Offene Abschlussarbeiten

Auf dieser Seite finden Sie Informationen zu aktuell von uns angebotenen Themen für Abschlussarbeiten. Informationen zu bereits laufenden oder fertiggestellten Arbeiten finden sich auf einer Unterseite. Beachten Sie, dass ausgeschriebene Arbeiten teilweise als Bachelor- und Masterarbeit oder auch als Projektarbeit ausgeschrieben sind. Je nachdem, was Studierende benötigen, wird in der Regel das Thema der gewählten Arbeit in Arbeitsumfang und Schwierigkeitsgrad angepasst.

Hinweis zur Sprache: Im Folgenden werden die verfügbaren Themen hauptsächlich auf Englisch aufgelistet. Bei der Bearbeitung eines Thema steht es Studierenden frei, sich entweder für Deutsch oder Englisch als Sprache für die Ausarbeitung zu entscheiden.

Aktuelle Ausschreibungen

„A Tool Support for Privacy Threat Modelling,“ Masterarbeit, Bachelorarbeit, Projektarbeit, A. Al-Momani (Betreuung), F. Kargl (Prüfer), Inst. of. Distr. Sys., Ulm Univ., 2020 – Verfügbar.
Privacy engineering and particularly privacy threat modelling have gained a lot of attention in the recent years. Many methodologies have been proposed to model privacy threats. An example of such methods is the widely used LINDDUN method. As some recent (ISO/IEC) standards and regulations (e.g., GDPR) require handling risks associated with the elicited threats, we combined the LINDDUN method with a privacy risk rating method forming a holistic method that takes the system model as input and outputs a list of privacy risks. Your task in this project/thesis work is to implement a tool to support the the deployment of our developed method. Related work to such a tool is the commonly used Microsoft threat modelling tool which is used for security. Another very related example that is considered an extension to the MS tool is the TMTe4PT tool. There are no restrictions on the technologies or languages used in the implementation as long as it achieves the required features similarly to, e.g., TMTe4PT. This project can also be extended to a thesis by including research questions related to the countermeasure selection process.
„Generating synthetic data using MABS,“ Bachelorarbeit, Projektarbeit, M. Wolf (Betreuung), Inst. of Distr. Sys., Ulm Univ., 2020 – Verfügbar.
PaySim, a Mobile Money Payment Simulator simulates money transactions between users based on Multi Agent Based Simulation (MABS). It also generates data that can be used to test algorithms which should detect suspicious activities or fraud. This generated data is based on real financial data, which cannot be published for security reasons. In order to use or train the detection algorithms on real data, the synthetic information should be as similar as possible to the real one but not exactly the same. In this project or thesis, you should read the work of A. Elmir and E. Lopez-Rojas (PaySim), as well as the theory of MABS. Then you should implement a similar program to PaySim, which has certain data as input and should output generated synthetic data which fulfills the above requirement. As a test, you have to use the VeReMi Dataset where detection algorithms and results already exist. Then, the tool will be used on CAN messages.
„Login and user mangement for Angular and Shibboleth,“ Bachelorarbeit, Projektarbeit, F. J. Hauck (Betreuung), F. J. Hauck (Prüfer), Inst. of Distr. Sys., Ulm Univ., 2020 – Verfügbar.
Angular is a web framework for single-page application, i.e., most business logic resides in the browser not on the server. The server is contact by a REST interface, mainly used to get direct access to the application data. Shibboleth is an authentication technology used also by KIZ to authenticate and authorise web access. In this work, a simple demo application has to be developed together with a concept for authenticating users and authorisation of their application-logic and REST-based data accesses. Ideally the concept is some sort of library including guidelines, and is tested against the KIZ identity provider. This work includes some basic user management in the application to recognise already known users and attach preferences etc. to it. Challenges are user-authentication expiry during user sessions and version updates in the backend server during the life time of the single-page application.
