Office Hours

For reliable meetings, please arrange an appointment via mail.
Otherwise, you can try to drop by at my office.

Dominik Meißner

Dominik Meißner has received a Master diploma cum laude in Computer Science from Ulm University in 2017. They then joined the Institute of Distributed Systems and are currently employed as a research assistant.

Research Interests

  • Distributed Computing
    • Event processing
    • Distribution and parallelization aspects
    • Time & programming models
  • Distributed systems & architectures
    • Event-driven architectures
    • Event sourcing & CQRS
    • Retroaction in event-sourced systems
    • Scalability of architectures
    • Concurrency and parallelism
  • Other Topics
    • Web technologies & web architectures
    • Programming languages and concepts
    • Open data & open educational ressources

Student Theses and Individual Student Projects

Bachelor/Master Theses

The section lists open and finished topics for theses. More topics for Bachelor/Master theses are available on the thesis website of the institute.

I am also accepting own topics that relate to my fields of interests. Please get in touch for suggestions.

Master Projects

I provide a number of  individual master projects that are related to my field of research. Several student thesis topics can also be worked on as part of a master project.

Most projects can be conducted as 8 LP or 16 LP projects, depending on the focus and extent of the topic.

For more details, please get in touch with me.

Office Hours

For reliable meetings, please arrange an appointment via mail.
Otherwise, you can try to drop by at my office.

“Causality-aware Log Pruning in Distributed event-sourced Systems,” individual lab project VS-P21-2019, B. Erb and D. Meißner (Supervisor), F. Kargl (Examiner), Inst. f. Vert. Sys., Univ. Ulm, 2019 – completed.
“Practical Overview of Serverless Computing,” projectarbeit, D. Meißner (Supervisor), F. Kargl (Examiner), Inst. of Distr. Sys., Ulm Univ., 2019 – open.
Serverless is a current trend in cloud computing. In contrast to what the name indicates it does not describe an architecture without servers. Instead, it really means that developers do not have to worry about servers and infrastructure, but can completely focus on their code. Unlike previous cloud computing models, a cloud vendor does not offer full platforms or virtual machines, but an execution environment for functions. These often feature a pay-per-use billing model and automatic scalability of resources based on current utilization. Thus, developers are completely relieved of the operational concerns of their applications. All major cloud computing providers offer their own flavor of serverless computing or Function as a Service (FaaS). The goal of this project is to provide a comparison of the similarities and differences of these platforms. Another goal of this project is the implementation of a reference application that can be used to compare different platforms and their programming model. As the practical part of this project a multi node Apache OpenWhisk (an open source serverless platform) cluster should be set up and tested.
“Web-basierte Oberfläche zur Gestaltung von Chatbot-basierten Konversationen,” Bachelor's thesis, D. Meißner (Supervisor), F. Kargl (Examiner), Inst. of Distr. Sys., Ulm Univ., 2019 – taken.
Gemeinsam mit Abteilungen aus der Psychologie wird am Institut für Verteilte Systeme ein programmierbarer Chatbot entwickelt, der insbesondere für Studien und Experimente eingesetzt werden soll. Der derzeitige Prototyp erfordert eine Programmierung der Zustandsautomaten des Bots in Java. Dies ist vor allem für Personen ohne Programmierhintergrund eine große Hürde bei der Gestaltung von Dialog-Skripten. In dieser Abschlussarbeit soll hierfür eine webbasierte Oberfläche entwickelt werden, die eine grafische Erstellung von Chatbot-basierten Studien ermöglicht. Im Rahmen der Arbeit soll zunächst ein überblick über bestehende Tools und Formate erarbeitet werden. Anschließend soll der Funktionsumfang des Bots in einer interaktiven Web-Anwendung abgebildet werden. Die so modellierten Dialoge sollen schließlich in code-basierte Zustandsautomaten zur Ausführung in der Bot-Plattform trans-formiert werden.
A. Kononenko, “Blockchain Analysis with Chronograph,” Bachelor's thesis, D. Meißner (Supervisor), F. Kargl (Examiner), Inst. of Distr. Sys., Ulm Univ., 2018 – taken.
Blockchain technology allows for decentralized, distributed, and secure ledgers that store records (e.g., transactions). Popular blockchain-based systems such as Bitcoin and Etherum have emerged as so-called crypto-currencies. As the ledger maintains the full history of transactions, interactions within the system are always persisted. In this work, the student is asked to design and implement online and offline transaction analyses based on Chronograph, a data processing platform for evolving graphs developed at our Institute. Therefore, different blockchain-based systems should be surveyed and appropriate analysis mechanisms should be conducted.
“Bringing Height to the Chronograph Platform,” individual lab project VS-R08-2018, B. Erb and D. Meißner (Supervisor), F. Kargl (Examiner), Inst. f. Vert. Sys., Univ. Ulm, 2018 – completed.
M. Diemer, “Dependency Tracking in Distributed Retroactive Applications,” Bachelor's thesis, D. Meißner (Supervisor), F. Kargl (Examiner), Inst. of Distr. Sys., Ulm Univ., 2018 – taken.
Retroactive computing enables programmatical access to the history of an application. This offers a variety of capabilities, such as computations and predictions of alternate application timelines, post-hoc bug fixes, and retroactive state explorations. Reads and writes of the application state have to be tracked and persisted in order to support retroaction. This is fairly simple for a single-writer append-only log, but entails various issues in a distributed setting. This thesis/project should explore different approaches for a distributed dependency tracking, including a prototypical implementation based on an existing platform prototype and an evaluation of the resulting artifacts.
“Event-Sourced Graph Processing in Internet of Things Scenarios,” Master's thesis VS-M03-2018, B. Erb and D. Meißner (Supervisor), F. Kargl (Examiner), Inst. of Distr. Sys., Ulm Univ., 2018 – completed.
“Online Text Processing for Chatting Applications,” Bachelor's thesis VS-B19-2018, D. Meißner and B. Erb (Supervisor), F. Kargl (Examiner), Inst. of Distr. Sys., Ulm Univ., 2018 – completed.
“Revisited: A platform architecture for retroactive programming using event sourcing,” individual lab project VS-R07-2018, B. Erb and D. Meißner (Supervisor), F. Kargl (Examiner), Inst. f. Vert. Sys., Univ. Ulm, 2018 – completed.
“A platform architecture for retroactive programming using event sourcing,” individual lab project VS-R23-2017, B. Erb and D. Meißner (Supervisor), F. Kargl (Examiner), Inst. f. Vert. Sys., Univ. Ulm, 2017 – completed.

