR APPLICATIONS ASSISTANCE OR BUYER PRODUCT DESIGN. BUYERS ARE RESPONSIBLE FOR THEIR PRODUCTS AND APPLICATIONS USING NATIONAL COMPONENTS. PRIOR TO USING OR DISTRIBUTING ANY PRODUCTS THAT INCLUDE NATIONAL COMPONENTS, BUYERS SHOULD PROVIDE ADEQUATE DESIGN, TESTING AND OPERATING SAFEGUARDS. EXCEPT AS PROVIDED IN NATIONAL’S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, NATIONAL ASSUMES NO LIABILITY WHATSOEVER, AND NATIONAL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO THE SALE AND/OR USE OF NATIONAL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

LIFE SUPPORT POLICY

NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE CHIEF EXECUTIVE OFFICER AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.

National Semiconductor and the National Semiconductor logo are registered trademarks of National Semiconductor Corporation. All other brand or product names may be trademarks or registered trademarks of their respective holders.

Copyright© 2007 National Semiconductor Corporation
For the most current product information visit us at www.national.com

Notes