Seminar: Manifold-based model reduction of dynamical systems

News

  • Nach Ende des Anmeldeschlusses erhalten alle Teilnehmer mit einem Termin zur Vorbesprechung des Seminars

Allgemeine Informationen

  • Seminarform: wöchentliche Veranstaltung
  • Teilnehmer: Studierende (im Bachelor oder Master) der Fächer (Wirtschafts-)Mathematik, CSE und Lehramt Mathematik
  • Voraussetzungen: Interesse an Dynamischen System und Numerik, evtl. Vorlesungen zu gewöhnlichen Differentialgleichungen o. Ä.. Vorlesungen zu Numerik 1-4 könnten hilfreich sein, sind aber nicht notwendig.
  • Anmeldung: Per Email an Dozent oder Betreuer bis spätestens 21. Juli 2017
  • Plätze: bis zu 15 Teilnehmer

Inhalt

Bei gewöhnlichen Differentialgleichungen treten in der Praxis häufig Multi-Skalen Effekte auf. Zum Beispiel bei chemischen Reaktionsmechanismen findet ein Teil der Reaktionen deutlich schneller statt als der Rest. Dies hat unmittelbar Auswirkung auf die Geometrie dieser Differentialgleichungen und führt zur Schwierigkeiten bei der numerischen Berechnung. Im Zustandsraum bündeln Lösungstrajektorien auf gewisse Untermannifaltigkeiten, die eine Modellreduktion ermöglichen. Im Rahmen dieses Seminars behandeln wir verschiedene Ansätze, um diese Mannigfaltigkeiten numerisch zu berechnen. Des Weiteren gibt es spannende Verbindungen zum Fluss der Riemannschen Zeta-Funktion, bei dem ein ähnliches Bündelungsverhalten zu erkennen ist. Auch dies soll im Rahmen des Seminars näher beleuchtet werden.

Kontakt