Teaching

Current Teaching

  • Introduction to Computer Networks (GRN)
  • Selected Topics in Distributed Systems (ATVS)
  • Research Trends in Distributed Systems (RTDS)
  • Computer Networks and IT-Security (RNSEC)

Lab Courses

Seminars and Student Projects

Seminars

Currently Supervised Seminar Courses

  • Privacy in the Internet (PRIV)
  • Selected Topics in Distributed Systems (ATVS)
  • Research Trends in Distributed Systems (RTDS)

Office Hours

For reliable meetings, please arrange an appointment via mail.
Otherwise, you can try to drop by at my office.

Current Topics

  • Smart Home Security (Seminar ATVS/RTDS; Winter Term 2019/2020)
  • Trusted Execution Environments (Seminar ATVS/RTDS; Winter Term 2019/2020)

Previous Topics

  • Serverless Computing (Seminar ATVS/RTDS; Summer Term 2019)
  • Distributed Causality Tracking (Seminar ATVS/RTDS; Winter Term 2018/2019)
  • GDPR: Theorie und Praxis (Proseminar PRIV; Winter Term 2018/2019)
  • Machine Learning on Event Streams (Seminar ATVS; Summer Term 2018)
  • Networking in Online Multiplayer Games (Seminar ATVS; Winter Term 2017/2018)
  • Privacy in Instant Messaging Anwendungen (Proseminar PRIV; Winter Term 2017/2018)