„Efficient Updating of a Network-Protocol-Model with Message-Format Refinements,“ Bachelor's oder Masterarbeit, S. Kleber (Betreuung), F. Kargl (Prüfer), Institut of Distributed Systems, Ulm University, 2019 – Verfügbar.
Security assessments of networked systems require knowledge about the utilized communication protocol. For proprietary protocols without known specification and with only limited access to the end-points, the only source of information is the communication itself. To correctly conclude from the captured byte stream to message-formats, -types, and finally a protocol model, structure, message- and field-boundaries, data-type, and semantics need to be inferred.After an initial inference procedure, it is desirable to refine the existing protocol model. Additional information gained by recorded network traffic needs to be incorporated by recognizing the appropriate parts of the model. The modeled knowledge is to be extended depending on the applicable information inferable from the new trace.
„Test-Case-Generation Strategies for Network-Protocol-Model Refinements,“ Bachelor's oder Masterarbeit, S. Kleber (Betreuung), F. Kargl (Prüfer), Institut of Distributed Systems, Ulm University, 2019 – Verfügbar.
Security assessments of networked systems require knowledge about the utilized communication protocol. For proprietary protocols without known specification and with only limited access to the end-points, the only source of information is the communication itself. To correctly conclude from the captured byte stream to message-formats, -types, and finally a protocol model, structure, message- and field-boundaries, data-type, and semantics need to be inferred.After an initial inference procedure, it is desirable to refine the existing protocol model. Actively probing an entity for the validity of message syntaxes allows to targetedly enhance the knowledge about the protocol. To do this efficiently a smart method of automatically generating test-cases depending on the current protocol model needs to be developed.
„Using Machine Learning for Misbehavior Detection in CACC,“ M. Wolf (Betreuung), F. Kargl (Prüfer), Inst. of Distr. Sys., Ulm Univ., 2019 – Verfügbar.
Modern vehicles will use communication to increase the safety of its passengers, reduce fuel consumption, travel time, and more. The communication between the vehicles will be mainly beacon messages containing the speed, position, acceleration and other properties. These messages need to be validated, if they contain correct (plausible) information. For example, when a vehicle is suddenly stopping, but sending an increase in speed, the following vehicles may crash into the misbehaving vehicle. In literature, there is already existing work on detecting misbehavior in the data with different techniques such as subjective logic or machine learning. In this project, we will analyze the VeReMi data-set with the help of different machine learning algorithms. The number of algorithms compared is depending on the scope (credits). The student can choose the framework, e.g. PyTorch.
„Machine Learning on Encrypted Data,“ Bachelor Thesis, Master Thesis, Projektarbeit, M. Matousek (Betreuung), F. Kargl (Prüfer), Inst. of Distr. Sys., Ulm Univ., 2018 – Verfügbar.
Encryption is one of the most reliable techniques for protecting information. However, once data is encrypted, using it becomes very difficult. Goal of this thesis or project, is to explore how Machine Learning algorithms can be designed to be able to deal with encrypted data. Firstly, a survey of existing mechanisms should be conducted. In a second part, algorithms will be comparatively implemented, or own encryption mechanisms introduced.

Kontakt

Sekretariat

Marion Köhler
Claudia Kastner
Emailaddresse Sekretariat
Telefon: +49 731 50-24140
Telefax: +49 731 50-24142

Postanschrift

Institut für Verteilte Systeme
Universität Ulm
Albert-Einstein-Allee 11
89081 Ulm

Besucheranschrift

James-Franck-Ring
Gebäude O27, Raum 349
89081 Ulm

Anfahrt

Themen nach Abschluss

Bachelor-Arbeiten

„A Tool Support for Privacy Threat Modelling,“ Masterarbeit, Bachelorarbeit, Projektarbeit, A. Al-Momani (Betreuung), F. Kargl (Prüfer), Inst. of. Distr. Sys., Ulm Univ., 2020 – Verfügbar.
Privacy engineering and particularly privacy threat modelling have gained a lot of attention in the recent years. Many methodologies have been proposed to model privacy threats. An example of such methods is the widely used LINDDUN method. As some recent (ISO/IEC) standards and regulations (e.g., GDPR) require handling risks associated with the elicited threats, we combined the LINDDUN method with a privacy risk rating method forming a holistic method that takes the system model as input and outputs a list of privacy risks. Your task in this project/thesis work is to implement a tool to support the the deployment of our developed method. Related work to such a tool is the commonly used Microsoft threat modelling tool which is used for security. Another very related example that is considered an extension to the MS tool is the TMTe4PT tool. There are no restrictions on the technologies or languages used in the implementation as long as it achieves the required features similarly to, e.g., TMTe4PT. This project can also be extended to a thesis by including research questions related to the countermeasure selection process.
„Generating synthetic data using MABS,“ Bachelorarbeit, Projektarbeit, M. Wolf (Betreuung), Inst. of Distr. Sys., Ulm Univ., 2020 – Verfügbar.
PaySim, a Mobile Money Payment Simulator simulates money transactions between users based on Multi Agent Based Simulation (MABS). It also generates data that can be used to test algorithms which should detect suspicious activities or fraud. This generated data is based on real financial data, which cannot be published for security reasons. In order to use or train the detection algorithms on real data, the synthetic information should be as similar as possible to the real one but not exactly the same. In this project or thesis, you should read the work of A. Elmir and E. Lopez-Rojas (PaySim), as well as the theory of MABS. Then you should implement a similar program to PaySim, which has certain data as input and should output generated synthetic data which fulfills the above requirement. As a test, you have to use the VeReMi Dataset where detection algorithms and results already exist. Then, the tool will be used on CAN messages.
„Login and user mangement for Angular and Shibboleth,“ Bachelorarbeit, Projektarbeit, F. J. Hauck (Betreuung), F. J. Hauck (Prüfer), Inst. of Distr. Sys., Ulm Univ., 2020 – Verfügbar.
Angular is a web framework for single-page application, i.e., most business logic resides in the browser not on the server. The server is contact by a REST interface, mainly used to get direct access to the application data. Shibboleth is an authentication technology used also by KIZ to authenticate and authorise web access. In this work, a simple demo application has to be developed together with a concept for authenticating users and authorisation of their application-logic and REST-based data accesses. Ideally the concept is some sort of library including guidelines, and is tested against the KIZ identity provider. This work includes some basic user management in the application to recognise already known users and attach preferences etc. to it. Challenges are user-authentication expiry during user sessions and version updates in the backend server during the life time of the single-page application.
„Efficient Updating of a Network-Protocol-Model with Message-Format Refinements,“ Bachelor's oder Masterarbeit, S. Kleber (Betreuung), F. Kargl (Prüfer), Institut of Distributed Systems, Ulm University, 2019 – Verfügbar.
Security assessments of networked systems require knowledge about the utilized communication protocol. For proprietary protocols without known specification and with only limited access to the end-points, the only source of information is the communication itself. To correctly conclude from the captured byte stream to message-formats, -types, and finally a protocol model, structure, message- and field-boundaries, data-type, and semantics need to be inferred.After an initial inference procedure, it is desirable to refine the existing protocol model. Additional information gained by recorded network traffic needs to be incorporated by recognizing the appropriate parts of the model. The modeled knowledge is to be extended depending on the applicable information inferable from the new trace.
„Test-Case-Generation Strategies for Network-Protocol-Model Refinements,“ Bachelor's oder Masterarbeit, S. Kleber (Betreuung), F. Kargl (Prüfer), Institut of Distributed Systems, Ulm University, 2019 – Verfügbar.
Security assessments of networked systems require knowledge about the utilized communication protocol. For proprietary protocols without known specification and with only limited access to the end-points, the only source of information is the communication itself. To correctly conclude from the captured byte stream to message-formats, -types, and finally a protocol model, structure, message- and field-boundaries, data-type, and semantics need to be inferred.After an initial inference procedure, it is desirable to refine the existing protocol model. Actively probing an entity for the validity of message syntaxes allows to targetedly enhance the knowledge about the protocol. To do this efficiently a smart method of automatically generating test-cases depending on the current protocol model needs to be developed.
„Using Machine Learning for Misbehavior Detection in CACC,“ M. Wolf (Betreuung), F. Kargl (Prüfer), Inst. of Distr. Sys., Ulm Univ., 2019 – Verfügbar.
Modern vehicles will use communication to increase the safety of its passengers, reduce fuel consumption, travel time, and more. The communication between the vehicles will be mainly beacon messages containing the speed, position, acceleration and other properties. These messages need to be validated, if they contain correct (plausible) information. For example, when a vehicle is suddenly stopping, but sending an increase in speed, the following vehicles may crash into the misbehaving vehicle. In literature, there is already existing work on detecting misbehavior in the data with different techniques such as subjective logic or machine learning. In this project, we will analyze the VeReMi data-set with the help of different machine learning algorithms. The number of algorithms compared is depending on the scope (credits). The student can choose the framework, e.g. PyTorch.
„Machine Learning on Encrypted Data,“ Bachelor Thesis, Master Thesis, Projektarbeit, M. Matousek (Betreuung), F. Kargl (Prüfer), Inst. of Distr. Sys., Ulm Univ., 2018 – Verfügbar.
Encryption is one of the most reliable techniques for protecting information. However, once data is encrypted, using it becomes very difficult. Goal of this thesis or project, is to explore how Machine Learning algorithms can be designed to be able to deal with encrypted data. Firstly, a survey of existing mechanisms should be conducted. In a second part, algorithms will be comparatively implemented, or own encryption mechanisms introduced.

Master-Arbeiten

„A Tool Support for Privacy Threat Modelling,“ Masterarbeit, Bachelorarbeit, Projektarbeit, A. Al-Momani (Betreuung), F. Kargl (Prüfer), Inst. of. Distr. Sys., Ulm Univ., 2020 – Verfügbar.
Privacy engineering and particularly privacy threat modelling have gained a lot of attention in the recent years. Many methodologies have been proposed to model privacy threats. An example of such methods is the widely used LINDDUN method. As some recent (ISO/IEC) standards and regulations (e.g., GDPR) require handling risks associated with the elicited threats, we combined the LINDDUN method with a privacy risk rating method forming a holistic method that takes the system model as input and outputs a list of privacy risks. Your task in this project/thesis work is to implement a tool to support the the deployment of our developed method. Related work to such a tool is the commonly used Microsoft threat modelling tool which is used for security. Another very related example that is considered an extension to the MS tool is the TMTe4PT tool. There are no restrictions on the technologies or languages used in the implementation as long as it achieves the required features similarly to, e.g., TMTe4PT. This project can also be extended to a thesis by including research questions related to the countermeasure selection process.
„Efficient Updating of a Network-Protocol-Model with Message-Format Refinements,“ Bachelor's oder Masterarbeit, S. Kleber (Betreuung), F. Kargl (Prüfer), Institut of Distributed Systems, Ulm University, 2019 – Verfügbar.
Security assessments of networked systems require knowledge about the utilized communication protocol. For proprietary protocols without known specification and with only limited access to the end-points, the only source of information is the communication itself. To correctly conclude from the captured byte stream to message-formats, -types, and finally a protocol model, structure, message- and field-boundaries, data-type, and semantics need to be inferred.After an initial inference procedure, it is desirable to refine the existing protocol model. Additional information gained by recorded network traffic needs to be incorporated by recognizing the appropriate parts of the model. The modeled knowledge is to be extended depending on the applicable information inferable from the new trace.
„Test-Case-Generation Strategies for Network-Protocol-Model Refinements,“ Bachelor's oder Masterarbeit, S. Kleber (Betreuung), F. Kargl (Prüfer), Institut of Distributed Systems, Ulm University, 2019 – Verfügbar.
Security assessments of networked systems require knowledge about the utilized communication protocol. For proprietary protocols without known specification and with only limited access to the end-points, the only source of information is the communication itself. To correctly conclude from the captured byte stream to message-formats, -types, and finally a protocol model, structure, message- and field-boundaries, data-type, and semantics need to be inferred.After an initial inference procedure, it is desirable to refine the existing protocol model. Actively probing an entity for the validity of message syntaxes allows to targetedly enhance the knowledge about the protocol. To do this efficiently a smart method of automatically generating test-cases depending on the current protocol model needs to be developed.
„Using Machine Learning for Misbehavior Detection in CACC,“ M. Wolf (Betreuung), F. Kargl (Prüfer), Inst. of Distr. Sys., Ulm Univ., 2019 – Verfügbar.
Modern vehicles will use communication to increase the safety of its passengers, reduce fuel consumption, travel time, and more. The communication between the vehicles will be mainly beacon messages containing the speed, position, acceleration and other properties. These messages need to be validated, if they contain correct (plausible) information. For example, when a vehicle is suddenly stopping, but sending an increase in speed, the following vehicles may crash into the misbehaving vehicle. In literature, there is already existing work on detecting misbehavior in the data with different techniques such as subjective logic or machine learning. In this project, we will analyze the VeReMi data-set with the help of different machine learning algorithms. The number of algorithms compared is depending on the scope (credits). The student can choose the framework, e.g. PyTorch.
„Machine Learning on Encrypted Data,“ Bachelor Thesis, Master Thesis, Projektarbeit, M. Matousek (Betreuung), F. Kargl (Prüfer), Inst. of Distr. Sys., Ulm Univ., 2018 – Verfügbar.
Encryption is one of the most reliable techniques for protecting information. However, once data is encrypted, using it becomes very difficult. Goal of this thesis or project, is to explore how Machine Learning algorithms can be designed to be able to deal with encrypted data. Firstly, a survey of existing mechanisms should be conducted. In a second part, algorithms will be comparatively implemented, or own encryption mechanisms introduced.

Themen nach Schwerpunkt

Netzwerke

„Efficient Updating of a Network-Protocol-Model with Message-Format Refinements,“ Bachelor's oder Masterarbeit, S. Kleber (Betreuung), F. Kargl (Prüfer), Institut of Distributed Systems, Ulm University, 2019 – Verfügbar.
Security assessments of networked systems require knowledge about the utilized communication protocol. For proprietary protocols without known specification and with only limited access to the end-points, the only source of information is the communication itself. To correctly conclude from the captured byte stream to message-formats, -types, and finally a protocol model, structure, message- and field-boundaries, data-type, and semantics need to be inferred.After an initial inference procedure, it is desirable to refine the existing protocol model. Additional information gained by recorded network traffic needs to be incorporated by recognizing the appropriate parts of the model. The modeled knowledge is to be extended depending on the applicable information inferable from the new trace.
„Test-Case-Generation Strategies for Network-Protocol-Model Refinements,“ Bachelor's oder Masterarbeit, S. Kleber (Betreuung), F. Kargl (Prüfer), Institut of Distributed Systems, Ulm University, 2019 – Verfügbar.
Security assessments of networked systems require knowledge about the utilized communication protocol. For proprietary protocols without known specification and with only limited access to the end-points, the only source of information is the communication itself. To correctly conclude from the captured byte stream to message-formats, -types, and finally a protocol model, structure, message- and field-boundaries, data-type, and semantics need to be inferred.After an initial inference procedure, it is desirable to refine the existing protocol model. Actively probing an entity for the validity of message syntaxes allows to targetedly enhance the knowledge about the protocol. To do this efficiently a smart method of automatically generating test-cases depending on the current protocol model needs to be developed.

Mobile Systeme

Distributed Computing

„Login and user mangement for Angular and Shibboleth,“ Bachelorarbeit, Projektarbeit, F. J. Hauck (Betreuung), F. J. Hauck (Prüfer), Inst. of Distr. Sys., Ulm Univ., 2020 – Verfügbar.
Angular is a web framework for single-page application, i.e., most business logic resides in the browser not on the server. The server is contact by a REST interface, mainly used to get direct access to the application data. Shibboleth is an authentication technology used also by KIZ to authenticate and authorise web access. In this work, a simple demo application has to be developed together with a concept for authenticating users and authorisation of their application-logic and REST-based data accesses. Ideally the concept is some sort of library including guidelines, and is tested against the KIZ identity provider. This work includes some basic user management in the application to recognise already known users and attach preferences etc. to it. Challenges are user-authentication expiry during user sessions and version updates in the backend server during the life time of the single-page application.

Privacy

„A Tool Support for Privacy Threat Modelling,“ Masterarbeit, Bachelorarbeit, Projektarbeit, A. Al-Momani (Betreuung), F. Kargl (Prüfer), Inst. of. Distr. Sys., Ulm Univ., 2020 – Verfügbar.
Privacy engineering and particularly privacy threat modelling have gained a lot of attention in the recent years. Many methodologies have been proposed to model privacy threats. An example of such methods is the widely used LINDDUN method. As some recent (ISO/IEC) standards and regulations (e.g., GDPR) require handling risks associated with the elicited threats, we combined the LINDDUN method with a privacy risk rating method forming a holistic method that takes the system model as input and outputs a list of privacy risks. Your task in this project/thesis work is to implement a tool to support the the deployment of our developed method. Related work to such a tool is the commonly used Microsoft threat modelling tool which is used for security. Another very related example that is considered an extension to the MS tool is the TMTe4PT tool. There are no restrictions on the technologies or languages used in the implementation as long as it achieves the required features similarly to, e.g., TMTe4PT. This project can also be extended to a thesis by including research questions related to the countermeasure selection process.

IT-Sicherheit

Fehlertoleranz

Cloud Computing

„Machine Learning on Encrypted Data,“ Bachelor Thesis, Master Thesis, Projektarbeit, M. Matousek (Betreuung), F. Kargl (Prüfer), Inst. of Distr. Sys., Ulm Univ., 2018 – Verfügbar.
Encryption is one of the most reliable techniques for protecting information. However, once data is encrypted, using it becomes very difficult. Goal of this thesis or project, is to explore how Machine Learning algorithms can be designed to be able to deal with encrypted data. Firstly, a survey of existing mechanisms should be conducted. In a second part, algorithms will be comparatively implemented, or own encryption mechanisms introduced.

Multimediakommunikation

Weitere Themen

„A Tool Support for Privacy Threat Modelling,“ Masterarbeit, Bachelorarbeit, Projektarbeit, A. Al-Momani (Betreuung), F. Kargl (Prüfer), Inst. of. Distr. Sys., Ulm Univ., 2020 – Verfügbar.
Privacy engineering and particularly privacy threat modelling have gained a lot of attention in the recent years. Many methodologies have been proposed to model privacy threats. An example of such methods is the widely used LINDDUN method. As some recent (ISO/IEC) standards and regulations (e.g., GDPR) require handling risks associated with the elicited threats, we combined the LINDDUN method with a privacy risk rating method forming a holistic method that takes the system model as input and outputs a list of privacy risks. Your task in this project/thesis work is to implement a tool to support the the deployment of our developed method. Related work to such a tool is the commonly used Microsoft threat modelling tool which is used for security. Another very related example that is considered an extension to the MS tool is the TMTe4PT tool. There are no restrictions on the technologies or languages used in the implementation as long as it achieves the required features similarly to, e.g., TMTe4PT. This project can also be extended to a thesis by including research questions related to the countermeasure selection process.